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Abstract

Exosomes are secreted extracellular vesicles (EVs) that carry micro RNAs and other factors to 

reprogram cancer cells and tissues affected by cancer. Exosomes are exchanged between cancer 

cells and other tissues, often to prepare a premetastatic niche, escape immune surveillance, or 

spread multidrug resistance. Only a few studies investigated the function of lipids in exosomes, 

although their lipid composition is different from that of the secreting cells. Ceramide is one of the 

lipids critical for exosome formation and it is also enriched in these EVs. New research suggests 

that lipids in the exosomal membrane may organize and transmit “mobile rafts” that turn 

exosomes into extracellular signalosomes spreading activation of cell signaling pathways in 

oncogenesis and metastasis. Ceramide may modulate the function of mobile rafts and their effect 

on these cell signaling pathways. The critical role of lipids and in particular, ceramide for 

formation, secretion, and function of exosomes may lead to a radically new understanding of 

cancer biology and therapy.

Got exosomes: What’s (really) in your prep?

Exosomes are a type of extracellular vesicles (EVs) that are formed as intraluminal vesicles 

in multivesicular endosomes (MVEs). The MVEs fuse with the plasma membrane and 

release these vesicles to the extracellular space (Fig. 1A). It is assumed that there are two 

different pathways leading to exosome formation, endosomal sorting complex required for 

transport (ESCRT)-dependent and independent (Colombo et al., 2013; Colombo, Raposo, & 

Thery, 2014; Hurley, 2015; Hurley & Odorizzi, 2012; Juan & Furthauer, 2017; Kowal, 

Tkach, & Thery, 2014; Marsh & van Meer, 2008; Stoorvogel, 2015; Trajkovic et al., 2008; 

Villarroya-Beltri, Baixauli, Gutierrez-Vazquez, Sanchez-Madrid, & Mittelbrunn, 2014). 

ESCRT proteins such as Alix 1 and TSG 101 form a neck-shaped complex with other 

proteins such as vacuolar sorting associated protein 4 (VPS4) initiating budding of exosomes 

at the MVE membrane. ESCRT-independent exosome formation relies on ceramide 

generation by neutral sphingomyelinase 2 (nSMase2), a key cell signaling enzyme (Fig. 1A). 

However, this distinction may not be as strict as previously thought and the same cell type 

can secrete different types of exosomes. Exosomes are distinct from microvesicles, another 

type of EVs that are released by blebbing off the plasma membrane. These two types of EVs 

are different not only in size, function, and cargo, but also in the intrinsic signals leading to 
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their secretion (for comprehensive reviews on EV formation and secretion, see (Desrochers, 

Antonyak, & Cerione, 2016; Edgar, 2016; Hyenne, Lefebvre, & Goetz, 2017; Kowal et al., 

2014; Raposo & Stoorvogel, 2013; Stoorvogel, 2015; Tkach, Kowal, & Thery, 2018; Tkach 

& Thery, 2016; van Niel, D’Angelo, & Raposo, 2018)). Exosomes carry RNA (micro RNA 

(miRNA), long-noncoding RNA (lncRNA), messenger RNA (mRNA), mitochondrial DNA, 

signaling proteins, enzymes, metabolites, and lipids from the donor to a recipient cell (Choi, 

Kim, Kim, & Gho, 2013; Kai, Dittmar, & Sen, 2017; Kinoshita, Yip, Spence, & Liu, 2017; 

Record, Carayon, Poirot, & Silvente-Poirot, 2014; Salehi & Sharifi, 2018; H. G. Zhang & 

Grizzle, 2014)) (Fig. 1). The recipient cell takes up exosomes by endocytosis, pinocytosis, or 

simply fusing the exosomal with the plasma membrane (Abels & Breakefield, 2016; Costa 

Verdera, Gitz-Francois, Schiffelers, & Vader, 2017; Horibe, Tanahashi, Kawauchi, 

Murakami, & Rikitake, 2018; H. Jiang, Li, Li, & Xia, 2015; McKelvey, Powell, Ashton, 

Morris, & McCracken, 2015; Tian et al., 2013; Tian et al., 2014). A multitude of different 

effects of exosomes was reported. In cancer, exosomes reprogram tissue to allow growth of 

metastases, act as decoys to escape the immune system, or spread factors conferring 

resistance to drugs used in chemotherapy (Chiarugi & Cirri, 2016; Desrochers et al., 2016; 

Dorsam, Reiners, & von Strandmann, 2018; Dreyer & Baur, 2016; Kahlert & Kalluri, 2013; 

Kalluri, 2016; Ruivo, Adem, Silva, & Melo, 2017; S, Mager, Breakefield, & Wood, 2013; 

M. Silva & Melo, 2015; Steinbichler, Dudas, Riechelmann, & Skvortsova, 2017; Weidle, 

Birzele, Kollmorgen, & Ruger, 2017; H. G. Zhang & Grizzle, 2014; Zhao et al., 2017). 

Exosomes secreted by tumor cells can be found in the blood and urine, which makes 

analysis of exosomal content attractive for early cancer diagnosis in “liquid biopsy” (Kai et 

al., 2017; Minciacchi, Freeman, & Di Vizio, 2015; Minciacchi, Zijlstra, Rubin, & Di Vizio, 

2017; A. Sharma, Khatun, & Shiras, 2016; Yokoi, Yoshioka, & Ochiya, 2015; Yoshioka et 

al., 2014; W. Zhang et al., 2017). Since exosomes are the physiological equivalent to 

liposomes they can be used as vector to deliver miRNAs and drugs, or for cell-free 

vaccination in cancer therapy (Pitt et al., 2014; Schorey & Bhatnagar, 2008; Viaud et al., 

2010). Our own research showed that stimulating exosome secretion from breast cancer 

stem-like cells can break their resistance to chemotherapy (Kong, He, et al., 2015). Others 

have reported that exosomes from stem cells can be used for “cell-free stem cell therapy” 

(Phinney & Pittenger, 2017; Rani, Ryan, Griffin, & Ritter, 2015). However, most of the in 
vitro studies rely on the preparation of exosomes from medium of a (large) donor cell 

culture to incubate a (smaller) recipient culture. Despite the exploding number of 

publications on exosomes, only a few studies strived to answer a simple but fundamental 

biochemical question: what is the stoichiometry between the effector molecule and the 

effect? In other words, is the number of exosomes in a given tissue really sufficient to 

recapitulate in vivo the effects seen in vitro? The simple answer to this question is: no one 

really knows since the in vivo function of exosomes is largely unclear and difficult to test.

