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Single-cell mRNA profiling reveals the hierarchical
response of miRNA targets to miRNA induction
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Abstract

miRNAs are small RNAs that regulate gene expression post-tran-
scriptionally. By repressing the translation and promoting the
degradation of target mRNAs, miRNAs may reduce the cell-to-cell
variability in protein expression, induce correlations between
target expression levels, and provide a layer through which targets
can influence each other’s expression as “competing RNAs”
(ceRNAs). However, experimental evidence for these behaviors is
limited. Combining mathematical modeling with RNA sequencing
of individual human embryonic kidney cells in which the expres-
sion of two distinct miRNAs was induced over a wide range, we
have inferred parameters describing the response of hundreds of
miRNA targets to miRNA induction. Individual targets have widely
different response dynamics, and only a small proportion of
predicted targets exhibit high sensitivity to miRNA induction. Our
data reveal for the first time the response parameters of the entire
network of endogenous miRNA targets to miRNA induction,
demonstrating that miRNAs correlate target expression and at the
same time increase the variability in expression of individual
targets across cells. The approach is generalizable to other miRNAs
and post-transcriptional regulators to improve the understanding
of gene expression dynamics in individual cell types.
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Introduction

miRNAs guide Argonaute proteins to mRNA targets, repressing their

expression post-transcriptionally (Huntzinger & Izaurralde, 2011).

Measurements of transcript and protein levels following perturba-

tions in the levels of individual miRNAs showed that the fundamen-

tal molecular mechanism of mammalian miRNAs is target

destabilization, through the recruitment of factors that promote

mRNA decay (Lim et al, 2005; Hausser et al, 2009; Guo et al, 2010;

Bartel, 2009). However, time series of mRNA and protein-level

measurements after miRNA transfection also revealed that repres-

sion of target translation precedes the increase in its degradation

rate (Bazzini et al, 2012; Hausser et al, 2013; Eichhorn et al, 2014).

A miRNA typically has hundreds of evolutionarily conserved target

sites (Lewis et al, 2005; Grün et al, 2005; Gaidatzis et al, 2007), yet

only very few predicted targets are down-regulated more than

twofold in miRNA transfection experiments (Hausser & Zavolan,

2014). Whereas disruption of miRNA biogenesis impairs the ability

of embryonic stem cells to differentiate (Kanellopoulou et al, 2005),

and some miRNAs such as the founders of the class, the lin-4 and

let-7 miRNA of Caenorhabditis elegans have striking developmental

phenotypes (Ha et al, 1996; Wightman et al, 1993; Reinhart et al,

2000), most miRNA genes are individually dispensable for develop-

ment and viability, at least in the worm (Miska et al, 2007). These

observations suggested that strong repression may not be the

primary function of miRNAs and that other functions should be

investigated (Ebert & Sharp, 2012).

A computational study of small RNA-dependent gene regulation

in bacteria initially proposed that post-transcriptional regulators

impose thresholds on the protein levels of their targets in response

to transcriptional induction, conferring robustness to transcriptional

noise (Levine et al, 2007). Experiments with target reporters in

mammalian systems demonstrated that miRNAs could play a similar

role (Mukherji et al, 2011). Gene expression being a stochastic

process, the number of protein molecules expressed from a given

gene varies between cells in a cell population. The ratio of variance

to mean of the number of protein molecules per cell (the “noise” in

protein expression) is predicted to be proportional to the ratio of

mRNA translation and mRNA degradation rates (Shahrezaei &

Swain, 2008). Intriguingly, these are the rates that miRNAs modu-

late so as to decrease protein expression noise. Indeed, a recent

study reported increased variability in CD69 protein expression

across miRNA-deficient, developing mouse thymocytes (Blevins

et al, 2015). However, as the reduction in target protein noise is

predicted to scale as the square root of the miRNA-induced change

in protein level (Osella et al, 2011; Schmiedel et al, 2015), which is

small for the vast majority of evolutionarily conserved miRNA

targets (Hausser et al, 2013; Eichhorn et al, 2014; Hausser &
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Zavolan, 2014), it is unlikely that many of the predicted miRNA

targets are regulated in this manner.

It has also been proposed that at the cellular level, miRNAs

provide a “channel” through which the many predicted miRNA

targets “communicate” as “competing RNAs” (ceRNAs; Poliseno

et al, 2010; Figliuzzi et al, 2013; Cesana et al, 2011; Karreth et al,

2015; Wang et al, 2013). Rough estimates of the number of potential

binding sites for a miRNA (also called miRNA “target abundance”)

are in the range of ~105 sites per cell, much higher than the number

of cognate miRNA molecules (Denzler et al, 2014). In this regime,

where the targets are already in high excess relative to the miRNAs,

overexpressing a single target could not appreciably affect the

expression of the other targets. Yet, examples of ceRNAs continue to

emerge (Poliseno et al, 2010; Figliuzzi et al, 2013; Cesana et al,

2011; Karreth et al, 2015; Wang et al, 2013). These estimates of

target abundance did not consider the possibility that targets may

not be equivalent in their ability to bind and sequester miRNAs.

Indeed, a computational analysis suggested that miRNA targets have

asymmetric relationships, high-affinity targets being able to

sequester miRNAs from low-affinity targets, at comparable target

concentrations, but not the other way around (Figliuzzi et al, 2013).

In vitro measurements indicate that miRNA target sites can have

widely different affinities for the miRNA–Argonaute complex (Wee

et al, 2012), an observation that is supported by measurements

of Argonaute-dwelling times on individual miRNA target sites

(Chandradoss et al, 2015). However, estimates of in vivo miRNA–

target interaction constants are lacking.

Taking advantage of a system in which the expression of a single

miRNA precursor can be induced over a wide concentration range,

we measured the transcriptomes of thousands of individual cells

and assessed how the expression levels of miRNA targets relate to

the expression level of the miRNA. We obtained experimental

evidence for behaviors that were previously suggested by computa-

tional models or evaluated only with miRNA target reporters. These

include the non-linear, ultrasensitive response of miRNA targets to

changes in the miRNA concentration as well as the dependency

of the variability in target levels between cells on the concentration

of the miRNA. Furthermore, we found that only a small fraction of

predicted targets are highly sensitive to changes in miRNA expres-

sion. With a computational model, we illustrate how these targets

can influence the expression of other targets as competing RNAs.

Our approach is applicable to other post-transcriptional regulators

of mRNA stability, allowing the analysis of their concentration-

dependent impact on the transcriptome.

Results

A system to study the impact of miRNA expression on the
transcriptome of individual cells

miRNA target reporters are widely used to study miRNA-

dependent gene regulation. However, these reporters are often

expressed at much higher levels than when expressed from their

corresponding genomic loci. Furthermore, these reporters do not

respond to the regulatory influences to which the endogenous tran-

scripts respond. To circumvent these issues and investigate the

crosstalk of miRNA targets in their native expression context, we

used a human embryonic kidney (HEK) 293 cell line, i199

(Hausser et al, 2013), in which the expression of the hsa-miR-199a

miRNA precursor and of the green fluorescent protein (GFP) can

be simultaneously induced by doxycycline, from a pRTS1 episomal

vector (Fig 1A). To assess the reproducibility of the inferred sensi-

tivity parameters for miRNA targets, we used a related cell line,

i199-KTN1 (Hausser et al, 2013), derived from i199 through the

stable integration of a target of hsa-miR-199a-3p. This target

consisted of the Renilla luciferase coding region followed by the 30

untranslated region (UTR) of kinectin 1 (KTN1). We reasoned that

these similar but not identical cell lines should allow us to assess

the reproducibility of the inferred parameters, which we do expect

to vary between more distant cell types due to differences in the

expression of regulatory factors.

