
Visual cycle proteins: Structure, function, and roles in human
retinal disease
Published, Papers in Press, July 12, 2018, DOI 10.1074/jbc.AW118.003228

Andrew Tsin‡1, Brandi Betts-Obregon‡, and X Jeffery Grigsby§¶�

From the ‡Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541,
§Vision Health Specialties, Midland, Texas 79707, the ¶College of Optometry, University of Houston, Houston, Texas 77204, and the
�Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Science Center,
Midland, Texas 79705

Edited by Patrick Sung

Here, we seek to summarize the current understanding of the
biochemical and molecular events mediated by visual cycle mol-
ecules in the eye. The structures and functions of selected visual
cycle proteins and their roles in human retinal diseases are also
highlighted. Genetic mutations and malfunctions of these pro-
teins provide etiological evidence that many ocular diseases
arise from anomalies of retinoid (vitamin A) metabolism and
related visual processes. Genetic retinal disorders such as reti-
nitis pigmentosa, Leber’s congenital amaurosis, and Stargardt’s
disease are linked to structural changes in visual cycle proteins.
Moreover, recent reports suggest that visual cycle proteins may
also play a role in the development of diabetic retinopathy. Basic
science has laid the groundwork for finding a cure for many of
these blindness-causing afflictions, but much work remains.
Some translational research projects have advanced to the clin-
ical trial stage, while many others are still in progress, and more
are at the ideas stage and remain yet to be tested. Some examples
of these studies are discussed. Recent and future progress in our
understanding of the visual cycle will inform intervention strat-
egies to preserve human vision and prevent blindness.

Classic rod/cone visual cycle

The classic visual cycle is initiated by the conversion of a
single photon of light energy into an electrical signal in the
retina. This signal transduction occurs due to a G protein–
coupled receptor (GPCR)2 called opsin, which contains an
11-cis-retinal chromophore. When activated by a photon,
11-cis-retinal undergoes photoisomerization to all-trans-reti-
nal leading to a change in the conformation of opsin GPCR and
a signal transduction cascade to close cGMP-gated cation
channels resulting in hyperpolarization of the photoreceptor
cell. The collective change in the receptor potentials of rods and

cones triggers nerve impulses that our brain interprets as
vision. Following isomerization and release from opsin, all-
trans-retinal is reduced to all-trans-retinol and then trans-
ferred to the adjacent retinal pigment epithelium. It is esterified
by lecithin–retinol acyltransferase to retinyl ester and then
converted to 11-cis-retinol by the isomerohydrolase RPE65
(also known as isomerase I). It is oxidized to 11-cis-retinal
before returning to the photoreceptors to combine with opsin
to form rhodopsin (Fig. 1) (1–6).

Intraretinal cone visual cycle

Cones and their photopigments are responsible for daylight
vision (photopic) and the perception of colors. There are three
types of cones in the retina that respond to short-, medium-,
and long-wavelength light, also called S-cones, M-cones, and
L-cones, respectively. The intraretinal cone visual cycle begins
after photoisomerization, and all-trans-retinal is released from
cone pigments. After reduction to all-trans-retinol, it is trans-
ported from the cone outer segments to Müller cells in the
retina where it is isomerized to become 11-cis-retinol and then
esterified to retinyl ester. Upon hydrolysis, 11-cis-retinol is
returned to the cone photoreceptors where it is oxidized to
11-cis-retinal to conjugate with cone opsins to form cone
pigments. The cone visual cycle is supported by isomerase II,
dihydroceramide desaturase 1 (DES1), and multifunction
O-acyltransferase (MFAT) (Fig. 1) (7, 8).