The difficulty in testing the function of exosomes stems from the dirty secret of their 

preparation: exosomes are intrinsically inhomogeneous. Most exosome preparations rely on 

two methods based on centrifugation: differential ultracentrifugation and low speed-

centrifugation using a polymer matrix such as polyethylene glycol (PEG) (for reviews on 

exosome preparation, see (P. N. Brown & Yin, 2017; Carpintero-Fernandez, Fafian-Labora, 

& O’Loghlen, 2017; Coumans et al., 2017; Helwa et al., 2017; P. Li, Kaslan, Lee, Yao, & 
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Gao, 2017; Taylor & Shah, 2015; Xu, Greening, Zhu, Takahashi, & Simpson, 2016; 

Zeringer, Barta, Li, & Vlassov, 2015). These methods do not completely remove other 

vesicular and particulate contaminants such as microvesicles, lipoproteins, or simply cell 

debris. This is not as much of a problem for in vitro studies when harvesting exosomes 

secreted by cultured cells into the medium supernatant. Provided that exosome- and 

lipoprotein-free serum is used for cultivation of cells, main contaminants are cell debris 

(including apoptotic bodies) and microvesicles. The bulk of these contaminants can be 

removed by pre-centrifugation at 20,000×g or filtration of the cell culture medium at 0.2 μm 

prior to ultracentrifugation at 110,000×g. Microvesicles are still a concern since their size 

varies broadly around 1 μm, while exosomes constitute a population of vesicles with a 

narrow size range from 50–150 nm. Density gradient ultracentrifugation improves exosome 

purity, however, densities of lipoproteins and different vesicle population are too close for 

being efficiently separated. Exosome purity is also a concern when using polymers for 

dehydration leading to precipitation of exosomes at low speed centrifugation, since these 

methods do not distinguish between different vesicle populations. Therefore, exosomes and 

microvesicles are often combined under the term of EVs, with some of the functions such as 

delivery of effector molecules being shared between these two vesicle populations (for 

reviews comparing exosomes with microvesicles, see (Lee, El Andaloussi, & Wood, 2012; P. 

Li et al., 2017; Minciacchi et al., 2015; Raposo & Stoorvogel, 2013)). The problem of purity 

is even more serious when it comes to preparation of exosomes from tissues and bodily 

fluids such as blood, urine, or cerebrospinal fluid (CSF). Tissue dissociation using proteases 

and gentle mechanical disruption can introduce artifacts by releasing intracellular vesicles 

into the preparation or contaminating the sample with endogenous and exogenously added 

proteases that associate with exosomes. While exosome preparation from serum is still 

easier than that from solid tissue, vesicles can be contaminated with lipoprotein particles, 

which limits interpretability of “liquid biopsies”. Immunoprecipitation using antibodies 

against exosome surface proteins can alleviate this problem and even separate exosomes 

derived from different cell types. However, the yield is usually lower than with 

centrifugation techniques and often compromises a quantitative analysis of exosome 

function (Brett et al., 2017; Momen-Heravi et al., 2013; Nakai et al., 2016; Szatanek, Baran, 

Siedlar, & Baj-Krzyworzeka, 2015). Recently, great strides were made in the field of 

exosome isolation introducing new techniques such as ultrafiltration and microfluidics-based 

separation. Although each newer technique has its own advantage, they also pose distinct 

limitation, keeping the isolation of pure and homogenous exosomes a challenging task (M. 

He & Zeng, 2016; Momen-Heravi et al., 2013; Pietrowska et al., 2017; S. Sharma, Scholz-

Romero, Rice, & Salomon, 2018; Szatanek et al., 2015; Xu, Simpson, & Greening, 2017). 

To date, there is no reliable method for efficient purification or sorting of exosomes from 

tissues, regardless of being soft or more solid, tumor or healthy tissues.

Methods used in our lab and that of other groups largely rely on a hit-or-miss approach. The 

purity of a particular exosome preparation is not predictable but has to be rigorously tested 

after the preparation was accomplished. Apart from mistakenly analyzing exosomes that 

originate from the tissue’s blood supply, main contaminants in exosome preparations from 

tissues, including tumors, are vesicles released from damaged cells. The post-preparation 

quality control is critical and encompasses an array of physical tests, detection of exosomal 
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marker proteins, and loss-of-function assays. Must-have physical tests include laser light 

scattering microscopy, electron microscopy, or tunable resistive pulse sensing to visualize 

and quantify exosomes (Akers et al., 2016; Coscia et al., 2016; Koritzinsky, Street, Star, & 

Yuen, 2017; Maas, Broekman, & de Vrij, 2017; Vogel et al., 2016). We use nanoparticle 

tracking analysis (NTA) based on laser light scattering microscopy to reliably quantify the 

number and size distribution of exosomes and other vesicles in our preparation (Coumans et 

al., 2017; Dinkins, Enasko, et al., 2016; Helwa et al., 2017; Kong, He, et al., 2015; 

Koritzinsky et al., 2017; Szatanek et al., 2017; Tkach et al., 2018). For a preparation with 

high purity, the number of exosomes should match up with the quantity of marker proteins 

such as Alix1, TSG101, Flotillin, or CD63 as detectable in immunoblots. Finally, loss-of-

function assays will help exclude other sources of bioactive molecules in the exosomes 

preparation. These assays include UV irradiation (to destroy RNA in exosomes) or mild 

detergent treatment, which either obliterates the effect of exosomes (if based on RNA) or 

exosomes themselves (Coumans et al., 2017; Kinoshita et al., 2017; Osteikoetxea et al., 

2015). Our group has specialized on pre-purification loss-of-function assays by preventing 

formation or secretion of exosomes in vitro and in vivo (Dinkins, Dasgupta, Wang, Zhu, & 

Bieberich, 2014; Dinkins, Enasko, et al., 2016; Kong, Hardin, et al., 2015; G. Wang et al., 

2012). To date, inhibition or genetic deficiency of nSMase2 is a method widely used to 

prevent exosome secretion in various cell types and tissues (Chairoungdua, Smith, Pochard, 

Hull, & Caplan, 2010; Dinkins et al., 2014; Dinkins, Enasko, et al., 2016; Dinkins, Wang, & 

Bieberich, 2016; Goldkorn, Chung, & Filosto, 2013; Guo, Bellingham, & Hill, 2015; Kong, 

He, et al., 2015; Kosaka et al., 2010; Marsh & van Meer, 2008; Menck et al., 2017; 

Shamseddine, Airola, & Hannun, 2015; Tan et al., 2013; Trajkovic et al., 2008; Yuyama, 

Sun, Mitsutake, & Igarashi, 2012). nSMase2 converts sphingomyelin into ceramide, a 

reaction shown to be instrumental for exosome secretion in vitro (Trajkovic et al., 2008) 

(Fig. 1A). Our laboratory showed that inhibition and genetic deficiency of nSMase2 also 

suppresses exosome secretion in vivo (Dinkins et al., 2014; Dinkins, Enasko, et al., 2016; 

Dinkins, Wang, et al., 2016). These discoveries and the critical role of ceramide for the 

function of exosomes, particularly in cancer, will be discussed in the next sections of this 

review.