The processing of hsa-miR-199a gives rise to two mature

miRNAs, hsa-miR-199a-5p and hsa-miR-199a-3p. These miRNAs

have distinct “seed” sequences (at positions 2–7 of the miRNA) and

therefore largely non-overlapping target sets; only seven of the top

100 targets predicted (Gumienny & Zavolan, 2015) for each miRNA

are shared. The bidirectional nature of the promoter in the pRTS1

vector was characterized before, by fluorescence-activated cell sort-

ing (Bornkamm et al, 2005). In our construct, the luciferase protein-

coding sequence has been replaced by a pri-miRNA. As no method

is currently available for simultaneously measuring the expression

of a miRNA and of a protein-coding gene in single-cells, we assessed

whether the two bi-directionally transcribed RNAs have correlated

expression in cell populations. Indeed, by RT–PCR we found that

the expression of hsa-miR-199a-5p and expression of the GFP

mRNA, in cell populations induced with different concentrations of

doxycycline, were highly correlated (Fig 1B, Spearman’s r = 0.91,

P = 1.74E-07). Furthermore, the expression of both mature miRNAs

processed from the hsa-miR-199a precursor increased in parallel to

the concentration of the inducer, as expected (Appendix Fig S1A).

Altogether, these data indicate that the level of GFP mRNA can

serve as a “proxy” for the miRNA levels in studying the response of

miRNA targets to the miRNA in individual cells. Carrying out Argo-

naute 2 protein crosslinking and immunoprecipitation in fully

induced (1 lg/ml doxycycline) HEK 293 cells, we confirmed that

hsa-miR-199a-5p and hsa-miR-199a-3p were incorporated into the

miRNA effector complex and were among the highest represented

miRNAs (Appendix Fig S1B).

We then induced cells with doxycycline concentrations span-

ning the 0–1 lg/ml range (as described in Materials and Methods),

pooled the cells and carried out mRNA 30 end sequencing of 3,280

distinct i199 and 3,143 i199-KTN1 cells, on a 10x Genomics plat-

form. In parallel, we carried out bulk mRNA sequencing from both

non-induced i199 cells and cells that were fully induced (1 lg/ml

doxycycline). The distribution of the number of distinct transcripts

obtained from individual single-cells is shown in Appendix Fig

S1C. GFP mRNAs were captured from 43% of the i199 cells, in

which the mean GFP mRNA expression was 32 transcripts per

million (TPM; Fig 1C). mRNA expression levels inferred either by

averaging over single-cells (SCs) with no GFP mRNA or from bulk

sequencing of non-induced cell populations (CP) were highly

correlated (Spearman’s r of log2 expression values = 0.89, P < 1E-

15, Fig 1D). The expression of the top 100 MIRZA-G-C-predicted

targets of the two miRNAs (Gumienny & Zavolan, 2015) was

significantly lower in cells with high GFP mRNA expression (> 6.8
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TPM) compared to cells with no GFP expression (0 TPM, Fig 1E).

Importantly, the expression of predicted targets decreased in paral-

lel with the increase in GFP mRNA levels, further indicating that

the GFP mRNA is a good proxy for the miRNA expression in indi-

vidual cells (Appendix Fig S1D and E). Finally, the miRNA-induced

changes in target expression, inferred either from bulk or from

single-cell sequencing of strongly induced and uninduced cells

were significantly correlated (Fig 1F). The results were reproduced

in the related i199-KTN1 cell line (Appendix Fig S2). Results of a

parallel analysis with miRNA targets predicted by TargetScan

(Garcia et al, 2011) are shown in Appendix Figs S6–S12. Altogether,

these results indicate that the system behaves as expected and can

be used for further analysis of miRNA-dependent gene regulation

in single-cells.

miRNA targets follow theoretically predicted behaviors in
response to miRNA induction

The dynamics of small networks composed of miRNAs, and targets

have been investigated computationally, with stochastic models

(Bosia et al, 2013; Figliuzzi et al, 2013). Bosia et al (2013) predicted

that the coefficient of variation (CV) of miRNA targets increases with

the transcription rate of the miRNA, showing a local maximum in the

region where the miRNA and targets are in equimolar ratio. The

correlation of expression levels of mRNAs that are targeted by the

same miRNA was predicted to exhibit a maximum around the same

threshold. We used a similar simple model of miRNA-dependent

gene regulation to predict the behavior of targets in our experimental

system. Briefly, we considered M mRNA targets of a given miRNA,

A B C

D E F

Figure 1. Design and characterization of the experimental system.

A Schematic representation of the construct used to express hsa-miR-199a-5p (red), hsa-miR-199a-3p (blue), and the reporter GFP mRNA from a bidirectional promoter.
Shown are also the “seed” sequences (nucleotides 2–7) of the two miRNAs.

B The expression levels of hsa-miR-199a-5p and GFP mRNA, measured from cell populations by quantitative PCR, are highly correlated. Error bars show standard
deviations from two replicates.

C Histogram of normalized GFP mRNA expression (TPM) in individual i199 cells.
D Correlation of mRNA expression levels estimated from SC sequencing (1,875 T0 cells (see text for definition) from which no GFP mRNA was captured) and from CP

mRNA-Seq (six replicates of non-induced cell populations).
E Cumulative distribution of expression differences of the top 100 targets of hsa-miR-199a-5p (red), of top 100 targets of hsa-miR-199a-3p (blue), and of 7,347

remaining, “background” genes (black) between cells expressing highest and lowest GFP levels [216T∞ cells with > 6.8 TPM GFP (“ind”) vs. 1,875 T0 cells with 0 TMP
GFP (“ctrl”)]. Boxplots of log2-fold change of non-targets, top 100 miR-199a-3p, and top 100 miRNA-199a-5p targets are shown in the inset. P-values of the rank-sum
test comparing targets and non-targets are also shown. Horizontal line is a mean, box shows where 50% of data points are (interquartile range, IQR), whiskers show
points within 1.5 * IQR from 25/75-percentile border of the box.

F Scatter plot of expression differences of the top 100 targets of each miRNA, estimated from bulk sequencing (CP) or from single-cell sequencing (T∞ and T0 cells
defined as for previous panel).
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each with a specific transcription rate ai, decay rate di, and level mi,

with i 2 f1; . . .Mg. Target i could bind a miRNA-containing Argo-

naute (Ago) complex at rate koni
and dissociate from the complex at

rate koffi . Because in our experimental system we induced miRNA

expression to specific stable levels before carrying out the mRNA

sequencing, we neglected the dynamics of the miRNA and assumed

that the total number A of Ago-miRNA complexes in a given cell was

constant, though varying between cells. The number of free Ago-

miRNA complexes is then given by AF ¼ A�PM
j¼1 Aj. Finally, we

assumed that Ago-miRNA-bound mRNAs decay at rates kcati . Under

this simple model (see also Hausser and Zavolan, 2014), free mRNAs

(mi) and miRNA-bound mRNAs (Ami
) follow the dynamics described

by the system of 2M differential equations

@miðtÞ
@t

¼ ai � dimiðtÞ � koni
miðtÞ A�

XM
j¼1

Amj
ðtÞ

 !
þ koffiAmi

ðtÞ

@Ami
ðtÞ

@t
¼ koni

miðtÞ A�
XM
j¼1

Amj
ðtÞ

 !
� koffiAmi

ðtÞ � kcatiAmi
ðtÞ:

(1)

We carried out stochastic simulations of a system with four

miRNA targets (Fig 2A), choosing parameters of target expression

and interaction with the miRNA such that (i) target expression

spanned a broad range, (ii) they underwent miRNA-dependent

down-regulation at either low (targets a and b) or high (targets c

and d) miRNA levels, and (iii) down-regulation of all targets was

moderate, as generally observed in experiments. The response of

individual in silico targets to miRNA induction is shown in Fig 2A.

