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ABSTRACT
Infestation of Triticum (wheat) plants by their pest Rhopalosiphum maidis (corn leaf aphid) causes severe
vegetative damage. Despite the agro-economic importance of wheat, the metabolic diversity of Triticum
turgidum (tetraploid wheat) in response to aphid attack has not been sufficiently addressed. In this
study, we compared the metabolic diversity of two tetraploid wheat genotypes, domesticated and wild
emmer. The plants were grown in a control growth room and infested with aphids for 96 h. Our
untargeted metabolic analysis performed on plants with and without aphids revealed massive differ-
ences between the two genotypes. The targeted metabolic analysis highlighted the differences in the
biosynthesis of phytohormones. The aphid progeny was lower in the cultivated durum wheat than in
the wild emmer wheat. Overall, these observations emphasize the potential of using the natural diversity
of wheat species to better understand the metabolic responses to pest damage.
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Introduction

Wheat (Triticum) is one of the world’s most cultivated small
grain crops, with 728 million metric tons harvested from
more than 220 million hectares annually. This staple crop
provides 20% of the world’s calorie and protein
consumption.1 However, biotic stresses, such as pathogen
infection and herbivore feeding, can reduce yield dramatically.
The introduction of insect resistance through plant breeding
is a powerful tool to reduce the aphid population. However,
breeding for resistance and the deployment of aphid-resistant
wheat cultivars are not yet fully established practices. By
identifying the metabolites that are responsible for defense
against insect infestation, the development of more informed
resistance breeding strategies can occur.2 A major approach to
improving agriculturally important traits involves screening
the natural variation (wild and domesticated genotypes)
within the same plant species, which potentially exposes new
alleles and markers for crop improvement.3,4 Indeed, the wild
emmer wheat gene pool harbors a rich allelic repertoire for
improving essential agronomical traits,5 and previous studies
used the natural variation between Triticum genotypes to
discover the genetic elements related to biotic resistance.6–8

Aphids (Hemiptera: Aphididae) are piercing/sucking insects
that cause damage to plants by acquiring phloem nutrients, thus
reducing growth, photosynthetic efficiency and yield.9–12 These
insects also act as extremely efficient vectors of several plant
viruses that cause economically significant diseases in cereal
crops and forage grasses.13,14 Although there are approximately

5,000 species of aphids across the globe, only a handful – com-
monly termed “cereal aphids” – pose a threat to cereal
production.15,16 The most common cereal aphid species include
the grain aphid (Sitobion avenae Fabricius), the bird cherry-oat
aphid (Rhopalosiphum padi L.), the corn leaf aphid
(Rhopalosiphum maidis Fitch), the Russian wheat aphid
(Diuraphis noxia Kudjumov), the Indian grain aphid (Sitobion
miscanthi Takahashi), the rice root aphid (Rhopalosiphum
rufiabdominalis Sasaki), the apple grass aphid (Rhopalosiphum
insertum Walker), and the greenbug aphid (Schizaphis grami-
num Rondani).17 Research conducted since the 1970s has led to
the identification of wheat cultivars with resistances to varied
aphid species. Nevertheless, new biotypes of these pests, which
overcome single-gene resistance mechanisms, have
emerged.18,19 Moreover, aphid and other pest populations are
expanding into new regions due to climate change, which further
emphasizes the need for an in-depth investigation of plant
defense mechanisms.

In this study, we explore the effect of corn leaf aphid (R.
maidis) feeding on two tetraploid wheat genotypes: i) a
durum wheat cultivar (Triticum turgidum ssp. durum)
named Svevo and ii) a wild emmer genotype, the progeni-
tor of the most economically important wheat varieties
(Triticum turgidum ssp. dicoccoides), named Zavitan. Both
genotypes have been intensively investigated and
sequenced, and they serve as a source for discovering resis-
tance genes and markers.20,21 Upon aphid attack, the tetra-
ploid genotypes demonstrated massive metabolic variation
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(Figure 1). Evaluating these genotypes’ resistance to aphids
by measuring aphid progeny revealed that Svevo is more
resistant than Zavitan (Figure 2). We quantified the levels
of several selected metabolites by targeted analysis, includ-
ing phytohormones such as jasmonic acid (JA), auxin
(IAA), fatty acids (oleic-, linoleic- and linolenic acids) and
the benzoxazinoid degradation product, 6-methoxy-benzox-
azolin-2-one (MBOA). Based on this analysis, we propose a
cross-talk between defense and phytohormone responses.-
22,23 Additionally, these metabolites were significantly
affected by aphid feeding, and their levels altered in

