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Abstract

Cognitive flexibility is a critical component of executive function and is strongly influenced by 

genetic factors. We conducted a genome-wide association study of cognitive flexibility (as 

measured by perseverative errors on the Wisconsin Card Sorting Test) in two sets of African 

American (AA) and European American (EA) subjects (Yale-Penn-1: 1,411 AAs/949 EAs; Yale-

Penn-2: 1,178 AAs/1,335 EAs). We examined the association of cognitive flexibility with 

genotyped or imputed SNPs across the genome. In AAs, two correlated common SNPs 

(rs7165213/rs35633795) in the downstream region of the noncoding gene LOC101927286 on 

chromosome 15 showed genome-wide significant (GWS) associations with cognitive flexibility 

(Yale-Penn-1: P = 6.0×10−9/1.3×10−8; Yale-Penn-2: P = 0.029/0.010; meta-analysis: P = 

4.2×10−7/1.0×10−7) in the same effect direction. In EAs, no GWS associations were observed. 

Enriched gene sets identified by DEPICT analysis of the top SNPs (Pmeta-analysis < 10−5) included 
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the signalosome and ubiquitin specific peptidase 9, X-linked (USP9X) subnetwork in AAs, and 

abnormal frontal and occipital bone morphology in EAs. We also performed polygenic risk score 

(PRS) analysis to examine the genetic correlation of cognition-proxy phenotypes (general 

cognitive function, education attainment, childhood intelligence, and infant head circumference) 

and cognitive flexibility in EAs. The PRS derived from general cognitive function-associated 

SNPs was significantly associated with cognitive flexibility. Non-genetic factors (age, education, 

sex, and tobacco recency) also exerted significant effects on cognitive flexibility. Our study 

demonstrates that both genetic and non-genetic factors impact cognitive flexibility, and variants in 

genes involved in protein degradation and brain development may contribute to population 

variation in cognitive function.
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cognitive flexibility; Wisconsin Card Sorting Test; genome-wide association study; enrichment 
analysis; polygenic risk score

1 | INTRODUCTION

Cognitive flexibility is a vital component of executive function facilitating critical thinking 

and self-regulation. Inter-individual variability in executive function is largely influenced by 

genetic factors. Twin studies have demonstrated that genetic factors contributed to 59%, 

63%, 29%, and 31% of the variance in working memory, verbal fluency, response inhibition, 

and cognitive flexibility (four specific measures of executive function), respectively (Lee et 

al., 2012). The correlation of these cognitive processes suggests the presence of shared 

genetic factors among them. Additionally, specific genetic factors may influence a particular 

executive function such as cognitive flexibility.

Cognitive flexibility is the ability to modify thinking and behavior in response to changing 

environmental conditions (Leber et al., 2008). Functional magnetic resonance imaging 

(fMRI) studies have shown that certain brain regions (such as the prefrontal cortex) are 

activated during cognitive flexibility tasks (Leber et al., 2008), i.e., specific brain regions are 

the essential determinants of cognitive flexibility or set-shifting capacity. An impairment in 

cognitive flexibility has been noted in a number of neuropsychiatric disorders, such as 

Alzheimer’s disease (Tatsuoka et al., 2013), obsessive-compulsive disorder (Gruner and 

Pittenger, 2017), schizophrenia (Minassian et al., 2005), autism (Romero-Munguia, 2008), 

attention/deficit hyperactivity disorder (Mary et al., 2016), and anorexia nervosa (Zastrow et 

al., 2009). Unraveling the genetic basis of cognitive flexibility can improve our 

understanding of the genetic mechanisms of these disorders and facilitate their early 

diagnosis and treatment.