Figure 2B and C shows the variability of target expression between

simulated cells and the pairwise correlations of target expression

levels across all simulated cells, as functions of the total miRNA

level. Similar to the predictions of Bosia et al (2013), the targets in

our in silico system also experience destabilization, increased corre-

lation, and increased expression noise, all within a limited range of

miRNA expression, i.e. at a specific threshold. Figure 2B also shows

that for each target, the coefficient of variation increases in function

of miRNA expression level, as the target expression level is reduced

by the miRNA, and that targets with low expression level have

higher coefficients of variation compared to highly expressed

targets. Furthermore, there is a noticeable spike in the coefficient of

variation of each target, in the region where the target experiences a

hypersensitive down-regulation in response to the miRNA (see also

Appendix Fig S3A). The miRNA also induces correlated changes in

its targets (Fig 2C); targets with high sensitivity to the miRNA that

are repressed at low miRNA concentrations (a and b in our exam-

ple) exhibit the highest correlation coefficient, and over a widest

range of miRNA concentrations. However, targets that differ

strongly in concentration of the miRNA that triggers their response

or in the magnitude of miRNA-induced decay appear uncorrelated

(c with respect to the others in our example).

We then turned to the experimental data. For both miRNAs and

both cell lines, the total target level (see Materials and Methods for

target selection) exhibited the expected threshold decrease in func-

tion of the GFP expression level, which we used as proxy for the

miRNA expression (Fig 2D and G, and Appendix Fig S3D). The CV

and rP values, computed as ratios to the corresponding values for a

similarly sized set of non-targets, also showed the expected behav-

iors; namely, the coefficient of variation in total target expression

across individual cells increased with the GFP expression (Fig 2E

and H, see also Appendix Fig S3B and E), while the mean pairwise

correlation coefficient of target expression in individual cells peaked

at an intermediate level of GFP mRNA expression (Fig 2F and I, see

also Appendix Fig S3C and F). Randomizations showed that in spite

of the large noise, indicated by the size of the error bars, the CV of

targets remained larger than that of non-targets and the correlation

of target expression larger than that of non-target expression. Thus,

even though the noise of single-cell experiments is large and mRNA

capture is incomplete, the experimental data follow the theoretical

predictions and the simulations.

The sensitivity of individual targets to miRNA regulation can be
inferred from their expression in cells with varying miRNA level

We used the computational model described in equation (1) to

derive two measures of target sensitivity to miRNA regulation. First,

we derived the Michaelis–Menten-like constant (Wee et al, 2012)

KMi
¼ koffiþkcati

koni
, defined as the ratio of the dissociation rate of mRNA i

from the miRNA-primed Argonaute protein (whether or not accom-

panied by Ago-catalyzed decay) and their rate of binding. We further

derived the level of free Ago-miRNA complexes at which a specific

target i is halfway between its maximum level T0
i , realized when the

miRNA is not expressed, and its minimum level T1
i , realized when

the miRNA is in high excess relative to all targets. As shown in

Materials and Methods, this critical concentration is given by

AC
Fi ¼

KMi

T0
i

T1
i

:

We then devised a procedure for inferring these two parameters

for each miRNA target from the experimental data, which has a high

level noise (total target levels vary almost twofold in individual cells

with similar GFP expression (Fig 2D and G), for reasons that may

include the low mRNA capture rate and the imperfect coupling of

miRNA and GFP mRNA levels). We used the system described in

equation (1) to test procedures for analyzing noisy single-cell data

such that we can infer target-specific parameters at the limit of accu-

racy afforded by the single-cell experiments. Relevant for the infer-

ence are the expression levels of targets in the absence of the

miRNA, the expression levels when the miRNA is present at maxi-

mal concentration, and the expression levels in all cells in which the

miRNA has intermediate expression. Thus, we generated in silico

data with the computational model (Fig 3A), added noise in target

levels comparable to the noise observed in vivo (Fig 3B), and then

experimented with the selection of cells to use in the inference and

with the smoothing of the target levels (Fig 3B and C) to most accu-

rately recover the input parameters (see also Materials and Methods

and Appendix Fig S4). In particular, different miRNA targets

respond at different miRNA concentration, and only cells in which

the miRNA concentration is in the relevant range for that target

could be used for inferring the shape of the target’s response. Thus,

to select cells that are relevant for the inference of parameters of all

targets in parallel, we examined the dependence of average target

level as a function of the miRNA concentration in a cell. As even the

average target level varies quite widely between cells with similar

miRNA concentration (Fig 3B), we explored procedures for smooth-

ing average expression levels as a function of miRNA expression
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before the selection of cells for the inference, as described in Materi-

als and Methods. The region of target sensitivity to the miRNA is

indicated by the red line in Fig 3B, and the gradient in mean target

level as a function of miRNA concentration is shown in Fig 3C. The

free miRNA levels inferred from these in silico data showed that

only when the total miRNA level is sufficiently high to occupy all

the available target sites (Fig 3D) does free miRNA accumulate, as

expected. The correlation between target-specific input and recov-

ered parameters (Fig 3E, Pearson’s r = 0.56, P-value = 3.0 × 10�20)

was at the upper bound set by the level of noise in the simulated

data, as shown by correlation between the parameters recovered

from two simulations that only differed in the measurement error

added to the target expression levels in the simulated cells (Fig 3F).

A limited number of targets exhibit high sensitivity to
miRNA induction

We then turned to estimating the sensitivities of the predicted

miRNA targets from the experimental data. For each miRNA, we

selected the 300 MIRZA-G-C-predicted targets with highest

A B C

D E F

G H I

Figure 2. Expected and observed response of miRNA targets to miRNA induction in single-cells.

A Results of numerical integration (equation (1), solid lines) and the average of six stochastic simulations (dots) of a model with four target genes (indicated by
distinct colors) chosen to cover a wide expression range and to have either high or low sensitivity to the miRNA. Fifty in silico cells, each with a defined miRNA
concentration, were simulated.

B Coefficient of variation (CV) of in silico target levels across cells, calculated in function of miRNA expression, from the simulation trajectories.
C Pearson’s correlation coefficients of expression levels of pairs of genes from in silico cells, calculated in function of miRNA expression from the simulation

trajectories.
D–I (D, G) Total expression (log2 sum of TPM) of 100 lowest ACF hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets (see also Materials and Methods for target

selection) in the i199 (D) and i199-KTN1 (G) cells, in function of log2 GFP expression in the same cells. (E, H) mean CV and (F, I) mean Pearson’s pairwise correlation
coefficients for miRNA targets in function of GFP expression in i199 (E, F) and i199-KTN1 (H, I) cells. Averages were calculated from the 200 cells with GFP
expression closest to a specific expression level. CV values are shown as ratios to corresponding values computed for all non-target mRNAs (E, H) and rP to mean of
50 evaluations of random selection of 100 non-target genes (F, I).