different manners in the two wheat genotypes (Figure 3).
Our results indicate that the differences in the global meta-
bolic profiles and levels of resistance to aphids could be due
to the biosynthesis of defense metabolites and the involve-
ment of phytohormone regulation and signaling. Moreover,
we hypothesize that during the domestication of the durum
tetraploid wheat, this genotype gained alleles responsible
for aphid resistance. Our study suggests the need to further
explore this metabolic diversity in wheat under controlled
growth conditions and in the field to improve plant resis-
tance and to elucidate genetic sources for breeders.

Figure 1. An untargeted metabolic overview of R. maidis feeding on two wheat genotypes. A) PCA plot of negative (2,324 ESI) and positive (2,138 ESI) mass signals,
filtered using the Metaboanalyst software. B) Venn diagram illustrating the number of significantly different mass signals comparing the untreated control and aphid
infestation between wheat genotypes (P value < 0.05 FDR and fold change > 2 or < 0.5). Untreated-Zav, fold change > 2 relative to Svevo; untreated-Sve, fold
change > 2 relative to Zavitan; aphid-Zav, fold change > 2 after treatment with R. maidis relative to Svevo; and aphid-Sve, fold change > 2 after treatment with R.
maidis relative to Zavitan.

Figure 2. R. maidis progeny production of cultivated Svevo and wild emmer Zavitan wheats after 96 h of infestation. Mean ± SE (n = 6–7). P value < 0.05, Student’s t-test.
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Results and Discussion

To exploit the natural variation between wheat genotypes, we
selected two tetraploid wheat genotypes – Svevo and Zavitan.20

The 10-day-old seedlings were infested with 10 adult corn leaf
aphids (R. maidis) using a whole cage bioassay.10,24 After 96 h of
aphid infestation, the progeny (nymphs and adults) were
counted, and the tip (approximately 10 cm) of the second leaf
was harvested for metabolic profiling. First, we performed an
untargeted metabolic analysis using a liquid chromatography/
time-of-flight/mass spectrometry (LC/TOF/MS) platform. The
mass signal levels of both negative and positive ion modes were
used to conduct a principal component analysis (PCA;
Figure 1A). The results show that all the biological replicates of
each genotype were clustered together, which highlights the
reproducibility of the experiment. In addition, the PCA results
were grouped according to genotype and treatment. This indi-
cates that the metabolic and genetic diversity between the two
wheat genotypes is independent of the response to aphid feeding.

We evaluated the distribution of mass signals with sig-
nificant differences (P value ≤ 0.05, FDR adjusted) and at
least two-fold changes between the treated genotypes and
their untreated control, using Venn diagrams (Figure 1B).
A total of 405 (negative ion mode) and 89 (positive ion
mode) mass signals were significantly different between the
genotypes of the untreated plants. A higher number of mass
signals were modified by the aphid infestation: 760 negative
ion mode and 259 positive ion mode in total. Both the PCA
clustering patterns and the Venn diagrams reveal the massive
metabolic differences between Svevo and Zavitan.

We measured the R. maidis progeny production on Zavitan
and Svevo wheat genotypes using whole cage bioassays. The
analysis revealed that the cultivated wheat was more resistant to
R.maidis than thewild emmerwheat genotype (Figure 2).We also