Cognition is a complex genetic trait. Genome-wide association studies (GWAS) of cognitive 

functions or cognition-proxy phenotypes have been conducted. Two GWAS demonstrated 

genome-wide significant (GWS) associations between general cognitive function (often 

referred to as “general intelligence”) and variants in four Alzheimer’s disease-associated 

genes [the translocase of outer mitochondrial membrane 40 gene (TOMM40), the 

apolipoprotein E gene (APOE), the ATP binding cassette subfamily G member 1 gene 
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(ABCG1), and the myocyte enhancer factor 2C gene (MEF2C)] (Davies et al., 2015) as well 

as the centromere protein O gene (CENPO) and the noncoding RNA gene LOC105378853 
(Trampush et al., 2017). Two other GWAS that examined adult (Davies et al., 2011) and 

childhood (Benyamin et al., 2014) intelligence failed to detect any GWS SNPs. A GWAS on 

information processing speed identified a significant variant in the cell adhesion molecule 2 

gene (CADM2) (Ibrahim-Verbaas et al., 2016), which is involved in glutamate signaling, 

gamma-aminobutyric acid (GABA) transport, and neuron cell-cell adhesion. Several GWAS 

on educational attainment (considered as a partial proxy phenotype for cognitive ability) 

have also been conducted. Rietveld et al. performed a GWAS on education attainment in a 

large sample and identified three genome-wide significant SNPs [rs9320913 near 

LOC100129158, rs11584700 near the leucine rich repeat neuronal 2 gene (LRRN2), and 

rs4851266 near LOC150577] (Rietveld et al., 2013). They also performed a two-stage study 

using the same proxy-phenotype approach and identified three SNPs [rs1487441 near 

LOC100129158, rs7923609 near the Jumonji domain containing 1C gene (JMJD1C), and 

rs2721173 near the leucine rich repeat containing 14 gene (LRRC14)] that were significantly 

associated with cognitive performance (assessed by total word recall and total mental status) 

(Rietveld et al., 2014). Davies et al. investigated the genetic contribution to variation in 

cognitive functions (verbal-numerical reasoning, memory, and reaction time) and 

educational attainment. They reported GWS associations in 20 genomic regions, including 

the ataxin 2 gene (ATXN2), the cytochrome P450 family 2 subfamily D member 6 gene 

(CYP2D6), the amyloid beta precursor protein binding family A member 1 gene (APBA1), 

and CADM2 (Davies et al., 2016). Additionally, a large GWAS conducted by Okbay et al. 
identified 74 loci associated with educational attainment (Okbay et al., 2016).

In the present study, we performed both a SNP- and a gene-based GWAS on cognitive 

flexibility (evaluated by the WCST) in African Americans (AAs; n = 2,589) and European 

Americans (EAs; n = 2,284). We also used a polygenic risk score (PRS) analysis to 

investigate the genetic correlation of cognitive flexibility with cognition-related phenotypes, 

including general cognitive function, educational attainment, childhood intelligence, and 

infant head circumference.

2 | METHODS

2.1 | Subjects

This study included 4,873 subjects, a subset of a larger sample recruited for studies of the 

genetics of substance dependence (Gelernter et al., 2015; Sherva et al., 2016). They were 

recruited through advertisements at the Yale University School of Medicine (New Haven, 

Connecticut, USA) (n = 2,789), the University of Connecticut Health Center (Farmington, 

Connecticut, USA) (n = 1,673), or the University of Pennsylvania Perelman School of 

Medicine (Philadelphia, Pennsylvania, USA) (n = 411). The subjects were divided into two 

groups [Yale-Penn-1: 1,411 African Americans (AAs)/949 European Americans (EAs); 

Yale-Penn-2: 1,178 AAs/1,335 EAs] genotyped using two different microarrays (Table 1). 

Subjects were interviewed using the Semi-Structured Assessment for Drug Dependence and 

Alcoholism (Pierucci-Lagha et al., 2005). Subjects gave written informed consent as 

approved by the institutional review board at each site. Information on sex, age, years of 
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education, and tobacco recency was collected at the baseline interview. Characteristics of the 

participants are presented in Table 1.