Data information: For (B, C, D, and G) plot, standard deviations are shown, for (E, F, H and I) plot, standard errors are shown.
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prediction scores (Gumienny & Zavolan, 2015) that had an expres-

sion level of at least ~8 TPM when the miRNA was not expressed,

and underwent at least 8% down-regulation at the highest miRNA

concentration (log2 T1
i =T0

i < �0.12). We used cells with log2 GFP

expression of 0 TPM (1,875 and 1,629 cells for i199 and i199-

KTN1 cells, respectively) to infer target levels T0
i , when the

miRNA is not expressed, cells with more than 6.8 TPM GFP (216

cells for i199 and 205 for i199-KTN1) to infer target levels T1
i at

saturating miRNA concentration, and all other cells to construct

the ~T matrix of individual target expression levels in single-cells

with intermediate miRNA expression. Applying the inference

described in Materials and Methods, we obtained AC
F (Fig 4A) and

KM (Fig 4B) parameters for all targets and found that their distribu-

tions covered a fourfold to eightfold range. The average response

of the 20 targets with lowest and highest values of these two

parameters to miRNA induction is shown in Fig 4C. For both hsa-

miR-199a-5p and hsa-miR-199a-3p miRNAs, target parameters

inferred independently from the two cell lines were significantly

correlated (Fig 4D and E), indicating the robustness of our results.

For hsa-miR-199a-3p, Pearson’s correlation coefficients were 0.49

(P-value = 2.6 × 10�11) for AC
F and 0.4 (P-value = 5.9 × 10�8) for

KM, while for hsa-miR-199a-5p, they were 0.43 (P-value =

3.6 × 10�8) for AC
F and 0.34 (P-value = 2.2 × 10�5) for KM. Espe-

cially apparent on the scatter plot of AC
F values is a small group of

targets that respond at low miRNA concentrations and thus have

low AC
F in both cell lines (see also Fig 4C). These low AC

F targets

have higher prediction scores and are enriched in DNA-binding

factors compared to the high AC
F targets (Appendix Tables S1 and

S2, and Fig S5A). The measure that is most broadly used to vali-

date computational target predictions is the change in expression

A B C

D E F

Figure 3. Validation of the approach for inferring target sensitivity from single-cell data.

A Response of 300 in silico targets, each with associated parameters describing its transcription, decay, rates of binding to and dissociating from the miRNA (values
drawn from distributions around experimentally measured values, see Appendix Fig S4) in response to increasing miRNA concentration.

B Noise (orange) was added to the target expression (black), and then, running means (blue) were calculated over increasingly wider windows to ensure that the
estimated expression levels Tij for gene i in cell j (for cells used in the inference (red)) were between the maximum (T0i ) and minimum (T1i ) levels, corresponding to no
miRNA being expressed and to the miRNA being expressed at very high levels in the cell (allowing for a small tolerance c; dashed lines).

C Cells for which the gradient of the total target level with respect to the miRNA level was less than �0.01 (shown in orange, and corresponding to the points shown in
red in panel (B)) were used to construct the ~T matrix of gene expression levels per cell.

D Scatter plot of the total miRNA levels that were used as input to the model and the levels of free miRNA inferred from the simulated data.
E Scatter plot of the input vs. inferred ACFi values. The Pearson correlation coefficient and its associated P-value are also shown.
F Scatter plot of ACFi values inferred from in silico data that were generated with the same input target parameters, but to which two distinct sets of “measurement

errors” were applied. The Pearson correlation and associated P-value are also shown.
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that predicted targets experience upon strong miRNA induction

(Fig 4F). Sorting targets by their MIRZA-G-C scores and computing

the average fold change [between cells with high (T1
i ) and no

(T0
i ) miRNA expression] of the top x targets as a function of x, we

indeed found that the highest scoring targets undergo the largest

down-regulation (Fig 4F, dotted lines), as expected. Similar

patterns of stronger down-regulation of top targets were also

apparent when we sorted targets based on their sensitivity to the

miRNA reflected in the AC
F parameter (Fig 4F, dashed lines).

However, the best indicator of the degree of down-regulation of a

predicted target was its inferred KM (Fig 4F, full lines). This could

indicate that the inferred KM values are dominated by kcat, the rate

of target degradation when complexed to the miRNA, while the

rates of miRNA–target association and dissociation vary less

between targets. Finally, we examined what features of the

predicted miRNA binding site were most informative for the AC
F ,

KM and fold change of the target (Appendix Fig S5B). For this, we

selected only the 231 targets with a single binding site (for either

of the miRNAs), to ensure that the site context effects could be

attributed unambiguously. Consistent with prediction models being

trained to predict mRNA level changes upon miRNA transfection,

the prediction scores correlate best (in absolute value) with the

fold change of the predicted targets in cells with high miRNA

expression compared with low miRNA expression. Measures

related to the A/U content in the vicinity of sites and their relative

location in 30 UTR are most predictive for AC
F and KM, whereas the

degree of evolutionary conservation is most informative for the

fold change of the target.

A B C

D E F

Figure 4. Parameters describing the response of individual targets to changes in miRNA expression.

A, B Histograms of ACF (A) and KM (B) log2-values of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets, inferred from the i199 cell line. The lines indicate the
best-fitting Gaussian distributions.

C Response of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets to the miRNAs in i199 cells. Targets were selected based on ACF (dashed lines) or KM (full
lines) values, targets with low values of the respective parameters are shown in strong color, and those with high values are shown in faded colors. Twenty targets
were summed up for each category. Dots show the point where the targets have undergone ½ of their maximal down-regulation.

D Scatter plot of log2 ACF values inferred for individual targets from the i199 and i199-KTN1 cell lines. Shown are also Pearson’s correlation coefficients and
corresponding P-values.

E Scatter plot of log2 KM values inferred for individual targets from the i199 and i199-KTN1 cell lines. Shown are also Pearson’s correlation coefficients and
corresponding P-values.

F Average log2 fold change of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets as a function of the number of top targets considered, where predictions are
made based on either KM values (highest to lowest, full lines), ACF values (lowest to highest, dashed lines) or MIRZA-G-C scores (highest to lowest, dotted lines).
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Implications for the ceRNA function of miRNA targets

To evaluate the implications of our results for the debate about

the prevalence of competing endogenous RNAs (Denzler et al,

2014; Bosson et al, 2014), we used again our computational

model with realistic KM values and explored the effect of one

miRNA target (the ceRNA) on the expression of all other targets.

Target parameters were set as described in section “In silico anal-

ysis”, to cover the range inferred from various experimental

systems. We note that a ceRNA is only one species of RNAs

expressed in a cell and, for the vast majority of parameter values

that are in the range determined for other RNAs in the cell, the

ceRNA is predicted to cause expression changes that are very

low, below 1%. Nevertheless, we illustrate some of the more

interesting scenarios below. We set the decay rate of the free

ceRNA to 0.1/h, its kon = 0.2/h, similar to that of other targets,

and we varied the koff and kcat to achieve either low or high KM.

We then asked how much the expression of the pool of targets

with either low (less than 0.02 M) or high (greater than 2 M) KM

targets changes, when the ceRNA is expressed at different levels.

As shown in Fig 5, we found that highly expressed ceRNAs with

low KM can induce the up-regulation of low and especially high

KM targets. However, substantial up-regulation of other targets,

larger than a few percent, is only achievable when the ceRNA

has very high transcription rate and does not decay when in

complex with the miRNA. This is what one intuitively expects,

namely that a ceRNA can influence the expression of other

targets when its expression is comparable to that of all other

targets taken together. On the other hand, if the ceRNA has high

KM, its influence on the expression of other targets will be negli-

gible. These results strongly suggest that ceRNAs that were

observed so far are highly expressed transcripts that are relatively

resistant to degradation. These would be able to “sponge”

miRNAs from targets which the miRNA strongly destabilizes,

which have high kcat and high KM. Good candidates seem to be

the relatively recently described circular RNAs (Memczak et al,

2013; Hansen et al, 2013). However, given the multiple

constraints that a transcript has to fulfill to be able to function as

a ceRNA (very high transcription and/or stability, low KM), this

mode of regulation should be rare.

A B C

D E F

Figure 5. Predicted response of different types of miRNA targets to the induction of a ceRNA.