Structure and function of selected visual cycle proteins

Rhodopsin structure and function

As mentioned above, rhodopsin consists of opsin and a cova-
lently-bound retinal chromophore. It is a light-sensitive G
protein– coupled receptor located in the lipid bilayer of outer
segment disc membranes of rod cells. It has seven transmem-
brane � helices across the disc membrane. The photoreactive
chromophore, 11-cis-retinal, is conjugated to a lysine residue of
rhodopsin and oriented horizontally in the disc membrane to
optimize interaction with photons. Isomerization of 11-cis-ret-
inal into all-trans-retinal by light sets off a cascade of opsin
conformational changes that leads to the formation of metar-
hodopsin II and activates the associated G proteins. This signal
is transduced to a cGMP second messenger resulting in a
change in the level of 5�GMP and the closure of cation channels
(9, 10).
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RPE 65 structure and function

RPE65 is the known isomerohydrolase (isomerase I) in the
classic rod and cone visual cycle. RPE65 is a member of the
carotenoid oxygenase family and is expressed in the retinal pig-
ment epithelium bound to endoplasmic reticulum. It is a Fe2�-
dependent isomerase enzyme that catalyzes the hydrolysis of
all-trans-retinyl ester and the isomerization of all-trans-retinol
to 11-cis-retinol (2). This is consistent with the observation in
animal models where RPE65 KO resulted in a low level of
11-cis-retinol with an accumulation of retinyl esters in the eye.
There are at least 60 known genetic mutations to RPE65 pro-
teins that account for a variety of retinal and ocular diseases.
Individuals afflicted with RPE65 gene mutations generally have
early onset blindness (autosomal recessive LCA or RP).

IRBP structure and function

IRBP is secreted by rods and cones into the subretinal space
where it constitutes the major protein component of the inter-
photoreceptor matrix and interacts with the cone “matrix
sheath” (11). IRBP is composed of multiple modules (four in
tetrapods and humans and two to three modules in teleosts)
with each harboring �300 amino acid residues (11).

IRBP has long been thought to play a role in the canonical
visual cycle involving retinoid exchange between rods and RPE
(12–14). However, understanding IRBP’s function in this pro-

cess has proved to be more challenging than initially antici-
pated (15–18). Recently, experimental evidence has implicated
IRBP as having an important function in the cone visual cycle,
involving retinoid exchange between cones and Müller glial
cells (19 –27).

The mechanism(s) involved in IRBP’s role(s) in the cone vis-
ual cycle are only beginning to be elucidated. We recently
reported that IRBP binds to the cone outer segment and Müller
cell microvilli pericellular matrices (11). Such association could
target and/or facilitate delivery/uptake of its retinol ligands.
Furthermore, we reported that IRBP has free radical scavenging
activity (28) and can protect all-trans- and 11-cis-retinol from
photodegradation (29).

Gene mutations and retinal diseases

Retinal diseases from gene mutations

Based on all listings in the RetNet, there are 321 known gene
mutations in human chromosomes 1–22, X, and mitochondria
that result in retinal diseases. They consist of mutations in a
wide range of proteins from ocular components such as rho-
dopsin to complexes I, II, and IV of the mitochondrial electron
transfer chain. Table 1 provides a summary of all 321 gene
mutations with an example of a mutated protein in each
chromosome.

Selected retinal diseases from gene mutations in visual cycle
proteins

RP—This retinal disease is classified as a rod-cone dystrophy,
meaning that rods are affected first and then the cones. Typi-
cally, patients initially notice difficulties with night vision, trou-
ble adapting to dim illumination, or trouble with side vision in
dim light. This can begin in childhood, but some patients may
not notice it until in their teens or twenties. Most patients will
have symptoms by the time they reach age 30. Eventually, only
a small area of central vision remains, and this central vision
may be maintained for years with 25% of patients maintaining
vision well enough to be able to read for most of their lives (30).
Of course, this means that 75% of patients will eventually lose
enough central vision, in addition to their already lost periph-
eral vision, that they are unable to read.

Clinically, a classic “bone-spicule” pattern appears in the
mid-peripheral retina; the retinal arterioles are narrowed, and
the optic nerve has a pallor. Visual fields early on may exhibit
what is described as a ring scotoma, but later the scotoma
extends both directions to include all but the central vision.
Electroretinography signal, a measurement of visual response
to light, may be severely depressed even before retinal changes
are visible.