2.2 | Cognitive flexibility assessment and correlation with non-genetic factors

We used the 128-card computerized version of the Wisconsin Card Sorting Test (WCST) 

(Heaton, 1999) to evaluate subjects’ cognitive flexibility. Subjects were required to match 

response cards to four stimulus cards on three dimensions (color, form, or number) by 

pressing one of four number keys (1–4) on the computer keyboard. They needed to 

determine the correct sorting principle and change that principle when the test shifts it. The 

WCST index perseverative error has been demonstrated to be the most useful outcome 

measure in assessing executive function (Greve et al., 2005). We examined the influence of 

continuous variables (age and years of education) on perseverative errors using Pearson’s 

correlation analysis and the impact of dichotomous variables [sex and tobacco recency (≤ 2 

vs. > 2 weeks)] on perseverative errors using Student’s t-test.

2.3 | DNA preparation and SNP genotyping

DNA was extracted from lymphoblastoid cell lines or directly from the participants’ blood 

or saliva. The Yale-Penn-1 sample (1,411 AAs/949 EAs) was genotyped using the Illumina 

HumanOmni1-Quad v1.0 microarray (for 988,306 autosomal SNPs) (Illumina, San Diego, 

California, USA) at the Center for Inherited Disease Research (Baltimore, Maryland, USA) 

or the Yale Center for Genomic Analysis (West Haven, Connecticut, USA). The Yale-Penn-2 

sample (1,178 AAs/1,335 EAs) was genotyped at the West Haven VA Medical Center using 

the Illumina HumanCoreExome-12 v1.0 BeadChip (Illumina, San Diego, California, USA) 

for genotyping 538,448 SNPs (including 263,929 exome-focused SNPs and 274,519 tagging 

SNPs which allow genome-wide imputation). Genotypes obtained from both genotyping 

platforms were called using GenomeStudio software V2011.1 and genotype module V1.8.4 

(Illumina, San Diego, CA, USA). SNPs were excluded if their genotyping or subject call 

rates were <98%.

2.4 | Population stratification and genotype imputation

To confirm the self-reported races of subjects, we compared the GWAS data from all 

subjects with genotypes from the 1000 Genomes reference panel (http://www.

1000genomes.org/), which contains phased haplotypes for 1,092 individuals of various 

ancestries: 379 of European descent, 286 of Asian descent, 181 admixed Americans, and 

246 of African descent. We conducted principal component (PC) analysis to explore 

population structure using Eigensoft (Price et al., 2006). After pruning GWAS SNPs for 

linkage disequilibrium (LD) with r2 > 0.8, 145,472 SNPs common to our GWAS and the 

1000 Genomes reference panel datasets were used to characterize the underlying genetic 

architecture of our samples. The first three PCs were used to distinguish AAs and EAs, and 

outliers were excluded. A second set of PC analyses within AAs and EAs was conducted, 

from which the first five PCs were used in all subsequent analyses to correct for residual 

population stratification. To account for genetic relationships between subjects, we 

calculated the pair-wise identity by descent using PLINK (Purcell et al., 2007).
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Genotype imputation of our GWAS samples was performed using the program IMPUTE2 

(Howie et al., 2009) with the 1000 Genomes phase 1 data set as the reference. Genotypes of 

AAs and EAs were imputed separately. The imputed genotype was used in subsequent 

genetic association analyses. SNPs with Hardy-Weinberg equilibrium P-value < 10−5, minor 

allele frequency < 5%, or imputation accuracy < 0.8 were excluded. In the Yale-Penn-1 

sample, 8,933,065 SNPs in AAs and 6,489,050 SNPs in EAs were included in association 

analyses; in the Yale-Penn-2 sample, 6,774,960 SNPs in AAs and 5,244,066 SNPs in EAs 

were considered.

2.5 | SNP-based association analysis and meta-analysis

We performed SNP-based association analyses using a linear random effects model 

embedded in a generalized estimating equation (GEE) (Ziegler et al., 1998) to correct for 

correlations among related individuals. The R package GWAF (Chen and Yang, 2010) was 

used to test the association of both genotyped and imputed SNPs with WCST index %PE 

under an additive model with age, sex, years of education, tobacco recency (≤ 2 weeks vs. > 

2 weeks), and the first five PCs as covariates. Because the Shapiro-Wilks tests (Shapiro and 

Wilk, 1965) demonstrated that the distribution of %PE departed from normality, we used the 

Box-Cox Transformation (Box and Cox, 1964) to normalize %PE before data analysis 

(Supplementary Figure S1). Regional genetic associations were plotted using LocusZoom 

(Pruim et al., 2010).