A–F A competing RNA with low (A, D) or medium (B, C, E, F) KM is transcriptionally induced at three different levels. (A–C) shows the response of targets with low KM
(< 0.02) to the transcriptional induction of the ceRNA, whereas (D–F) shows the response of targets that have high KM (> 2.0). The decay rate of the ceRNA when
unbound to the miRNA dceRNA was set to 0.1/h, whereas when bound to the miRNA, the ceRNA was assumed to be either stabilized and long-lived (kcat was set to
0.002/h) (A, B, D, E) or destabilized and shorter-lived (kcat was set to 0.2/h) (C, F).
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Discussion

Single-cell RNA sequencing has opened a new route to the quan-

titative understanding of cell behaviors. This technology has

been used to characterize transcript isoforms and gene expres-

sion (Shalek et al, 2013), to improve classification of cell types

(Buettner et al, 2015) and to discover new, particularly rare

types of cells (Grün et al, 2015). The relatively low rate of

mRNA capture and the large technical noise remain important

issues for single-cell sequencing, particularly with droplet-based

methods, which rarely use spike-ins for normalization (Ziegenhain

et al, 2018; Gao, 2018). However, developments such as unique

molecular identifiers (Grün et al, 2014) push the boundary

toward ever increasing accuracy. Although data analysis methods

are still in flux, in our study, we used known properties of

miRNA targets to gauge whether our processing of the data is

appropriate. For example, we showed that miRNA target down-

regulation computed from the inferred target levels in single-cells

is similar to the down-regulation inferred from bulk sequencing.

Single-cell analysis has also been used to infer parameters of

gene expression (see Munsky et al, 2015 for a recent review).

Although it was proposed that miRNAs buffer stochastic fluctua-

tions in gene expression between cells (Hornstein & Shomron,

2006), experimental data pertaining to expression of miRNA targets

in individual cells with different levels of miRNA expression are

very limited. Some studies estimated the effect of endogenous

miRNAs on the protein expression noise of target reporters with

multiple miRNA-complementary sites (Mukherji et al, 2011;

Schmiedel et al, 2015). The reduction in protein expression noise

has been related to the degree of miRNA-induced down-regulation,

which is generally limited, except for reporters that carry multiple

perfectly complementary miRNA binding sites in their 30 UTR. Addi-
tional studies are needed to evaluate the extent to which miRNAs

regulate the expression noise of their targets in their native context

(see also Schmiedel et al, 2015). Target reporters have also been

used to investigate whether miRNAs induce correlations in the

expression levels of their targets (Bosia et al, 2017). However, how

endogenous miRNA targets simultaneously respond to miRNA

induction in individual cells is insufficiently understood, leading to

ongoing debates about the influence that one target can have on the

expression of others.

In this study, we developed a methodology to characterize the

regulatory effects of a miRNA on its hundreds of targets in single-

cells. We constructed an experimental system in which the expres-

sion of a miRNA precursor can be induced with doxycycline

together with that of GFP from a bidirectional promoter. This system

was initially tested with two protein-coding genes, one for the nerve

growth factor and the other for eGFP, which showed good, though

not perfect correlation at single-cell level (Bornkamm et al, 2005).

In our case, absolute quantification of the miRNA and GFP mRNA

in cell populations indicated that expression of the two RNAs was

highly correlated in response to doxycycline induction, and we thus

used the GFP mRNA as a proxy for the miRNA. It is likely that a

direct measurement of miRNA expression in the cells whose mRNAs

are sequenced would further increase the accuracy of the results of

our model, and we expect the technology to become available in the

near future. We showed that this system exhibits predicted behav-

iors such as a peak in target noise as well as a peak in the

correlation of target levels, in the region of maximal sensitivity to

the miRNA. The construct can be easily modified to enable indu-

cible expression of other miRNAs. We further developed a method-

ology for the variational fitting of Michaelis–Menten-type constants

(KM) characterizing individual miRNA targets. This method takes

advantage of the variability in transcriptional activity that leads to

variability in miRNA expression levels between cells. For the first

time, we have uncovered the hierarchy of targets of a miRNA,

defined by the miRNA concentrations at which these targets respond

within the context of all other targets in the cell as well as by the

Michaelis–Menten-type constants. We found that high KM targets

undergo the largest down-regulation, indicating that this parameter

reflects primarily their kcat, the rate of decay in the presence of the

miRNA. Some targets were particularly sensitive to the miRNA,

requiring relatively low miRNA concentrations to respond and

having reproducibly low AC
F values. Their higher prediction scores

and enrichment in DNA-binding factors suggest that these are proto-

typical miRNA targets (Gruber & Zavolan, 2013). Simulations indi-

cate that targets with low KM and low AC
F values could sequester the

miRNA from other targets if they are highly expressed and do not

decay substantially when they interact with the miRNAs. Current

approaches for studying miRNA–target interactions that measure

mRNA level changes upon miRNA overexpression to uncover the

most relevant targets likely overlook these targets. Thus, it would

be interesting to apply our approach to systems in which functional

ceRNAs have been reported (Poliseno et al, 2010; Cesana et al,

2011; Cheng & Lin, 2013). Interestingly, early analyses of miRNA

and target expression found that many miRNA targets are expressed

at relatively high level in the tissue in which the miRNA is

expressed (Farh et al, 2005). However, this has been attributed to

miRNAs optimizing the protein output of their targets rather than

entirely suppressing it. Our analysis also suggests that targets with

low AC
F , which bind the miRNAs but do not undergo substantial

down-regulation in response to it, could impose a threshold for

miRNA-dependent regulation, which would otherwise affect a large

fraction of the transcriptome.

To demonstrate the robustness of our approach, we have

inferred parameters of individual targets from two closely related

cell lines. However, it is likely that the sensitivity of a target to

miRNA regulation is context-dependent (Erhard et al, 2014).

Because we wanted to map the parameters of miRNA–target inter-

action in a native context of mRNA expression, we induced the

miRNA expression from an exogenous construct in HEK 293 cells.

Although a large number of studies of miRNA-dependent gene

regulation have similar designs, it remains possible that the “true”

targets of the miRNA are not naturally expressed in the cell type in

which the experiment is carried out. To fully address this possibil-

ity, one would perhaps have to progressively remove a highly

abundant, cell type-specific miRNA, which would be more chal-

lenging than inducing miRNA expression. miR-122 in liver cells

could be a good candidate for this type of experiment (see also

Denzler et al, 2014).

The miRNA target parameters that we inferred in our study will

enable an improved understanding of the dynamics of networks

containing many competing miRNA targets. Furthermore, the

approach can be easily extended to RNA-binding protein regulators

of mRNA stability as well as to other types of regulators such as

transcription factors.
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Materials and Methods

A model to describe the dynamics of miRNA targets

We used the model from equation (1) in the main text and also shown

below, which considers M targets of a miRNA, each being described

by a transcription rate ai, decay rate di, rate of binding the Ago-

complexed miRNA koni
, rate of dissociating from this complex koffi and

rate of degradation when in the complex kcati . With mi being the

concentration of the free target, Ami
the concentration of the miRNA-

bound target, and A the total concentration of Ago-miRNA complexes,

we have the following system of 2M differential equations

@miðtÞ
@t

¼ ai � dimiðtÞ � koni
miðtÞ A�

XM
j¼1

Amj
ðtÞ

 !
þ koffiAmi

ðtÞ

@Ami
ðtÞ

@t
¼ koni

miðtÞ A�
XM
j¼1

Amj
ðtÞ

 !
� koffiAmi

ðtÞ � kcatiAmi
ðtÞ:

(1)