Why ceramide in exosomes? It’s all in the numbers.

The answer to the initial question of just how much of an effector molecule needs to be in 

exosomes to actually affect the recipient cell has remained controversial. Exosomes are not 

the only form of transferring bioactive molecules. Prior to the massive upswing of exosome 

research, most of the intercellular communication was thought to be managed by exchange 

of humoral factors such growth factors, cytokines, hormones and other secreted smaller and 

larger molecules. The importance of these factors does not vanish with the growing 

importance of exosomes. One has to realize that exosomes simply add to the secretome by 

stabilizing and combining certain signaling molecules such as miRNAs for long-distance 

communication and targeted delivery (for review on secretome, including EVs, see (Sinha et 

al., 2018; van der Pol, Boing, Harrison, Sturk, & Nieuwland, 2012; Vizoso, Eiro, Cid, 

Schneider, & Perez-Fernandez, 2017)). Enrichment of specific miRNAs in exosomes may be 

suitable for early diagnosis in cancer, but it still needs to be tested if the amount of miRNA 

Elsherbini and Bieberich Page 4

Adv Cancer Res. Author manuscript; available in PMC 2018 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transferred in exosomes is really sufficient to reprogram tissue for metastasis or fulfill other 

functions of exosomes found in vitro. If looking for signaling molecules that are transferred 

in functionally significant quantities one may want to shift focus away from RNA and 

include other signaling molecules transported by exosomes. But first, one will need to do the 

numbers to assess the contribution of RNA and other factors to cell signaling in cancer.

Despite the excitement emerging from the function of RNA in reprogramming tissue, their 

content in exosomes appears to be very low. According to a study from 2014, the abundance 

of miRNA is less than 1 molecule/100 exosomes (Chevillet et al., 2014). In a more recent 

study by our collaborators and us, very low abundance (copy number) of two specific 

miRNAs (miRNA-16 and 451) was confirmed using different methods for exosome 

preparation (Helwa et al., 2017). However, these numbers were based on the assumption that 

miRNAs were evenly distributed over the entire exosome population. Our study showed that 

based on an average miRNA length of 22 nucleotides (double-stranded), an average 

molecular mass of 640 g/mol base pair and recovery of about 25 ng miRNA/5 × 1011 

exosomes isolated from 5 ml serum, there is about one-to-two molecules of miRNA in a 

single exosome (Helwa et al., 2017). With respect to miRNA, the concentration of a specific 

miRNA/cell needs to reach a threshold to efficiently silence its target gene expression (B. D. 

Brown et al., 2007; Mukherji et al., 2011). Titration experiments show that the typical 

concentrations are in the range of several hundred to more than 1000 copies of a specific 

miRNA/cell, which is similar to the threshold levels for gene silencing (Bissels et al., 2009). 

Provided that a specific miRNA copy is less than 1 in 100 exosomes, one will need at least 

104 to 105 exosomes taken up by a single cell to reach a concentration comparable to 

endogenous miRNAs. At an average size of 100 nm/exosome and 10 μm/cell (surface ratio 

1:104), a single cell will have to take up exosomes equivalent to 1–10 times of its own cell 

surface to reach an efficient copy number of a specific miRNA. The 2014 study provided a 

potential solution to this dilemma. Since the copy number of miRNA was quantified as an 

average over the entire exosome population, “low occupancy/high abundance” exosomes 

may be rare (≤1/100), but could deliver ≥10–100 copies of a specific miRNA/exosome 

(Chevillet et al., 2014). In this case, taking up the equivalent of ≤1/10 of the cell surface 

could be sufficient to reach the efficient copy number/cell. This does not appear 

unreasonable since some cells such as macrophages can pinocytose an equivalent of the cell 

surface in 33 min (Chevillet et al., 2014). However, this calculation implies two additional 

predicaments: 1) The concentration of a specific miRNA is massively enriched in exosomes 

(≥10–100-fold), requiring an efficient sorting mechanism. This assumption is supported by a 

recent study that identified a set of exosomal miRNAs abundant in exosomes derived from 

human neural stem cells with at least 10 copies/exosome (Stevanato, Thanabalasundaram, 

Vysokov, & Sinden, 2016). Upon function transfer analysis, the group showed that exosomal 

miRNA can reach the molecular machinery of miRNA-suppressed gene repression at a 

physiologically relevant level. 2) The recipient cell is specifically targeted by “low 

occupancy/high abundance” exosomes. Cell culture supernatants of 107 donor cells 

(equivalent to a confluent 100 mm dish with 10 ml medium) can yield about 1011 exosomes 

after overnight incubation (equivalent to number of exosomes in 0.5–1 ml serum (Helwa et 

al., 2017)). At 1% abundance of a specific miRNA copy, one will have to collect 1012 

exosomes to achieve 1000 copies miRNA/cell transferred to 107 recipient cells, which 
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corresponds to conditioned medium from about 10 dishes (or exosomes from 5–10 ml 

serum). However, if many identical copies are packaged into few exosomes, the “harvest” of 

107 cells may be enough to transfer a sufficient number of miRNA copies to 106 cells. 

Therefore, one of the main reasons for exosomal miRNA being found to reprogram cells 

may simply rely on using a large amount of donor cells (or serum exosomes) to incubate a 

much smaller number of recipient cells. Another reason may result from mistaking the effect 

of miRNA with that of other more abundant cell signaling molecules transferred by 

exosomes.