The association results for 9,039,803 SNPs in each of the two AA samples (Yale-Penn-1 and 

Yale-Penn-2) and 6,550,705 SNPs in each of the two EA samples (Yale-Penn-1 and Yale-

Penn-2) were meta-analyzed within each population using the inverse variance method 

implemented in the program METAL (Willer et al., 2010). To explore the association and the 

heterogeneity across the two ancestral groups, we performed meta-analysis of 9,722,417 

SNPs in AAs and EAs. Two heterogeneity measurements, Cochran’s Q statistic and I2, were 

estimated across the groups. Top SNP signals (P < 10−5) obtained from meta-AA, meta-EA, 

or meta-AA+EA analyses were clumped by LD based on the 1000 Genomes dataset using 

PLINK (with r2 < 0.2 and SNPs within a 200-kb window). The 1000 Genomes dataset from 

the African populations were used as the reference for meta-AA SNP clumping, while the 

1000 Genomes dataset from the European populations were used as the reference for both 

meta-EA and meta-AA+EA SNP clumping.

2.6 | SNP functional prediction

The program PROMO (Messeguer et al., 2002) was applied to predict whether GWS SNPs 

were located in transcription factor binding sites (TFBS) as defined in the TRANSFAC 

database (Matys et al., 2006). The Brain eQTL Almanac (http://www.braineac.org) was 

queried to see whether GWS SNPs were eQTLs for genes expressed in 10 different brain 

regions. Considering the important role of the frontal cortex (Neubert et al., 2014) and the 

hippocampus (Burghardt et al., 2012) in cognitive processes, we focused on eQTLs 

influencing gene expression in these two brain regions.
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2.7 | Interpretation of GWAS findings using predicted gene functions

We used DEPICT (Data-driven Expression-Prioritized Integration for Complex Traits) (Pers 

et al., 2015) to predict whether genes located in associated regions were enriched for 

reconstituted gene sets (i.e., known pathways and protein-protein interaction subnetworks). 

We also used DEPICT to identify the type of tissues/cells in which genes located in 

associated regions are highly expressed. We ran DEPICT for gene set and tissue/cell 

expression enrichment analysis using all independent SNPs (clumped in 500-kb windows 

and with LD r2 < 0.1) with Pmeta ≤ 10−5 in AA and EA meta-analyses. Nominal P-values 

and false discovery rates (FDR) were calculated for each gene set and tissue/cell type.

2.8 | Gene-based association analysis

We performed gene-based tests using the program VEGAS2 (Mishra and Macgregor, 2015), 

which combines P-values of a set of SNPs within a gene region (from 10 kb upstream of the 

5′UTR to 10 kb downstream of the 3′UTR) to obtain an overall P value for the association 

of the entire gene with Box-Cox normalized %PE. Both gene length and SNP LD were 

taken into consideration. It was conducted in AAs and EAs separately, with P-values 

obtained from meta-AA and meta-EA analyses. The GWS levels for gene-based tests were 

set to 2.18×10−6 (0.05/22,888 autosomal genes) for AAs and 2.21×10−6 (0.05/22,659 

autosomal genes) for EAs.

2.9 | Polygenic risk score analysis

We investigated whether polygenic risk scores (PRS) for cognition-related traits correlated 

with cognitive flexibility. Summary statistics of GWAS on general cognitive function 

(Trampush et al., 2017), educational attainment (Okbay et al., 2016), childhood intelligence 

(Benyamin et al., 2014), and infant head circumference (Taal et al., 2012) of subjects of 

European descent were downloaded from the websites of the Social Science Genetic 

Association Consortium (http://www.thessgac.org/data) and the Cognitive Genomics 

Consortium (Trampush et al., 2017). SNPs associated with cognition-related phenotypes 

were clumped by LD with r2 < 0.2 in a 200-kb window. The PRS was calculated as 

previously described (Reeves et al., 2010). Five P-value thresholds (PT = 0.00001, 0.0001, 