RP is the most common (1 in 3000) genetically inherited ret-
inal disease and can be either an autosomal recessive, auto-
somal dominant, or X-linked disorder of the eye that can evolve
from mutations in more than 50 different genes. As many as
half of the RP cases have no other affected family members and
are designated as sporadic. Some of these cases designated as
sporadic may turn out to have been recessive, but many may be
due to new mutations occurring in the germline cells that lead
to RP. The inherited genetic mutation causes a progressive loss
of rod photoreceptor cells followed by loss of cone photorecep-

Figure 1. Classic (rod and cone photoreceptor) and the cone (cone pho-
toreceptor) visual cycles.
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tor cells. One form of autosomal dominant RP is associated
with a missense mutation, A346P, located in the rhodopsin
gene. This mutation has been found to interfere with normal
regeneration of photoreceptors. Mutations resulting in a trun-
cated rhodopsin protein have been associated with autosomal
recessive disease. The loss of these photoreceptor cells results
in poor night and peripheral vision, and later central vision,
which can and will ultimately lead to blindness (31, 32). An
RPE65 mutation accounts for �2% of RP (32, 33).

LCA—This is an inherited autosomal recessive retinopathy.
People born with LCA have greatly reduced vision at birth,
although their retinas appear to be normal fundoscopically.
Nystagmus is common with the eyes showing difficulty track-
ing. Sufferers are found to rub their eyes frequently stimulating
their retinas to produce light-like impulses called pressure
phospenes. Electoretinograms reveal very little retinal function.
By the time patients reach puberty the retinal arterioles are
constricted, and pigmentary changes of the retinal pigment epi-
thelium occur similar to those with RP. Although the best cor-
rected vision with glasses or contact lenses is limited to finger
counting or light perception, it can remain fairly stable
throughout early adulthood (34). A co-morbidity is often kera-
toconus. Speculation exists whether this stems from the asso-
ciated eye rubbing or whether it is due to the genetics of LCA
(35). LCA2 is the form of LCA linked to a mutation in the RPE65
gene (36). RPE65 is the isomerase responsible for converting
all-trans-retinal to 11-cis-retinal, which is essential for proper
functioning of the visual cycle (1). An RPE65 mutation results in
the accumulation of all-trans-retinyl esters and the reduction of
rhodopsin in the rod photoreceptor outer segment. The reduc-
tion of rhodopsin leads to major retinal abnormalities and dys-
function at birth (37, 38). The autosomal recessive mutations in
RPE65 account for �6 –16% of LCA instances (33, 39).

Stargardt disease (STGD)—This is the most common inher-
ited (1:10,000) juvenile macular condition. Clinically, yellow

flecks of lipofuscin pigment are found in the macula (40). Dis-
ease progression occurs at different rates among individuals,
but usually when the vision decreases to 20/40, it descends rap-
idly toward a final vision of 20/200 to 20/400 (34). The patient
retains peripheral vision because only the central vision is
impaired. The loss of central vision stems from atrophy of the
macular retinal pigment epithelium and neuroepithelium (40).
STGD is a recessive hereditary condition (41). The causality of
STGD disease is generally a mutation in the ABCA4 gene that
codes for a transmembrane protein that moves all-trans-retinal
from inside the photoreceptor disc into the cytoplasm where it
is converted to retinol in the visual cycle (42). A multitude of
STGD causative ABCA4 mutations have been described (43).
The lack of ABCA4 protein function leads to a toxic accumula-
tion of all-trans-retinal, which ultimately causes the death of
photoreceptor cells. Currently, there is no treatment for Star-
gardt disease (44, 45).

Diabetic retinopathy (DR)—This represents the leading cause
of blindness in working age adults. It is a reaction to the hyper-
glycemia associated with both type 1 and type 2 diabetes, but
other factors such as lipid levels, blood pressure, and genetics
also play a role (43, 46). Diabetic retinopathy begins with dam-
age to retinal capillaries noted clinically as small dots of hem-
orrhage and microaneurysms and loss of retinal neurons. When
the damage to the vasculature reaches a stage where oxygen
supply and carbon dioxide removal are sufficiently reduced, the
hypoxic retina responds with the development of new blood
vessels. Unfortunately, it is this abnormal blood vessel develop-
ment, referred to as proliferative diabetic retinopathy, that
results in retinal detachment and possible blindness.