In addition to miRNA, proteins transferred by exosomes were discussed to affect cancer 

cells (for reviews and exemplary studies on proteomics and protein function in exosomes see 

(Azmi, Bao, & Sarkar, 2013; Choi et al., 2013; Greening, Xu, Gopal, Rai, & Simpson, 2017; 

Intasqui, Bertolla, & Sadi, 2018; Jakobsen et al., 2015; A. Li, Zhang, Zheng, Liu, & Chen, 

2017; Pietrowska et al., 2017; Pocsfalvi et al., 2016; Sandfeld-Paulsen, Aggerholm-

Pedersen, et al., 2016; Sandfeld-Paulsen, Jakobsen, et al., 2016; Sinha et al., 2018; Tanase et 

al., 2017; Taylor, Zacharias, & Gercel-Taylor, 2011; van Niel et al., 2018; Weidle et al., 

2017)) (Fig. 1). For example, exosomal fibronectin can bind to integrin and enhance cell 

adhesion and prepare a premetastatic niche for fibrosarcoma cells (Sung, Ketova, Hoshino, 

Zijlstra, & Weaver, 2015; Tkach & Thery, 2016). The effect of exosomes on preparing a 

premetastic niche will be discussed in more detail in the next section of this review. Among 

exosomal proteins, enzymes are particularly attractive since it only takes a few molecules to 

amplify their activity in the target cells. Matrix metalloproteinases (MMPs) are transferred 

by exosomes and facilitate cancer cell invasion (Hakulinen, Sankkila, Sugiyama, Lehti, & 

Keski-Oja, 2008; Sanderson, Bandari, & Vlodavsky, 2017; Shay, Lynch, & Fingleton, 2015). 

However, while stoichiometry is most likely the greatest barrier in understanding the effect 

of exosomal miRNAs, topology is the problem with most exosomal proteins. Unless they are 

bound to the exosomal surface such as MT1-MMP, the majority of proteins discussed to 

promote neoplasia and metastasis are encaged inside of exosomes (Fig. 1). Hence, it is 

difficult to reconcile the activity of proteins modifying the extracellular matrix (ECM) with 

topological enclosure inside of exosomes. Solutions such as slow or induced disintegration 

of the exosomal membrane for controlled release and activation of exosomal enzymes are 

conceivable, but membrane disintegration is in stark contrast to the presumed stability of 

exosomes when discussing other functions of exosomes such as miRNA transfer (Kumeda et 

al., 2017). Perhaps, there are functionally specialized exosomes that may be prone to release 

of their contents, while others remain stable and are meant for long-distance transport of 

bioactive molecules. It was suggested that sphingomyelin is one of the lipids stabilizing the 

exosomal membrane (Record et al., 2014). Secreted sphingomyelinases may convert 

sphingomyelin into ceramide and potentially destabilize the exosomal membrane, thereby 

releasing proteins and other factors enclosed in exosomes. This speculation brings us the 

next class of molecules that is far less explored, albeit it may offer several explanations for 

yet unresolved obstacles in understanding exosomes: lipids.

The few in-depth analyses of exosomal lipids have shown that the lipid composition of the 

exosomal membrane is distinct from that of most cellular membranes in the donor cells 

(Record et al., 2014). For starters, a simple geometrical correlation between surface and 

volume of a vesicle implies that the smaller the vesicle the larger the surface in comparison 
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to volume. Hence, it is not surprising that many lipids appear to be enriched in the exosomal 

membrane when normalizing lipid to protein content, the latter being mainly correlated with 

volume. Apparent lipid enrichment due to this geometrical correlation may thus not ignite 

much excitement, but one should also realize that it implies a major function of exosomes as 

vector for autocrine and paracrine membrane and lipid transport and exchange between 

cells. Independent of geometry, there is specific enrichment when comparing the molar 

proportions of lipids in the exosomal to other cellular membranes. This difference is one of 

the most important features that distinguishes exosomes from microvesicles, the lipid 

composition of which is very similar to that of the parental plasma membrane (Record et al., 

2014). A recent lipidomics analysis using liquid chromatography tandem mass spectrometry 

(LC-MS/MS) showed that the molar proportions of cholesterol, glycosphingolipids, and 

sphingomyelin are enriched by up to 3-fold compared with lipids abundant in other 

membranes such as phosphatidylcholine, the proportion of which is reduced in exosomes 

(Record et al., 2014). Lysobisphosphatidic acid (LBPA), an endosomal membrane lipid also 

known as bis-monoacylglycerophosphate (MBP) is exclusively contained in exosomes and 

was shown to partake in ESCRT-dependent exosome formation and exosomal membrane 

stability (Record et al., 2014; Tkach & Thery, 2016). However, in contrast to the proposed 

functions of exosomal miRNA and proteins in cancer, the role of most exosomal lipids has 

remained unclear.

The incredible journey of a lipid: rafting the extracellular space on 

exosomes

As discussed in the previous section, ceramide is a sphingolipid that is critical for exosome 

formation and/or secretion. While it is not understood how ceramide may contribute to the 

inward budding of vesicles at the MVE, facilitating or inducing membrane curvature may be 

one of its tasks (for biophysical properties of ceramide in membrane curvature, see (Burgert 

et al., 2017; Goni & Alonso, 2006; Goni, Contreras, Montes, Sot, & Alonso, 2005; Pinto, 

Silva, Futerman, & Prieto, 2011; L. C. Silva et al., 2012). Our studies showed that exosomes 

contain mainly two ceramide species, C18:0 (about 70% of total ceramide) and C24:1 

ceramide, while isolated intracellular vesicles also contain C16:0 ceramide (Q. He et al., 

2014; G. Wang et al., 2012). In synthetic vesicles, mixtures of C18:0 and C24:1 ceramide 

lead to in-plane phase separation at ≥1 % ceramide and up-regulation of medium-chain 

ceramides (such as C16:0 and C18:0 ceramide) favors negative curvature (inward budding) 

of the membrane (Carrer, Hartel, Monaco, & Maggio, 2003; Carrer & Maggio, 1999; Castro, 

Prieto, & Silva, 2014; Goni & Alonso, 2006; Goni et al., 2005; Pinto et al., 2011). 

Interaction of very long chain sphingolipids in the outer leaflet with phosphatidylserine in 

the inner leaflet was suggested to facilitate the enrichment of cholesterol in the exosomal 

membrane, probably to increase its stability and/or prevent phagocytosis through binding to 

phospatidylserine exposed to Annexin V type receptors on macrophages (Skotland, Sandvig, 

& Llorente, 2017). Anisotropic demixing of membrane lipids is a necessary condition for 

curvature, suggesting that formation of ceramide microdomains and their inward budding 

may critically contribute to the intraluminal formation of exosomes in MVEs. Using an anti-

ceramide antibody developed in our laboratory and TEM, we showed that enrichment of 

ceramide is common to several intraluminal membranes in MVEs, including exosomes and 
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multilamellar vesicles (Fig. 2). Therefore, it appears reasonable to presume that whatever the 

function of ceramide in exosomes, it is the composition of lipids that is critical. Hence, 

instead of looking at enrichment of individual lipids, one should rather look at ratios. 