0.001, 0.01, and 0.05) were considered. We used the linear regression model embedded in 

GEE (Ziegler et al., 1998) to examine the association between Box-Cox-transformed %PE 

and the PRS. The WCST index %PE was the dependent variable, the PRS (rescaled to range 

from 0 to 2) was the independent variable, and age, sex, education year, tobacco recency, 

and the first five PCs were covariates. The PRS analysis was performed in the two sets of 

EA samples, respectively, followed by meta-analysis. An association with P < 0.0025 

(0.05/4*5 to correct for the testing of four PRS analyses at five PT values) was considered to 

be significant.

3 | RESULTS

3.1 | Effects of non-genetic factors on cognitive flexibility

The influence of non-genetic factors on cognitive flexibility as measured by percentages of 

perseverative errors (Box-Cox transformed %PE) on the WCST is presented in Table 2. Age 
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was significantly correlated with perseverative errors in EAs (r = 0.16, P < 0.001) (i.e., older 

age predicted worse cognitive flexibility) but not in AAs. Years of education was negatively 

correlated with perseverative errors in both AAs (r = −0.09, P < 0.001) and EAs (r = −0.21, 

P < 0.001) (i.e., the more education, the greater the cognitive flexibility). Male EAs made 

significantly fewer perseverative errors (t = −2.32, P = 0.021) than female EAs. There were 

no significant differences in WCST performance between male and female AAs. Recent 

tobacco use was associated with greater %PE in both AAs (t = −5.70, P < 0.001) and EAs 

(%PE: t = −9.97, P < 0.001).

3.2 | SNPs associated with cognitive flexibility

The SNP-based GWAS of cognitive flexibility (denoted as Box-Cox-transformed %PE) was 

performed in AAs and EAs separately, followed by meta-analysis. GWAS results for AAs 

are shown in Figure 1 and Supplementary Figure S2. Rs7165213, which is 1,011 bp 

downstream of the noncoding RNA gene LOC101927286 on chromosome 15, showed a 

GWS association with %PE in the Yale-Penn-1 AA sample (β = 0.08, P = 6.0×10−9) and a 

nominally significant association with %PE in the Yale-Penn-2 AA sample (β = 0.02, P = 

0.029). This finding was supported by a GWS association with %PE at rs35633795 [2,565 

bp from rs7165213 and in high LD with rs7165213 (r2 = 0.907)] in the Yale-Penn-1 AA 

sample (β = 0.08, P = 1.3×10−8) and a nominally significant association with %PE in the 

Yale-Penn-2 AA sample (β = 0.02, P = 0.010). Three additional common SNPs that are 

4,843–6,856 bp from rs7165213 at the 3′ end of LOC101927286 showed non-GWS 

associations with %PE (rs12592141: β = −0.07, P = 5.6×10−7; rs201950623: β = 0.07, P = 

2.8×10−6; rs75006937: β = 0.07, P = 2.8×10−6). There were no GWS findings obtained in 

the two sets of EA samples (Supplementary Figure S3). Meta-analyses of AA, EA, or all AA

+EA samples did not reveal GWS associations with %PE. Nevertheless, a meta-analysis in 

the two sets of AA samples showed that the associations of the two top SNPs identified in 

the Yale-Penn-1 AA sample with cognitive flexibility were close to significance at the GWS 

level (rs7165213: β = 0.08, Pmet = 4.2×10−7; rs35633795: β = 0.08, Pmet = 1.0×10−7) 

(Supplementary Figure S4). However, when P-values and the direction of effects were 

applied in the meta-analysis, the results reached GWS (rs7165213: Pmet = 7.9×10−9; 

rs35633795: Pmet = 2.9×10−9), although this is not the preferred method for GWAS meta-

analysis. There was little evidence for inflation (λ = 1.01–1.03) of P-values from either 

SNP-based GWAS or meta-analyses in the AA, EA, or AA+EA samples (Supplementary 

Figure S5).