Currently, the treatments for diabetic retinopathy are only
applicable at the later stages of the disease process (46). The
pan-retinal photocoagulation entails a series of laser burns on
the retina, which destroy some retinal elements thus decreasing
oxygen demand while increasing oxygen flow from the under-

Table 1
Genes and mapped loci causing retinal diseases
The data were accessed at https://sph.uth.edu/retnet/disease.htm on March 28, 2018. Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Chromosome Mutations Example of a disease with the mutated protein and gene mutation ID

1 28 Recessive Leber’s congenital amaurosis; RPE65; candidate gene for LCA
2 22 Recessive retinitis pigmentosa; zinc finger protein; linkage mapping
3 17 Dominant retinitis pigmentosa; rhodopsin; linkage mapping
4 21 Recessive retinitis pigmentosa; LRAT; candidate gene
5 9 Dominant Wagner disease; versican; linkage mapping
6 20 Age-related macular degeneration; complement component 2; association study
7 9 Dominant tritanopia; blue cone opsin; candidate gene
8 12 Recessive Jobert syndrome; centrosome--spindle pole protein; whole-exome sequencing
9 11 Age-related macular degeneration; Toll-like receptor 4; link mapping; association study
10 22 Recessive retinitis pigmentosa; IRBP; homozygosity mapping; candidate gene
11 19 Recessive Usher syndrome; myosin VIIA; linkage mapping
12 13 Recessive fundus albipunctatus; RDH5; candidate gene
13 5 Somatic retinoblastoma; RB1; deletion mapping; candidate gene
14 13 Recessive Leber’s congenital amaurosis; RDH 12; homozygosity mapping; linkage mapping
15 9 Recessive Usher syndrome; calcium- and integrin-binding protein; linkage mapping
16 16 Recessive Leber’s congenital amaurosis; clusterin-associated protein 1; whole exome sequence
17 16 Dominant retinitis pigmentosa; carbonic anhydrase IV; linkage mapping
18 3 Recessive retinal dystrophy; �1-laminin; homozygosity mapping
19 10 Age-related macular degeneration; complement component 3; association study
20 8 Recessive retinitis pigmentosa; Kizuna centrosomal protein; whole-exome sequencing
21 2 Recessive cone-red dystrophy; chromosome 21 open reading frame 2; homozygosity Ma
22 5 Dominant Sorsby’s fundus dystrophy; tissue inhibitor of MP3; linkage mapping
X 24 Protanopia; red cone opsin; candidate gene
Mitochondria 7 Leber’s hereditary optic neuropathy; complex I, II or V; sequencing
Total 321
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lying choroid. While preserving sight, the patient is left with
reduced peripheral and night vision. More recently, anti-vascu-
lar endothelial growth factor injections have been used, result-
ing in constructive atrophy of aberrant vasculature and appar-
ent stabilization of the diabetic retina, but many questions
remain about the long-term impact of this treatment on the
retina. Although control of the systemic factors in diabetes
helps to prevent or delay the development of retinopathy, there
is no regimen available to specifically treat or prevent disease
development. Many agents, including inflammation, advanced
glycation end products, protein kinase C, and oxidants, are
thought to play a role in the induction of diabetic retinopathy. It
has also been noted that patients with diabetes have reduced
levels of IRBP, which have been linked to the progression of DR
(43). Garcia-Ramirez et al. (58) found that the elevated levels of
glucose and of the cytokines TNF� and IL-1�, associated with
diabetes, lead to reduced IRBP expression. Recently, Malechka
et al. (47) documented attenuated levels of 11-cis-retinal, IRBP,
and rhodopsin in diabetic rats. How the lower amount of IRBP
in patients may contribute toward the development of diabetic
retinopathy is yet unclear (48).