Lipidomics analyses showed that the molar proportion of ceramide was enriched by 1.3–3-

fold when compared to that of membranes in the donor cells, which was also found in our 

studies on exosomes secreted by astrocytes (Record et al., 2014; G. Wang et al., 2012). 

However, when comparing the proportion of ceramide to cholesterol, we and others found 

that ceramide was >3-fold more enriched than cholesterol (Record et al., 2014). Based on 

this observation, the function of ceramide in exosomes may not just rely on its enrichment, 

but its composition and proportion in comparison to other lipids such as cholesterol.

There are only a few studies showing that uptake of exosomes actually increases the lipid 

content of the recipient cell (Record et al., 2014). More likely is the localized alteration of 

the membrane lipid proportion by exosomal lipids (e.g., after fusion with the cell membrane 

or endocytotic uptake). As discussed in the previous section, membrane lipids are not 

homogeneously distributed, but they are anisotropically organized in suprastructures such as 

lipid rafts, microdomains, or platforms. These terms are often used interchangeably, the 

reader interested in further details is referred to excellent reviews on this topic (Bieberich, 

2008; Gulbins & Kolesnick, 2003; Lingwood & Simons, 2010; Lopez, 2015; Ma, Hinde, & 

Gaus, 2015; Mollinedo & Gajate, 2015; Owen, Magenau, Williamson, & Gaus, 2012; 

Simons & Gerl, 2010; Simons & Ikonen, 1997; Simons & Sampaio, 2011; Staubach & 

Hanisch, 2011; Y. Zhang, Li, Becker, & Gulbins, 2009). In brief, the “classical” raft is about 

50–200 nm in diameter, stabilized by complexes between cholesterol and sphingomyelin, 

and enriched in glycosphingolipids such as ganglioside GM1 (“Raft” in Fig. 1B). The main 

function of suprastructures is to regulate proteins associated with rafts (“raft-associated 

protein” or RAP in Fig. 1B), such as receptors or caveolins, often modified by attachment to 

membrane anchors such as glycosylphosphatidylinositol (GPI) or palmitoyl residues (Busija, 

Patel, & Insel, 2017; Lajoie & Nabi, 2010; Simons & Toomre, 2000). As the result, lipid 

rafts can activate cell signaling pathways or induce endocytosis. In exosome biology, 

evidence was provided that parts or the entire exosomal membrane is derived from 

endocytosed lipid rafts (Skotland et al., 2017; Staubach & Hanisch, 2011; Tan et al., 2013) 

(Fig. 1A). Not yet proven, but very likely is enrichment of exosomal lipids in endosomes of 

the recipient cell after endocytic or pinocytotic uptake (Fig. 1C). Also exciting is the idea 

that exosomes may actually transfer lipid rafts from the donor to the recipient cell (Fig. 1B). 

Most recently, research in our and our collaborators’ laboratories has shown that ceramide-

rich platforms (CRPs) are 50–200 nm in size and contain ≥ 20 ceramide molecules (Burgert 

et al., 2017). CRPs are formed when sphingomyelinases convert sphingomyelin into 

ceramide (Fig. 1A). As discussed, ceramide is ≥3-fold enriched over cholesterol in 

exosomes, suggesting that exosomes could serve as mobile ceramide-rich lipid rafts or CRPs 

(Fig. 1B). The surface ratio between a sphere and a circle of equal diameter is 2, suggesting 

that the surface of a single 100 nm-sized exosome covers a plasma membrane (approximated 

as a plane) area of about 200 nm diameter, quite within a size range of larger CRPs. 

Therefore, it does not appear unreasonable to suggest that one of the functions of exosomes 

is to exchange lipid rafts between cells.
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The main concept underlying these “mobile rafts” is that lipid rafts formed in donor cells are 

transported via exosomes to the recipient cell, thereby inducing the same cell signaling 

pathway as activated in the donor cells (Fig. 1). This mechanism is analogous to 

signalosomes in neurons, vesicles that form after receptor activation in synapse and transport 

the activated receptor to the cell body (Cosker, Courchesne, & Segal, 2008; Cosker & Segal, 

2014). Hence, the function of mobile lipid rafts in regulating cancer cell signaling pathways 

is broadcasted to distant cells in a tumor or even to metastases. Experimental evidence for 

mobile rafts is provided by testing if a particular receptor or cell signaling pathway 

activation in recipient cells is similar to donor cells when exposed to donor-derived 

exosomes. Even though the overall lipid composition of the recipient cells due to uptake or 

fusion with exosomes does not change, the suprastructure of the plasma membrane or other 

cellular membranes may adopt the lipid raft organization of the donor cells (Fig. 1A and C). 

There are several areas in cancer biology that may benefit from broadcasting cell signaling 

events via mobile rafts in exosomes: 1) metabolic or morphogenetic reprogramming in a 

tumor in response to scarcity of resources such as oxygen or glucose; 2) preparation of a 

premetastatic niche; 3) communication with the immune system to escape surveillance, and 

4) acquisition and spreading of resistance to drugs or other tumor suppressive signals. In all 

of these instances, donor and recipient cells may be of the same or different cell types (e.g., 

cancer to cancer cell, cancer to tissue cell, tissue to cancer cell, or cancer to immune cell and 

vice versa), and the raft-activated cell signaling pathway may induce the same or a different 

response in donor and recipient cells. In principle, the range of possible combinations in 

donor and recipient cells and responses to mobile rafts is similar to the potential of miRNA-

mediated programming through exosomes. However, since lipids in the exosomal membrane 

are abundant and instrumental to the activity of mobile rafts the effect of exosomal lipids on 

recipient cells may outperform or at least complement that of miRNAs for reasons discussed 

in the previous section.