3.3 | Annotated function of GWS SNPs

Functional prediction of the above two GWS SNPs (rs7165213 and rs35633795) by 

PROMO indicated that they were potentially located in transcription factor binding sites 

(TFBS) (rs7165213: HNF1B and HNF1C; rs35633795: GR-beta and XBP1). The 

BRAINEAC eQTL analysis showed that rs7165213 and rs9301456 were putative eQTLs for 

gene expression in the frontal cortex and/or the hippocampus. Rs7165213 was shown to be a 

cis-eQTL for the expression of a proximal gene “family with sequence similarity 169 

member B” (FAM169B) in the frontal cortex (Pnominal = 4.3×10−3), while SNP rs35633795 

was a likely cis-eQTL for the expression of FAM169B in the frontal cortex (Pnominal = 
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4.2×10−3) and the non-coding gene LOC145945 in the hippocampus (Pnominal = 9.4×10−3). 

However, the results did not withstand correction for multiple testing.

3.4 | DEPICT enrichment analysis results

We used DEPICT to interpret GWAS findings based on predicted gene functions. In AAs, 

197 independent SNPs (Pmeta < 10−5) identified from the meta-AA analysis yielded 38 

unique and non-overlapping loci mapped to 41 unique genes. The enriched gene sets 

included “signalosome” and “ubiquitin specific peptidase 9, X-linked (USP9X) subnetwork” 

and the enriched tissue/cell types included osteoblasts and skin (Supplementary Table S1). 

In EAs, 27 independent SNPs (Pmeta < 10−5) identified from the meta-EA analysis yielded 

12 unique and non-overlapping loci mapped to 15 unique genes. The enriched gene sets 

included “abnormal frontal bone morphology” and “abnormal occipital bone morphology” 

and the enriched tissue/cell types included exocrine glands and prostate. The enrichment of 

gene set “abnormal frontal bone morphology” survived multiple testing correction 

(Supplementary Table S2).

3.5 | Gene-based association analysis results

Following the per-SNP GWAS, we performed gene-based association tests to identify genes 

that harbor more cognitive flexibility-associated SNPs (with small P-values) than by chance. 

Genes with gene-level P-values less than 10−4 are listed in Supplementary Table S3. In AAs, 

we identified four perseverative error-associated genes (P < 10−4): the CPEB2 antisense 

RNA 1 (head To head) gene (CPEB2-AS1), the cytoplasmic polyadenylation element 

binding protein 2 gene (CPEB2), the cysteine rich secretory protein LCCL domain 

containing 1 gene (CRISPLD1), and the transforming growth factor beta 1 induced 

transcript 1 gene (TGFB1I1). In EAs, we identified five perseverative errors-associated 

genes (P < 10−4): the gamma-aminobutyric acid type A receptor pi subunit gene (GABRP), 

the noncoding RNA gene LOC102031319, the enhancer of polycomb homolog 1 gene 

(EPC1), the microRNA 548c gene (MIR548C), and the microRNA 548z gene (MIR548Z). 

However, none of these genes survived correction for multiple testing.

3.6 | Polygenic risk scores (PRS)

We performed PRS analysis to examine genetic effects shared by cognition-proxy 

phenotypes and cognitive flexibility. The PRS analysis results for five levels of PT (0.00001, 

0.0001, 0.001, 0.01, and 0.05) from the EA samples are summarized in Supplementary Table 

S4. The results with P ≤ 0.050/4*5 = 0.002 (correcting for four PRS analyses with five levels 

of PT) were considered significant. The PRS of general cognitive function was significantly 

associated with perseverative errors (PT = 0.05: β = −0.03, Pmeta = 0.002; PT = 0.01: β = 

−0.03, P meta= 0.001). The PRS of years of education (PT = 0.05: β = −0.02, Pmeta = 0.025; 

PT = 0.01: β = −0.02, Pmeta = 0.027; PT = 0.001: β = −0.02, Pmeta = 0.044) and the PRS of 

infant head circumference (PT = 0.05: β = −0.03, Pmeta = 0.005) showed nominally 

significant associations with perseverative errors. Childhood intelligence did not show a 

significant genetic correlation with perseverative errors.