Denoting the total concentration of mRNA i (either free or bound

to the miRNA) by Ti and summing the two equations corresponding

to mRNA i, the dynamics of Ti is described by

@TiðtÞ
@t

¼ ai � dimiðtÞ � kcatiAmi
ðtÞ; (2)

or, in terms of the fraction fi of molecules of mRNA i that are

bound to miRNAs,

@TiðtÞ
@t

¼ ai � dið1� fiÞTiðtÞ � kcati fiTiðtÞ: (3)

Defining the total concentration of mRNA i when no miRNA is

present as T0
i ¼ ai

di
and when the miRNA is in high excess as T1

i ¼ ai
kcati

,

we obtain the total concentration of mRNA i at a steady state as

T�
i ¼ ai

dið1� fiÞ þ kcati fi
¼ T0

i

1þ fi
T0
i

T1
i
� 1

� � : (4)

Note that the concentration of the miRNA is reflected in the frac-

tion of bound targets. In our experimental system, we vary the

expression of the miRNA from very low to very high levels and we

can therefore estimate T0
i and T1

i . However, the fraction of mRNA i

that is bound to the miRNA depends not only on the constants of

interaction of this mRNA with Ago-miRNA complexes, but also on

all other targets that are present in the system. To determine the

interaction constants, we first derive for each mRNA i the fraction fi
that is bound to the miRNA, as follows. At equilibrium, we have

mikoni
AF ¼ Ami

koffi þ kcati
� �

; (5)

mi

Ami

¼ 1� fi
fi

¼ koffi þ kcati
koni

AF
; (6)

and thus

fi ¼ 1

1þ KMi

AF

; (7)

with the Michaelis–Menten parameter defined as KMi
¼ koffiþkcati

koni
.

Considering all cells j 2 f1; . . .;Ng, each with a different concentra-

tion of free Ago-miRNA complexes AFj , and substituting fi in equa-

tion (4), we obtain

Tji ¼ T0
i

1þ 1

1þKMi
AFj

T0
i

T1
i
� 1

� � ; (8)

where Tji is the total concentration of mRNA i in cell j, which can be

computed from the measured target levels. We isolate the ratio
KMi

AFj

and rewrite

T0
i

T1
i
� 1

T0
i

Tji
� 1

� 1 ¼ KMi

AFj

(9)

or equivalently, in vector form, substituting the left-hand side of the

equation by ~T,

~T ¼ A�1
F KM : (10)

Here, KM is a (1 × M) matrix of Michaelis–Menten constants for

individual mRNAs, A�1
F is a (N × 1) matrix of free Ago-miRNA

complexes in individual cells, and ~T is a (N × M) matrix of expres-

sion levels of individual mRNAs in individual cells. ~T can be viewed

as a Kronecker product of the two vectors KM and A�1
F written in a

more general form as

B ¼ xy>: (11)

Determining the vectors x and y becomes the reverse Kronecker

product problem and has a known solution satisfying

min
x;y

kB� xy>kF ; (12)

where k � kF denotes the Frobenius norm. The solution is obtained

from the singular value decomposition (SVD) B ¼ URV> as

xi ¼
ffiffiffiffiffiffiffi
R11

p
Ui1; yi ¼

ffiffiffiffiffiffiffi
R11

p
Vi1: (13)

From equation (9), we see that the SVD provides us the solution

(AF, KM), up to a scaling factor a, aKM

aAF
¼ KM

AF
8a 2 <. In principle, it is

possible to determine the factor a, which explains the data best,

using the total concentration of Ago-miRNA complexes A in all

cells.

Fitting the vectors AF and KM on data generated from simulations

of model (1), we found that the correlation of the fitted AF with the

input value was significantly higher than for KM. This is explained

by the fact that we use the total concentration of the miRNA in the

cells to sort the cells and smoothen the mRNA expression. AF being

a monotonic, strictly increasing, continuous function of A, smooth-

ing the data along the cell dimension (i.e., along the j index in equa-

tion (8)) leads to a reduction in noise in the direction of the miRNA

levels AF but not in the mRNA dimension KM. Therefore, the vector

AF is inferred more precisely compared to KM. Using the more

precisely inferred AF values and averaging over cells, we can
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increase the precision of KMi
values; relation (10) always holds, and

after fitting, we use the values of AF to compute the values KMi
by

averaging AFj
~Tji over all cells j ¼ 1. . .N

KMi
¼ 1

N

XN
j¼1

AFj
~Tji; j ¼ 1; . . .N: (14)

We define AC
Fj
the concentration of free Ago at which the target

will be exactly halfway between T0
i and T1

i .

T0
i

1þ 1

1þKMi

AC
Fj

T0
i

T1
i
� 1

� � ¼ T0
i þ T1

i

2
) AC

Fj
¼ KMi

T0
i

T1
i

:

In silico analysis

Stochastic simulations based on equation (1) were used to verify

the solution obtained in equation (8). Stochastic simulations were

performed using StochKit v.2.0.11 (Sanft et al, 2011) with a tau-

leaping algorithm. For each in silico cell, six simulations of length

100,000 (arbitrary time units) were carried out to ensure conver-

gence. The first 10,000 steps were considered the “burning phase”

and were discarded before the analysis. Means and standard devia-

tions were calculated from the values obtained in the independent

simulations.

To test the KM inference method, we constructed an in silico data

set as follows. We considered a regulatory network of 300 miRNA

targets. Each target was characterized by parameters ai, di, kcati ,

koni
, koffi , whose values were assumed to be in the ranges provided

by our previous literature survey (Hausser & Zavolan, 2014). For

each target, we chose a set of parameters from log-normal distribu-

tions, which are shown in Appendix Fig S4. Similar to the experi-

mental data set, we considered 4,000 virtual cells, each with a

distinct concentration of free Ago-miRNA complexes, chosen from a

uniform distribution on the log2 range of �40 to 14, such as ~50%

of cells end up with no miRNA expression, as observed in the exper-

iment. The expression of all targets as a function of the miRNA

abundance in these virtual cells is presented in Fig 3A. Note

however that in the experimental system, we could not measure

miRNA levels but rather the copy number of the GFP mRNA, and

thus, in comparing the response of targets in the in silico and experi-

mental systems, the x-axes differ, being the miRNA level for the

in silico data and the GFP mRNA level for the experimental data.

Interestingly, the miRNA-to-GFP mRNA conversion factor corre-

sponds well with the miRNA:GFP mRNA ratio of 4–8 that is appar-

ent from the qPCR data (see also Fig 1). Each target starts to decay

at a specific threshold, depending on its parameters of interaction

with the miRNA and the effective miRNA concentration, which

depends on the other targets as well. To complete our in silico data

generation, we added log-normal noise to the analytically computed

expression levels of the targets (see Fig 3C).

To focus on cells where the miRNA targets responded most sensi-

tively to the miRNA, we started with the selection of single-cells

from which to construct the matrix ~T. T1
i and T0

i were calculated

from about 200 in silico cells with the highest and 1,600 cells with

the lowest concentration of miRNA, numbers similar to these in the

experimental system. We analyzed the derivative of the sum of log2

target levels in function of miRNA expression and selected the cells

where the gradient was lower than �0.01 (Fig 3B). Cells with target

expression values very close to T0
i or T1

i were filtered out to avoid

instabilities caused by division by small numbers (see equation (9)).