Exosomes in cancer: target tissue biohacking and hijacking of the immune 

system

In metabolic and morphogenetic reprogramming, cancer cells are often found to switch from 

mitochondrial to cytosolic generation of adenosine triphosphate (ATP) by limiting glucose 

consumption to aerobic glycolysis without invoking oxidative phosphorylation in 

mitochondria (Gatenby & Gillies, 2004; Liberti & Locasale, 2016). This so-called Warburg 

effect appears reasonable since oxygen becomes a scarce resource in a growing tumor. In a 

recent study, it was shown that patient-derived, cancer-associated fibroblasts secrete 

exosomes that suppress oxygen consumption in pancreatic and prostate cell culture by 80% 

within 24 h (Rabinowitz & Coller, 2016; Zhao et al., 2016). While the authors of the study 

hypothesize that miRNA-mediated silencing of oxidative metabolism genes and nutrients 

delivered by exosomes are accountable for this rapid effect, it was noted that the amount of 

exosomes and timing do not reconcile with this hypothesis (Rabinowitz & Coller, 2016). 

However, since lactic acid production is a consequence of aerobic glycolysis and low/acidic 

pH stimulates exosomes secretion (Parolini et al., 2009), it is possible that a positive feed-

back rapidly increases the amount of exosomes in the metastatic niche. As an alternative (or 

complement) to miRNA, mobile rafts transported by exosomes could regulate metabolism in 
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cancer cells. The possibility of reprogramming cancer cell metabolism by mobile rafts has 

not been discussed yet, but it is known that cell signaling pathways promoting glucose 

uptake and metabolism, particularly the PI3K/Akt axis, are affected by lipid rafts and 

ceramide (Mollinedo & Gajate, 2015; Powell, Hajduch, Kular, & Hundal, 2003; Zhou, 

Summers, Birnbaum, & Pittman, 1998). For example, insulin and insulin-like growth factor 

1 (IGF-1) receptors are embedded into lipid rafts and can activate PI3K/Akt to stimulate 

glucose uptake and fuel glycolysis (Mollinedo & Gajate, 2015). Exosomes from prostate 

cancer cells were found to spread raft-associated proteins (RAPs, Fig. 1B) such as IGF-1 

receptors (DeRita et al., 2017). We showed that the PI3K/Akt activator atypical protein 

kinase C (aPKC) is a ceramide-associated protein (CAP) transported by exosomes, probably 

when bound to CRPs in mobile rafts (Fig. 1B) (G. Wang et al., 2012). On the other hand, 

ceramide can inhibit PI3K/Akt cell signaling and when delivered in nanoliposomes, 

counteract the Warburg effect in cancer (Y. Jiang et al., 2011; Ryland et al., 2013; Tagaram 

et al., 2011). It is reasonable to speculate that different populations of exosomes – for 

example, depending on their ceramide content - may reprogram metabolism of cancer cells 

in distinct ways. Likewise, exosomes and EVs can reprogram tissues to allow tumor growth, 

particularly by inducing morphogenetic changes in endothelial cells and stem cells. 

Exosome-induced angiogenesis and capillary morphogenesis contribute to blood supply to 

tumors, which is an established research field addressing EV cancer biology (for reviews, 

see (Grange et al., 2011; Mostefai, Andriantsitohaina, & Martinez, 2008)). As with 

metabolic reprogramming, almost all the studies focus on effects mediated by miRNAs. 

However, it is well known that endothelial growth factor (EGF)-receptors are activated by 

lipid rafts and transported by EVs (Al-Nedawi, Meehan, Kerbel, Allison, & Rak, 2009; Pike, 

2005). Secretion of sphingosine-1-phosphate (S1P), a ceramide derivative, is instrumental in 

promoting angiogenesis during tumor growth (Mizugishi et al., 2005; Nagahashi et al., 2012; 

Ogretmen, 2018; Pyne, El Buri, Adams, & Pyne, 2017; Spiegel & Kolesnick, 2002; Spiegel 

& Milstien, 2003; Takabe, Paugh, Milstien, & Spiegel, 2008; Takabe & Spiegel, 2014). It 

was found that stable complexes of S1P with G-protein coupled receptors (GPCRs) are 

critical for formation of exosomes in MVEs through constitutive activation of Rho GTPases 

and stabilization of F-actin (Kajimoto et al., 2018). However, it has not been determined if 

these stable complexes are formed on exosomes that could then function as extracellular 

signalosomes. In colon cancer, enterobacteria trigger secretion of mucosa-derived exosomes 

that contain S1P and prostaglandin E2 (PGE2) (Z. Deng et al., 2015), an eicosanoid 

promoting cancer cell proliferation and angiogenesis. PGE2 in mucosa-derived exosomes 

has also been found to suppress liver-derived natural killer T (NKT) cells (Z. B. Deng et al., 

2013), a part of cancer exosome-immune cell crosstalk discussed in the next paragraph. 

While it is known that the PGE2-EP4 receptor complex is activated in lipid rafts (Lin et al., 

2017), it is currently unknown if this or other ligand-receptor complexes are embedded in 

mobile rafts and secreted via exosomes that function as extracellular signalosomes. The 

reason for this lack of knowledge is the technical difficulty to combine exosome preparation 

with the isolation and analysis of lipid rafts. The very few studies on this topic have shown 

that detergent-insoluble membranes isolated from exosomes – the next best equivalent to 

lipid rafts – contain a multitude of RAPs, including proteins regulating hepatocyte growth 

factor and EGF receptor cell signaling pathways in cancer cells (Ji et al., 2013).
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By far, most of the studies on the effect of exosomes in cancer focus on their role in 

reprogramming tissue to generate a premetastatic niche and the cancer-to-immune cell 

crosstalk. As with other research testing the function of exosomes, most of these studies 

invoke miRNA and do not explore the function of exosomal lipids or mobile lipid rafts (Kai 

et al., 2017; Kinoshita et al., 2017; Salehi & Sharifi, 2018). miRNAs exchanged by 

exosomes between cancer cells promote cell growth (miRNA-155) modulate epithelial-

mesenchymal-transition (EMT, miRNA-23a, miRNA-191), contribute to breakdown of ECM 

(miRNA-29 family), and induce migration (miRNA-21). Hence, the function of cancer 

exosomes is comparable to biohacking by genetic and epigenetic reprogramming of target 

tissue for metastasis. Up to recently, analysis of lipids in cancer metastasis was mainly 

focused on autocrine and paracrine signals mediated by S1P or lysophosphatidic acid (LPA), 

two moderately soluble lipids promoting cell growth and migration by targeting GPCRs and 

downstream PI3K/Akt and mammalian target of rapamycin (mTOR) cell signaling pathways 

(Radeff-Huang, Seasholtz, Matteo, & Brown, 2004; Ye, Ishii, Kingsbury, & Chun, 2002). 