We performed an additional PRS analysis using the summary statistics from a GWAS on 

educational attainment (Okbay et al., 2016) to predict the years of education in our two EA 
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samples. As shown in Supplementary Table S5, the PRS of educational attainment from 

Okbay et al. (2016) was significantly associated with years of education in our two sets of 

EA subjects (PT = 0.05: β = 1.83, Pmeta = 5.2×10−23; PT = 0.01: β = 1.69, Pmeta = 

1.3×10−20; PT = 0.001: β = 1.49, Pmeta = 7.4×10−19; PT = 0.0001: β = 1.37, Pmeta = 

3.3×10−15; PT = 0.00001: β = 1.37, Pmeta = 7.8×10−13).

4 | DISCUSSION

In the present study, we identified cognitive flexibility-associated genetic loci using SNP- 

and gene-based GWAS as well as PRS analysis. We also explored the correlation of non-

genetic factors with cognitive flexibility. Our study identified both genetic and non-genetic 

factors that influence cognitive flexibility, measured using perseverative errors on the 

WCST.

Through SNP-based GWAS, we identified cognitive flexibility-associated SNPs in AAs. 

Two nearby and tightly linked SNPs (rs7165213 and rs35633796), located downstream of a 

non-coding RNA (ncRNA) gene LOC101927286, were significantly associated with 

perseverative errors in AAs (Figure 1). Although ncRNAs are often non-functional, some of 

them can regulate gene expression at the level of transcription or post-transcription 

(Huttenhofer et al., 2005). Because multiple SNPs in the 3′ end of LOC101927286 were 

associated with cognitive flexibility at GWS or sub-GWS levels (Figure 1), LOC101927286 
or other genes in this region may regulate the expression of cognition-relevant genes or 

participate in biological pathways underlying variation in cognitive functioning.

It is a challenge to unravel the function of GWAS-identified disease-associated genetic 

variants because their effect size may be small and they are often located in noncoding 

regions, such as the two cognitive flexibility-associated SNPs identified here (rs7165213 and 

rs35633796). We used DEPICT to show Gene Ontology, KEGG, and Reactome pathways 

that are enriched for genes tagged by cognitive flexibility-associated SNPs. Enriched gene 

sets or pathways in AAs included “signalosome”, which is a protein complex with 

isopeptidase activity, and “USP9X subnetwork”, which consists of proteins that are similar 

to ubiquitin-specific proteases. Enriched gene sets or pathways in EAs included “abnormal 

frontal bone morphology” and “abnormal occipital bone morphology”. These findings 

suggest that genes carrying cognitive flexibility-associated variants may be involved in 

protein degradation or brain development. In addition, we examined whether cognition-

related genes reported in previous GWAS (see Introduction) harbored SNPs that were 

associated with cognitive flexibility in our samples. As shown in Supplementary Table S6, 

three previously GWAS-identified genes (CADM2, LOC105378853, and ABCG1) had more 

than 20 SNPs with meta-analysis P-values less than 0.05 in our AA, EA, or AA+EA 

samples. However, none of these genes harbored SNPs that were associated with cognitive 

flexibility at the GWS level.

We then performed gene-based GWAS to evaluate the effect of significant SNPs in a gene 

region on cognitive flexibility. We identified novel potential cognitive flexibility-associated 

genes, but none reached GWS. The top genes (with gene-level P-values < 10−4) associated 

with cognitive flexibility were CPEB2-AS1, CPEB2, CRISPLD1, and TGFB1I1 in AAs as 
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well as GABRP, LOC102031319, EPC1, MIR548C, and MIR548Z in EAs (Supplementary 

Table S3). The majority of these potential cognitive flexibility-associated genes are involved 

in the regulation of gene expression or neurotransmission, but further research to validate 

this hypothesis is warranted.