Next, we applied a smoothing procedure to ensure that at intermedi-

ate miRNA expression, the Tji level of targets i in cells j was strictly

in the range (T1
i ; T0

i ; see Fig 3C). We started by replacing the

expression level of a given target in a given cell with the mean over

the 50 cells with miRNA expression level closest to that in the refer-

ence cell. In a second pass, for the smoothed Tij values outside of

the (T1
i ; T0

i ) range, we computed again a running mean starting

with a window size of ten and discarding iteratively the strongest

outliers until the mean value Tij within each window was within the

(T1
i ; T0

i ) range. For the windows where this procedure did not leave

any points, we increased the size of the second-pass window locally,

repeating the pruning procedure until all the Tij values were within

the (T1
i ; T0

i ) range. To ensure the stability of the SVD, we adjusted

the boundary of the T intervals computed from the data by a small

safety margin c (i.e., T0
i � c[Tij [T1

i þ c, c = 10% of T0
i � T1

i for

each gene).

We assessed the accuracy of the fitting procedure by comparing

the inferred AC
Fj
and KMi

parameters with those that were used in the

model that generated the in silico data. In spite of very high noise

(Fig 3C), there was a good correlation between the fitted and input

values of the parameters, as shown in Fig 3D. In addition, the corre-

lation of parameters observed when simulating two independent

“samples”, with two independent noise applications, was also rela-

tively high (Fig 3D). We also observed that the range of inferred

KMs is narrower than the range of input KMs.

Having validated our inference procedure on in silico data, we

applied it to the experimental data.

Cell culture

We used a human epithelial kidney (HEK) 293 cell line with indu-

cible expression of hsa-miR-199a (i199) and a derivative of this cell

line (i199-KTN1) in which a Renilla luciferase coding sequence

followed by the 30 UTR of the kinectin 1 gene (KTN1) was inserted

in the genome. These cell lines have been introduced in a previous

study (Hausser et al, 2013). Cells were grown in DMEM with 10%

FCS supplemented with Pen-Strep and Hygromycin for plasmid

integrity. For all the experiments, unless otherwise mentioned, cells

were stimulated with doxycycline at concentrations of 1, 0.3, 0.1,

0.03, 0.01, 0.003, 0.001, 0.0003, or 0 lg/ml, for 8 consecutive days.

During this period, fresh medium with doxycycline was provided

every 24 h and cells were split every 72 h to prevent the slow-down

growth in confluent cultures (Ghosh et al, 2015).

Single-cell mRNA sequencing

Cell capture, GEM Barcoding, and cDNA synthesis

Cells were detached with Accutase� Reagent (Gibco, Life Technolo-

giesTM). The cell number was determined with the CountessTM Auto-

mated Cell Counter (InvitrogenTM) following manufacturer’s

instructions. Cells that were induced with different doxycycline

conditions (see section above) were pooled together in equal

proportions (1,500 cells/ll of each). The cells were finally resus-

pended in PBS containing 0.04% BSA at a target concentration of
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700 cells/ll after straining with a cell strainer to avoid clumps. This

is performed so as to partition the input cells across tens of thou-

sands of droplets (GEMs) for the purpose of lysis and barcoding.

GEM Generation and Barcoding was performed according to manu-

facturer’s instructions (ChromiumTM Single-Cell 30 Reagent Kits v2,

Part No-120234, 10x Genomics). Subsequently, reverse transcription

(RT) and post-GEM-RT cleanup were done exactly as per manufac-

turer’s protocol. The purified GEM-RT product was then pre-ampli-

fied for 10 cycles, purified with SPRI select (Beckman Coulter), and

analyzed on a High Sensitivity Bioanalyzer.

Library preparation and sequencing

Library construction including Fragmentation, End Repair, and A-

tailing was performed as per manufacturer’s protocol (ChromiumTM

Single-Cell 30 Reagent Kits v2, Part No-120234, 10x Genomics).

Subsequently, the fragments were purified with a double-sided size

selection with SPRI select (Beckman Coulter) and ligated to adap-

ters. After ligation, the samples were purified once more with SPRI

select prior to the steps of sample index PCRs. The end product was

finally obtained with another round of double-sided SPRI selection

of the PCR. Quality control of the libraries was done on an Agilent

Bioanalyzer High Sensitivity Chip. Libraries were then sequenced

(Paired End) on a NextSeq 500 system [NextSeq 500/550 High

Output v2 Kit (75 cycles)], and the reads were obtained according to

the following parameters:

(i) Seq Read 1, 26 cycles;(ii) Seq Read 2, 58 cycles;

(iii) IDX Read, 8 cycles;

(iv) Illumina base-calling software version: bcl2fastq v2.19.0.316;

and

(v) Demultiplexing software version: cellranger mkfastq (2.0.0).

The library preparation and sequencing were performed at the

Genomics Facility Basel. The sequencing data have been deposited

to the Sequence Read Archive (www.ncbi.nlm.nih.gov/sra/) under

the accession number SRP067502.

Computation of the coefficient of variation of target expression

Given the set of cells sorted by their GFP expression, we calculated

the coefficient of variation (CV, standard deviation/mean) of a speci-

fic target as follows. We traversed the list of cells from those with

lowest to those with highest GFP expression, and for each cell, we

considered the 199 cells with closest GFP level to the reference cell

and calculated the CV of each target. We then log2-transformed the

CV of individual targets and determined the mean (and standard

error) over all 100 selected low AC
F targets. We applied the same

procedure to all non-targets (genes targeted neither by hsa-miR-199-

3p nor by hsa-miR-199-5p). We then subtracted the log2 mean CV of

targets and non-targets, repeated this procedure for the entire GFP

expression range and show the normalized CV as a function of the

log2 GFP level in the reference cell.

PAGODA variance normalization

The i199 and i199-KTN1 single-cell data sets were divided into 100

cell batches, grouped according to GFP expression level in the cells.

A random sample of 100 cells was subsampled from the cell popula-

tion with no GFP expression. Next, the PAGODA data preparation,

error modeling, and variance normalization functions were used

with standard parameters, on the raw data sets, as specified in the

PAGODA tutorial, http://hms-dbmi.github.io/scde/pagoda.html.

The normalized variance used for the analysis is shown in

Appendix Fig S3B and E.

Computation of the pairwise correlation coefficients of target

expression levels

Given a population of cells sorted by their GFP expression, we

calculated the Pearson correlation of log2 expression levels for all

pairs of 100 targets, in function of GFP level (as for CV, average

values were computed over 199 cells with GFP expression closest to

that in the reference cell). Thus, we started from those cells with

lowest GFP expression and moved by one cell at a time to cells with

the highest GFP expression, computing the mean correlation coeffi-

cient (and standard error of the mean) over all pairs of genes within

a cell. We repeated the procedure for 50 evaluations of 100 random

genes that were not predicted as targets. Finally, we divided the

mean correlation coefficients of targets and non-targets and shown

this as function of GFP level in the cell.

Computation of GO enrichment

The hyperGTest function from GOstats package (R Bioconductor

repository) was used to find enriched GO terms. The maximum

“PvalueCutoff” for reporting was set to 0.1, “conditional” to

“TRUE”, and “testDirection” to “Over”.

Cell population mRNA-Seq

Total RNA isolation

Total RNA was extracted with TRI Reagent� (Sigma-Aldrich) follow-

ing manufacturer’s instructions. Briefly, cells were detached from

the plate by 5-min incubation with Trypsin–EDTA solution (T3924;

Sigma-Aldrich), conditioned media were added, and whenever

necessary, cells were counted with a CountessTM Cell Counter

(Thermo Fisher Scientific). A defined number of cells were pelleted

and either snap-frozen for future use or resuspended right away in

TRI Reagent � (#T9424; Sigma-Aldrich). Total RNA was resus-

pended in nuclease-free water (#AM9937; Thermo Fisher Scientific).

Samples were always kept on ice or at �80°C.

mRNA purification

To select the Poly(A)+ RNA, a double purification with Dynabeads�

Oligo (dT)25 (Dynabeads� mRNA DIRECTTM Kit, AmbionTM) was

performed, using the manufacturer’s manual and recommendations.