The function of lipid rafts was invoked in facilitating GPCR activation by these lipids. 

However, only a few studies have investigated if EVs or exosomes exchange GPCRs 

between cells (Isola & Chen, 2016; Ye et al., 2002). Recently, ectosomes, EVs budding off 

cilia, were reported to accumulate GPCRs, but a role of ectosome-bound GPCRs in cancer 

has not been described yet (Isola & Chen, 2016; Nager et al., 2017; Soetedjo & Jin, 2014). 

One study found that exosomes can transfer the A2A adenosine receptor (A2AR) from 

A2AR expressing to non-expressing cells with functional recovery of this GPCR, which 

suggests that exosomal transfer of receptors endows the recipient cell with the ability to 

respond to the same signals as the donor cell (Clayton, Al-Taei, Webber, Mason, & Tabi, 

2011; Isola & Chen, 2016) (Fig. 1).

Apart from spurring cell growth and migration, exosomes were invoked in preparing a 

premetastatic niche (for reviews, see (Nogues, Benito-Martin, Hergueta-Redondo, & 

Peinado, 2017; Zhao et al., 2017)). Initial mechanisms activated by exosomes are similar to 

those facilitating evasion from the primary tumor, particularly ECM breakdown and 

migration, but in reverse sequence. In the previous paragraph, we discussed MMPs 

transported by exosomes to degrade the ECM for cancer cell invasion. In addition to opening 

a route for invasion, cancer cells need to stop migrating and settle into the premetastatic 

niche. A study on human breast cancer MDA-MB-231 cells settling into a premetastatic 

niche in the liver showed that exosomal communication can be bi-directional. Upon priming 

of HepN liver cells with cancer cell-derived exosomes, liver cells secrete exosomes that turn 

down migratory gene expression and induce mesenchymal-to-epithelial reverse transition 

(MET) in cancer cells (Dioufa, Clark, Ma, Beckwitt, & Wells, 2017). As the result of this bi-

directional communication, HepN-derived exosomes enhance cancer cell seeding, but also 

suppress cell outgrowth, which renders cancer cells temporarily dormant once settled into 

their niche. The authors show that the behavior of the two cell types was due to exosome-

induced changes in the miRNA composition, although it was not clear how many exosomes 

from both cell types were required to induce this behavior. Interestingly, the study also 

reported up-regulation of E-cadherin and ZO-1 in the dormant cancer cells, two junctional 

cell adherence proteins associated with lipid rafts and promoting MET (Bruewer et al., 2003; 

Nusrat et al., 2000) CD44 is another exosome-associated transmembrane receptor 
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glycoprotein the interaction of which with the ECM is regulated by lipid rafts (Murai, 2015). 

CD44 is upregulated in cancer stem cells, regulates adhesion and metastasis, and it is a well-

known metastatic marker in exosomes (Senbanjo & Chellaiah, 2017). It was found to be 

delivered from ovarian cancer cells to mesothelial cells where it upregulates degradation of 

the ECM by inducing gene expression of MMPs to promote cancer cell invasion (Nakamura 

et al., 2017). A specific involvement of changes in the miRNA profile, either induced by 

CD44 or due to RNA transported by exosomes was not noted. Since CD44 and tetraspanins 

are RAPs that are abundant in exosomes it remains to be elucidated if they are also 

functional in mobile rafts (Rappa, Mercapide, Anzanello, Pope, & Lorico, 2013; Ronquist, 

Ronquist, Larsson, & Carlsson, 2010).

Crosstalk between cancer and immune cells is an area of exosome biology with great 

translational potential. As with vaccinations, immunizations, and other fields of immune 

biology involving the generation of antibodies, exosomes can be engineered to utilize the 

physiological potential of (re)programming the immune system to fight cancer cells. 

Therefore, we will first discuss mechanisms by which cancer cells use exosomes to escape 

immune surveillance and then touch on the potential to hijack these mechanisms and restore 

vigilance of immune cells toward cancer. Not surprisingly, the majority of these studies has 

focused on miRNA-mediated and immunoinhibitory protein-mediated reprogramming of 

immune cells, which is comprehensively reviewed in the following articles (Czernek & 

Duchler, 2017; Eichmuller, Osen, Mandelboim, & Seliger, 2017; Whiteside, 2017a, 2017b). 

However, it is known that antigen recognition and activation of immune cells critically relies 

on membrane lipids, which provides the unique opportunity to utilize lipids and mobile rafts 

in exosomes to manipulate the immune system. In the immune response to antigens, 

dendritic cells, B-cells, or macrophages act as antigen-presenting cells (APC) that process 

antigens and present them to lymphocytes such as T-cells and NKTs (Balato, Unutmaz, & 

Gaspari, 2009; Chaplin, 2010). This presentation activates T-cells and leads to the 

production of antibodies against the antigen or phagocytosis. The activation relies on a 

complex between antigen peptide fragments bound to major histocompatibility complex 

(MHC) class I and II proteins on the APC surface and T-cell receptors (TCRs) on 

lymphocytes. This complex is also known as “immunological synapse” or supramolecular 

activation cluster (SMAC) and it is critically dependent on glycolipid-associated and lipid 

raft-associated receptors in the APC and T-cell membrane (Dustin, 2014; Dustin & Baldari, 

2017; Huang & Sauer, 2010). Macrophages (Daudi cells) were found to sort MHC proteins 

into exosomes via lipid rafts, although it was not investigated what the function of these 

exosomes is once taken up by other cells (de Gassart, Geminard, Fevrier, Raposo, & Vidal, 

2003). Lipid rafts were also shown to facilitate uptake of oncogenic viruses such as Epstein 

Barr Virus (EBV) and its association with exosomes to escape proteolytic degradation prior 

to exosomal spreading of the virus by B-lymphocytes (Verweij et al., 2011). It is unknown, 

however, if specific lipids in mobile rafts contribute to the immunosuppressive function of 

cancer cell-derived exosomes. In nanomedicine, a promising field is the use of raft 

associated-lipids in engineered exosomes or nanovesicles to activate T-cells (Fais et al., 

2016). Dendritic cells are among the cells with the highest output of exosomes and can be 

genetically manipulated to produce exosomes with specific RNA content. Recently, tumor-

derived exosomes were laced with alpha-galactosylceramide, a glycolipid activating the 
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immune synapse, to enhance T-cell activation by dendritic cells, a promising strategy to use 

engineered exosomes for vaccination against cancer cells (Liu et al., 2017). Alpha-

galactosylceramide binds to Cd1b and Cd1d, a lipid raft-associated MHC-like receptor on 

APCs to trigger TCR-mediated activation of T-cells (Lang, Maltsev, Besra, & Lang, 2004). 