Cognitive flexibility may be pleiotropic with other components of cognition. We used the 

PRS method to evaluate genetic variants that could underlie the phenotypic link between 

cognitive flexibility and other cognitive phenotypes. General cognitive function 

encompasses a number of cognitive abilities. Educational attainment is strongly associated 

with levels of cognitive function (Wilson et al., 2009). Childhood intelligence is a significant 

predictor of various health outcomes such as educational attainment, income, and lifespan 

(Benyamin et al., 2014). Infant head circumference has been correlated with developmental 

cognition (Gale et al., 2006). Because GWAS of general cognitive function (Trampush et al., 

2017), educational attainment (Okbay et al., 2016), childhood intelligence (Benyamin et al., 

2014), and infant head circumference (Taal et al., 2012) were performed in European 

populations, we performed the PRS analysis only in our EA sample (as the replication 

sample). The PRS derived from the above proxy phenotype-associated SNPs was associated 

with cognitive flexibility (represented by perseverative errors), but only the results from the 

general cognitive function PRS survived correction for multiple testing. This finding is 

consistent with a pleiotropic effect of genetic variants on both cognitive flexibility and 

general cognitive function. We did not perform the PRS analysis in our AA sample because 

the GWAS data for cognition-proxy phenotypes was not available for AAs.

Apart from heritable genetic factors, brain development and function are also susceptible to 

perturbation by environmental factors. We observed significant effects of non-genetic factors 

(age, education, sex, and tobacco recency) on cognitive flexibility in AAs and EAs. The 

consistent findings in both populations were that education attainment was negatively but 

recent tobacco use was positively correlated with perseverative errors.

This study is limited in several respects. First, our findings should be verified in a larger 

independent sample. If WCST data from other research groups becomes available, we could 

also meta-analyze results from multiple samples. Second, subjects for the present study were 

mainly recruited for genetic studies of substance dependence rather than from a population. 

The comparability of our sample on cognitive measures with other samples is nevertheless 

supported by the PRS analysis regarding years of education. Third, the identified SNPs with 

GWS associations with cognitive flexibility are located in noncoding region. The function of 

these noncoding SNPs in regulating gene expression needs to be validated. In addition, we 

need to explore the interactive effects of genetic and environmental factors on cognitive 

flexibility. Even though two groups of subjects both carry genetic risk factors for cognitive 

flexibility, significant associations may only be shown in one group of subjects but not in 

another if relevant environmental factors differ. The different percentages of recent AA 

smokers in Yale-Penn-1 (80.1%) and Yale-Penn-2 (67.8%) samples (refer to Table 1) may 

partially explain the different findings in these two sets of AA samples, i.e., GWS signals 

were observed in Yale-Penn-1 AAs but not in Yale-Penn-2 AAs (although the result was 

nominally significant); we know smoking recency is a substantive environmental factor. 

Similarly, the reason that the meta-analysis of the two AA datasets (Yale-Penn-1 and -2 
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AAs) did not generate a more significant result may be partially due to the interaction of 

genetic variants and environmental factors including tobacco recency. Thus, further gene-

environment interaction analysis is warranted.

To summarize, the present study demonstrated an influence of both genetic and non-genetic 

factors on cognitive flexibility, and identified specific risk alleles important in modulating 

cognitive flexibility in AAs. It suggests that genes with cognitive flexibility-associated 

variants could be potential targets for the treatment of cognitive dysfunction. To ameliorate 

cognitive deficits in patients with psychiatric disorders, pharmacogenetic, psychological, and 

behavioral approaches could potentially be guided by both genetic and environmental 

predictors of cognitive flexibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Regional Manhattan plot of SNPs rs7165213 and rs35633795 in association with 

perseverative errors.

Regional association (Manhattan) plot shows SNP-based GWAS results for association of 

perseverative errors and single nucleotide polymorphisms (SNPs) mapped to the 

LOC101927286 region on chromosome 15 in African Americans (AAs). The SNPs are color 

coded according to r2 with the most significant SNP rs7165213 shown in purple. The light 

blue line and right Y-axis display the observed recombination rate in the HapMap YRI 

sample.
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