Strategies to advance the cure of blinding afflictions

Pharmacological approach

Some have recommended the use of vitamin A and fish oils to
help reduce progression of RP in adults, but its effectiveness
remains controversial (30, 49, 50). Although the use of retinoid
isomers and visual cycle inhibitors has been shown to be effec-
tive in research studies (9), no pharmaceutical treatments are
available or currently approved for retinal diseases such as LCA
or STGD. Targets for pharmaceuticals such as �-cyclodextrins
are being investigated in an effort to enhance photoreceptor
survival in individuals suffering from these maladies (43). Sys-
temic treatments for DR are the intensive control of blood glu-
cose, blood pressure, and lipid levels. Minocycline has been
suggested as a possible treatment to prevent the development
of DR due to its anti-inflammatory effects and the fact that it
crosses the blood– brain barrier enabling it to reach the target
inflammatory diabetic processes in the retina, but studies have
not yet been completed to explore this possibility (48).

Gene therapy approach

Gene therapy represents one of the experimental strategies
for the prevention and treatment of maladies associated with
RPE65 mutation. Bainbridge et al. (51) used an rAAV vector to
subretinally deliver human RPE65 cDNA under the control of
the RPE65 native promoter. One of the three patients in the trial
“showed evidence of improvement in retinal function by micro-
perimetry, dark-adapted perimetry, and visual mobility” (51).
Maguire et al. (52) subretinally injected rAAV harboring
human RPE65 cDNA under the control of the chicken �-actin
promoter. All three young adults in this trial “showed evidence
of improvement in retinal function based on testing of visual
acuity and pupillometry (pupillary light reflex).” Following
treatment, the pupillary response to light was three times
greater than the baseline. Visual acuity improved, and the visual
field was enlarged 2 weeks after treatment” (52). A third group
also tested rAAV-mediated delivery of human RPE65 cDNA

with the RPE65 native promoter. Cideciyan et al. (53) also
reported that one out of three of their trial subjects showed
evidence of improved retinal function, including dark adapta-
tion, increased light sensitivity, and visual field expansion (54).

December, 2017, marked the first approval by the Food and
Drug Administration of an injection-based gene-delivery regi-
men to treat an eye disease. Voretigene neparovovec-ryzl (Lux-
turna) was approved to treat homozygous dysfunctional RPE65
retinal conditions such as LCA. Voretigene neparvovec-ryzl
(Luxturna) uses an adeno-associated vector to deliver a com-
plete copy of the RPE65 gene to treat retinal conditions such as
LCA (55).

Other approaches

Stem cell therapy is being tested for the treatment of blinding
disorders. Muniz et al. (5) utilized human pluripotent stem cells
in vitro and derived functional RPE capable of all-trans-retinol
uptake from the conditioned culture medium, processing it
into 11-cis-retinal for secretion. This study provided the proof
of principle of using pluripotent stem cells (iPS) from a patient
to generate iPS-RPE for intraocular or retinal injection.
Assawachananont et al. (56) were able to subretinally trans-
plant both embryonic and induced pluripotent stem cell–
derived three-dimensional retinal sheets into mice with
advanced retinal degeneration and showed that the trans-
planted tissue developed an outer nuclear layer along with com-
plete inner and outer photoreceptor segments. Thus, the
authors of this study provided the “proof of concept” for trans-
plantation therapy in the treatment of retinal degenerative dis-
eases (56).

More recently, Kashani et al. (57) reported evidence for
improved visual function in a small group of patients with non-
neovascular age-related macular degeneration after implanting
a sheet of RPE cells under the degenerated macula. None of the
four patients receiving the implant have shown any further
vision loss, and one patient demonstrated visual improvement
by being able to view 17 more letters of the alphabet compared
with before the treatment (57).

Discussion

Tremendous efforts are being expended in devising strate-
gies to prevent and cure maladies of the eye. Basic science has
laid the requisite foundation in this regard, and different labo-
ratories are testing therapeutic strategies in cell and animal
models, although a few groups have been conducting early clin-
ical trials. Basic scientists, clinicians, and physicians from dif-
ferent countries are able to share research results and informa-
tion freely over cross-sections of populations and to different
countries around the globe. Given these favorable circum-
stances, one can be optimistic that a cure for the blinding dis-
orders is forthcoming.
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