It is not known if mobile rafts in exosomes can be used to enhance this process, or exosomes 

secreted by tumor cells interrupt T-cell activation by interfering with activation of the 

immune synapse by lipid rafts.

Another area in exosome biology with great translational potential is understanding and 

utilizing exosome-regulated multi-drug resistance (MDR) of cancer cells. There are several 

mechanisms by which exosomes or more generalized, EVs modulate MDR: 1) spreading of 

MDR from resistant to non-resistant cancer cells, 2) loss of factors increasing MDR; 3) loss 

of factors suppressing MDR, and 4) acquisition of factors suppressing MDR. One may 

speculate that mechanism 1) and 2), as well as 3) and 4) are complementary in that the 

secretion of a particular factor may be a loss for the donor and gain for the recipient cell. As 

a shared consequence of these distinct mechanisms, circulating EVs contain miRNAs or 

proteins critical for MDR and can be analyzed for cancer diagnosis and targeted 

chemotherapy in personalized nanomedicine (for reviews, see (Batrakova & Kim, 2016; 

Bell, Kirk, Hiltbrunner, Gabrielsson, & Bultema, 2016; Fais et al., 2016; Mirzaei, Sahebkar, 

Jaafari, Goodarzi, & Mirzaei, 2017; A. Sharma, 2017; A. Sharma et al., 2016; J. Wang, 

Zheng, & Zhao, 2016)). EV-mediated spreading of MDR is mostly attributed to transport of 

RNAs or proteins mediating export or inactivation of chemotherapeutic drugs, particularly 

ABC transport proteins and MDR-1/P-glycoprotein (Lopes-Rodrigues et al., 2016; Lopes-

Rodrigues et al., 2013; Torreggiani, Roncuzzi, Perut, Zini, & Baldini, 2016). Our laboratory 

has found that induction of exosome secretion by activating ceramide generation through 

drug-mediated interference with sterol metabolism increases sensitivity of breast cancer 

stem-like cells to doxorubicin, a widely used drug in breast cancer therapy (Kong, He, et al., 

2015; Spassieva & Bieberich, 2011). Increase of drug sensitivity was achieved by treating 

human breast cancer MDA-MB-231 cells with the farnesoid × receptor (F×R) antagonist 

guggulsterone and the retinoid × receptor (R×R) agonist bexarotene, and it was directly 

related to ceramide levels and secretion of breast cancer resistance protein (BCRP)/ABCG2 

associated with exosomes. While this or similar mechanism of restoring drug sensitivity via 

EV-mediated secretion of MDR proteins (MRPs) has only been reported in a few studies, it 

provides the opportunity to break MDR by stimulating ceramide generation. On the other 

hand, restoring drug sensitivity and spreading of MRPs to other cancer cells may be prone to 

a delicate tradeoff and it remains to be elucidated whether this mechanism can be utilized in 

cancer therapy.

Conclusions

While miRNA was targeted in exosome biology, the limited amount of RNA in exosomes 

makes it challenging to understand or assess their proposed impact. Instead, other signaling 

factors such as proteins and lipids abundant in exosomes may be better suited to explain 

many functions of exosomes in cancer. In particular, we have focused on lipid rafts in 

exosomes (mobile rafts) and the role of ceramide in cell signaling pathways activated in 

donor and recipient cells. Ceramide is unique in that its generation is required for exosome 
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formation and secretion and that it is a component of lipid rafts regulating cell signaling 

pathways for reprogramming of cancer cells and their microenvironment. This provides the 

intriguing opportunity of broadcasting and manipulating cell signaling events via mobile 

rafts in extracellular signalosomes that are regulated by ceramide. While the idea of mobile 

rafts and exosomes as vectors is novel and not yet explored, it is likely to generate a new 

target for cancer diagnostics and therapeutics.
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Abbreviations:

APC antigen-presenting cell

ATP adenosine triphosphate

CRP ceramide-rich platform

ECM extracellular matrix

EGF endothelial growth factor

EMT epithelial-to-mesenchymal transition

ESCRT endosomal sorting complexes required for transport

EV extracellular vesicle

GPI glycosylphosphatidylinositol

GPCR G-protein coupled receptor

LBPA lysobisphosphatidic acid

LC-MS/MS liquid chromatography tandem mass spectrometry

lnc RNA long non-coding RNA

LPA lysophosphatidic acid

MDR multidrug resistance

MET mesenchymal-to-epithelial reverse transition

MHC major histocompatibility complex

miRNA micro RNA

MMP matrix metalloproteinases

MVE multivesicular endosome
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nSMase2 neutral sphingomyelinase 2

NKT natural killer T cell

NTA nanoparticle tracking analysis

PGE2 prostaglandin E2

PI3K phosphatidyl inositol 3-kinase

RAP raft-associated protein

S1P sphingosine-1-phosphate

TCR T-cell receptor

TEM transmission electron microscopy
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Figure 1. 
Ceramide in exosome formation and the concept of mobile rafts. A. nSMase2 generates 

ceramide that induces formation of ceramide-enriched intraluminal vesicles in MVEs. These 

vesicles can contain endocytosed lipid rafts and are secreted as exosomes after fusion of 

MVEs with the plasma membrane of the donor cell. In addition to lipids, RNA and protein is 

packaged into exosomes. B. Exosomes can contain mobile rafts with raft-associated protein 

(RAP) and ceramide-rich platforms (CRPs) with ceramide-associated protein (CAP). C. 

Exosomes are taken up by recipient cells via endocytosis, pinocytosis, or fusion with the 

plasma membrane. Uptake leads to incorporation of lipid rafts or CRPs into the plasma 

membrane or the endosome. RNA and proteins inside of exosomes are released to the 

cytosol. MVE, multivesicular endosome; nSMase2, neutral sphingomyelinase 2.
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Figure 2. 
TEM of MVEs in MDCK cells. Anti-ceramide IgG was used for immunogold labeling. 

MVEs contain many ceramide-enriched multi- and unilamellar luminal vesicles. 

Unilammellar vesicles are presumed to be secreted as exosomes. MVE, multivesicular 

endosome; MDCK, Madin Darby Canine Kidney; TEM, transmission electron microscopy.
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