performed a gas chromatography-mass spectrometry (GC-MS)
analysis to measure the effect of R. maidis feeding on several
molecules such as phytohormones, fatty acids, and a benzoxazi-
noid degradation compound. Out of the 18 detected metabolites,
six were significantly different between genotypes and/or treat-
ment groups (Figure 3). Levels of indole-3-acetic acid (IAA) were
reduced below detection levels in the Svevo genotype, and levels of
jasmonic acid (JA) increased predominantly in Zavitan. The fatty
acids, oleic-, linoleic- and linolenic acids, weremainly increased in
the Svevo background, relative to Zavitan, in response to aphid
feeding andwere not significantly altered in thewild emmerwheat
genotype. In addition, accumulation of the benzoxazinoid degra-
dation product 6-methoxy-benzoxazolin-2-one (MBOA) was
higher in Svevo than in Zavitan, and was reduced in both geno-
types after corn leaf aphid attack. Overall, these data reveal highly
significantmetabolic differences between the twowheat genotypes
at basal levels and also after aphid feeding (Figure 1). They also
demonstrate different accumulation patterns for the phytohor-
mones JA, IAA and benzoxazinoid degradation products, in a
manner that varies between the two genotypes (Figure 3).
Therefore, these metabolic differences may play a role in other
cellular functions besides defense and phytohormone regulation.

In summary, the two selected wheat genotypes display massive
metabolic differences that are potentially driven by the genetic
variation between cultivated and wild wheats. We propose to
further utilize these differences in order to understand wheat’s
defense mechanisms against corn leaf aphids and other herbi-
vores. We also hope to examine the metabolic and resistance
responses under different growth conditions, as well as in field
conditions. In addition, the new genome sequence of the wild
emmer wheat, coupled with a bi-parental mapping population,
will allow us to explore the genes and genetic markers involved in
the biosynthesis of these defense metabolites.

Figure 3. Plant phytohormones and their substrates produced in response to R. maidis feeding on the two wheat genotypes. MBOA, 6-methoxy-benzoxazolin-2-one;
IAA, auxin; JA, jasmonic acid. N. D., not detected. Different letters above bars indicate significant differences, P value < 0.05, ANOVA followed by Tukey’s HSD test
(n = 5–7).
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Methods

Plant growth conditions. The corn leaf aphid (Rhopalosiphum
maidis Fitch) colony was maintained on B73 maize plants as
previously described.24 Plants were grown in a Conviron
walk-in growth room at 23°C with a 16:8 h light: dark cycle
and 180 μmol m-2 s-1 light intensity.

Aphid bioassay. For bioassays measuring aphid progeny
reproduction, 10 adult R. maidis aphids were confined on
10-day-old plants with micro-perforated polypropylene bags
(15 cm × 61 cm; http://www.pjpmarketplace.com). Adults and
nymphs were counted after four days.10,24

Untargeted and targeted metabolite analysis. For analysis
of wheat metabolites, approximately 10 cm of leaf material
was collected from the second leaf tip. As a control, tissue
was caged without aphids and collected for metabolic analy-
sis. Samples were weighed, and all data were normalized
relative to the fresh weight. For liquid chromatography/
time-of-flight/mass spectrometry (LC/TOF/MS) non-targeted
metabolite assays, separation was performed using a Dionex
Ultimate 3000 UHPLC system with an Acclaim column
(Thermo Scientific), and metabolites were detected using a
quadrupole time-time-of flight mass spectrometer
(MicrOTOF-Q II; Bruker Daltronics) following the extrac-
tion method as previously described.10 Raw mass spectro-
metry data files were processed using the XCMS25 and
CAMERA26 software packages for R. Finally, the positive
and negative ionization data sets were transferred to
Microsoft Excel. For the targeted gas chromatography-mass
spectrometry (GC-MS) analysis, a previously described
method27,28 was used for quantification of metabolites in
leaf tissue. Samples were solvent-extracted, methylated, col-
lected on a polymeric adsorbent using vapor-phase extrac-
tion, and analyzed by GC/isobutane CI-MS using
d5-jasmonic acid (C/D/N isotopes Inc., Pointe-Claire,
Canada) and U-13C-18:3 (Cambridge Isotope Laboratories,
Inc., Tewksbury, MA, USA) as internal standards.28

Statistical analysis. Data for the principal component ana-
lysis (PCA) plot were normalized as previously described,29

and data were plotted using MetaboAnalyst 3.0 software.30

Venn diagrams were made using the Venny 2.1.0 drawing
tool http://bioinfogp.cnb.csic.es/). Statistical comparisons for
insect progeny (Student’s t-test) and metabolite targeted
analysis (ANOVA) were made using JMP Pro 12 (SAS;
www.jmp.com) and Microsoft Excel for figure
representation.
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