Since the starting material was purified total RNA, only buffer B

was used for the washing steps.

Library preparation

Purified mRNA was fractionated with alkaline hydrolysis buffer at

95°C for 5 min. Fractionated mRNA was selected with RNeasy

MinElute Cleanup Kit (Qiagen, Inc.). Purified mRNA fragments were

dephosphorylated with FastAP (Life Technologies, Inc.) and 50-
phosphorylated with PNK (Life Technologies, Inc.) following manu-

facturer’s instructions for optimal conditions of the enzymatic reac-

tion. After another round of RNeasy MinElute Cleanup Kit (Qiagen,

Inc.), a pre-adenylated DNA adapter (50-TGGAATTCTCGGGTGC
CAAGG-30) was ligated to the 30 end of the mRNA fragments at 4°C

overnight using the T4 RNA ligase 2, truncated K227Q (New

England Biolabs, Inc.), in 1× T4 RNA ligase buffer (no ATP) and

15% DMSO. The next day, after another round of RNeasy MinElute

12 of 15 Molecular Systems Biology 14: e8266 | 2018 ª 2018 The Authors

Molecular Systems Biology miRNA target hierarchy from single cells Andrzej J Rzepiela et al

http://www.ncbi.nlm.nih.gov/sra/
http://hms-dbmi.github.io/scde/pagoda.html


Cleanup Kit (Qiagen, Inc.), an RNA adapter (50-GUUCAGAGUUCUA
CAGUCCGACGAUC-30) was ligated to the 50 end of the RNA frag-

ments at 4°C overnight using the T4 RNA ligase 1 (Life Technolo-

gies, Inc.), in 1× T4 RNA ligase buffer (1 mM ATP) and 15% DMSO.

Next day, after another round of RNeasy MinElute Cleanup Kit

(Qiagen, Inc.), reverse transcription was performed using SuperScript

IV (Invitrogen, Inc.) and RTP primer (50-CCTTGGCACCCGAGAATT
CCA-30) following manufacturer’s instructions. cDNA was then

amplified by 12 cycles of PCR using NEBNext� High-Fidelity 2× PCR

Master Mix (NEB, Inc.) and Illumina TruSeq� Small RNA PCR

compatible primers.

Library sequencing

The library was sequenced in the Genomics Facility Basel, on Illu-

mina HiSeq 2000 or HiSeq 2500 instruments using TruSeq compati-

ble primers. Reads of 50 nt were generated along with 8 nt index

reads corresponding to the sample-specific barcode.

Read mapping and data preprocessing

Reads from single-cell and cell population mRNA-Seq were mapped

to the transcriptome (Ensembl, GRCh38.rel88) with Cellranger-

1.3.1, the software provided by 10x Genomics to map the reads

produced by the ChromiumTM Single-Cell 30 solution. Cellranger

processes the cell and transcript barcodes, uses STAR 2.5.1b to align

the reads, and counts the number of transcripts observed from each

gene to provide a table of unique molecular identifier (UMI) counts

per gene and per cell. The sequence of the eGFP mRNA that was

expressed from the exogenous pRTS1 vector was added to the tran-

scriptome before mapping. After summing the counts for all

Ensembl entries for a given Entrez gene ID, the gene counts were

normalized to have in each cell one million counts. Next, a pseudo-

count, 0.001, was added to each gene (and 1.0 to GFP gene for clar-

ity of visualization). In all of the analyses, genes with very low final

estimated expression (mean TPM < 7 across cells) were discarded.

Targets selection

If not specified otherwise, we used in analyses the 300 highest prob-

ability targets predicted by MIRZA-G-C (Gumienny & Zavolan, 2015)

that were down-regulated at least 8% at the maximum miRNA

concentration [log2 (T1
i =T0

i ) < �0.12]. This selection applied to

both miRNAs and both cell lines.

mRNA and miRNA qPCR

Cells were induced with various concentrations of doxycycline (as

indicated in the figure) for 8 days. After counting the cells, total RNA

was extracted with TRI Reagent� (Sigma-Aldrich) following manu-

facturer’s instructions. cDNA of the targets of interest was generated

using SuperScript III (InvitrogenTM) following manufacturer’s proto-

col. For miRNA assays, reverse transcription and PCR of either non-

induced or Dox-induced cells were performed following the

TaqMan� Small RNA Assays quick reference protocol (Life Tech-

nologiesTM) with 100 ng of total RNA. For estimation of relative

miRNA quantities, hsa-miR-16 levels were used as an invariant

control. For reverse transcription of GFP mRNA, the following linear

DNA primer was used: EGFP_R RT TaqMan, 50-TGTCGCCCTC
GAACTTCAC-30. To generate a cDNA copy of hsa-miR-199a-5p,

a stem-loop primer system from Life TechnologiesTM was used (Assay

ID-000498). All qPCRs were performed and read in StepOnePlusTM

Real-Time PCR Systems (Life TechnologiesTM). To obtain absolute

quantification data, standard curves for GFP and hsa-miR-199a-5p

were also included. GFP mRNA was generated by in vitro transcrip-

tion with pcDNA3-eGFP linearized vector and RiboMAXTM Large

Scale RNA Production System—T7 (Promega, Co.) following manu-

facturer’s instructions. Molarity was estimated taking into account

mass concentration (Qubit� RNA HS Assay Kit, Life TechnologiesTM),

average length (Agilent RNA 6000 Pico Kit, Agilent Technologies,

Inc), and fragment sequence, with the following formula: molar-

ity = mass/(length × mass RNA base). The hsa-miR-199a-5p miRNA

(50-CCCAGUGUUCAGACUACCUGUUC-30) was ordered from Micro-

synth AG, and the molarity was calculated the same way. Absolute

molecule numbers were obtained utilizing the StepOneTM Software

(Life TechnologiesTM).

CLIP-Seq

CLIP-Seq was performed as described in Jaskiewicz et al (2012)

with few modifications. Ago2-CLIP in i199 cells was performed

using Ago2 antibody-containing serum (kind gift from Prof. Gunter

Meister, University of Regensburg, Germany) crosslinked to 100 ll
of Dynabeads Protein G (#10003D; Thermo Fisher Scientific).

TURBO DNase (#AM2238; Thermo Fisher Scientific) treatment of

UV-crosslinked cell lysates was followed by a brief treatment with

RNase T1 (#EN0541; Thermo Fisher Scientific) for the specific

recovery of Ago2-protected RNA fragments. Subsequently, antibody-

bound beads were incubated with the cell lysate for 3 h at 4°C for

precipitation. Furthermore, the beads were washed, treated again

with RNase T1, dephosphorylated, and labeled with radioactive

ATP [c-32P] to facilitate purification of the required fragments from

a nitrocellulose membrane filter following a standard SDS–PAGE

electroelution process. The recovered RNA fragments were ligated

to a pre-adenylated 30 adapter, annealed to the RT primer, and

subsequently ligated to the 50 adapter prior to a step of reverse tran-

scription with SuperScriptTM III Reverse Transcriptase (#18080044;

Thermo Fisher Scientific). In the finals steps, a PCR amplification of

the reverse-transcribed cDNA derived from the Ago2 immunoprecip-

itate was followed by size selection of 140–180 nucleotide long frag-

ments in native PAGE and sequenced after purification.

Data availability

The data sets produced in this study are available in the following

databases:

• RNA-Seq, scRNA-Seq, and CLIP-Seq data: NCBI Sequence Read

Archive with accession SRP150046 (https://www.ncbi.nlm.

nih.gov/Traces/study/?acc=SRP150046).

Expanded View for this article is available online.
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