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Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation
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ABSTRACT
A mechanism participating in energy sensing and signalling in plants involves the regulation of sucrose
non-fermenting1 (Snf1)-related protein kinase 1 (SnRK1) activity in response to sugar availability. SnRK1 is
thought to regulate the activity of both metabolic enzymes and transcription factors in response to
changes in energy availability, with trehalose-6-phospate functioning as a signalling sugar that suppresses
SnRK1 activity under sugar-replete conditions. Sucrose supplementation increases the elongation of
hypocotyls of developing Arabidopsis seedlings, and this response to sucrose involves both the SnRK1
subunit KIN10 and also TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1). Here, we measured sucrose-
induced hypocotyl elongation in two insertional mutants of KIN10 (akin10 and akin10-2). Under short
photoperiods, sucrose supplementation caused great proportional hypocotyl elongation in these KIN10
mutants compared with the wild type, and these mutants had shorter hypocotyls than the wild type in the
absence of sucrose supplementation. One interpretation is that SnRK1 activity might suppress hypocotyl
elongation in the presence of sucrose, because KIN10 overexpression inhibits sucrose-induced hypocotyl
elongation and akin10mutants enhance sucrose-induced hypocotyl elongation.
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We reported recently the involvement of a sugar-signalling
mechanism in a pathway that causes hypocotyl elongation in
response to sucrose.1 Hypocotyl elongation in Arabidopsis
thaliana (Arabidopsis) seedlings is caused by cell expansion
within the elongating hypocotyl and represents an informative
experimental model to study signalling processes that regulate
development. In Arabidopsis, hypocotyl length is increased by
supplementation of the growth media with sucrose.2-9 We iden-
tified that the sugar- and energy-sensing kinase sucrose non-
fermenting1 (Snf1)-related protein kinase 1 (SnRK1) regulates
sucrose-induced hypocotyl elongation.1 Under short photoper-
iods, hypocotyls did not elongate in response to exogenous
sucrose in seedlings overexpressing the catalytic alpha subunit
of SnRK1, termed SNF1-RELATED PROTEIN KINASE1.1
(KIN10/AKIN10/SnRK1.1).1 We also found that TREHA-
LOSE-6-PHOSPHATE SYNTHASE1 (TPS1) is required for
sucrose-induced hypocotyl elongation under short photoper-
iods.1 TPS1 synthesizes the sugar trehalose-6-phosphate
(Tre6P), which is a potent inhibitor of SnRK1 activity.10 Tre6P
is thought to function as a signalling sugar that provides infor-
mation about cellular energy availability.10,11

Hypocotyl elongation in response to sucrose might be sup-
pressed in overexpressors of KIN10 (KIN10-ox) because SnRK1
activity is thought to inhibit growth and catabolism under condi-
tions of starvation,12-14 preventing seedlings from taking advan-
tage of the additional sugars.1 We reasoned that the converse
might be true when SnRK1 activity is low, as occurs under sugar-

replete conditions.10 To investigate this, we measured the elonga-
tion of hypocotyls in response to sucrose in two T-DNA mutants
of the KIN10 catalytic subunit of SnRK1 (GABI_579E09 or
akin1015, and SALKseq_093965, a new allele named here akin10-
2 for consistency) (Fig S1A). The full-length KIN10 transcript is
absent in these akin10 and akin10-2 T-DNA lines (Fig. S1B). In
the akin10 mutant, there is a partial loss of phosphorylation of
the SnRK1 target bZIP63, most likely due to reduced SnRK1
activity.15 The remaining phosphorylation of bZIP63 in akin10 is
likely due to KIN11 activity.15

Supplementation of wild type seedlings with 3% (w/v) sucrose
increased the hypocotyl length under short photoperiods but not
under long photoperiods (Fig. 1A, B), as we reported previously.1

Sucrose supplementation also increased the hypocotyl length of
two akin10 mutants under both short and long photoperiods
(Fig. 1A, B). Under short photoperiods, sucrose caused a greater
increase in hypocotyl length in akin10 (6.51 mm longer, 224%
increase) and akin10-2 (6.90 mm longer, 286% increase) com-
pared with the wild type (3.75 mm longer, 67% increase)
(Fig. 1A). This greater fold-change in hypocotyl length in the
akin10 mutants under these conditions is because the
mutants had significantly shorter hypocotyls than the wild type
in the absence of sucrose (Fig. 1A). Under long photoperiods,
sucrose supplementation induced hypocotyl elongation in akin10
mutants, which contrasted the wild type in which sucrose supple-
mentation did not increase hypocotyl length (Fig. 1B). We found
previously that sucrose supplementation can decrease the
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hypocotyl length of the Landsberg erecta background under long
photoperiods.1 but this did not occur in the Col-0 background
used here (Fig. 1B), suggesting that there is some variation
between accessions in this developmental response to sucrose.

Hypocotyls of akin10 and akin10-2 mutants were significantly
shorter than the wild type when cultivated in the absence of
sucrose on 0.5MS meda (4 h photoperiods, akin10 p < 0.001;
akin10-2 p < 0.001; 16 h photoperiods, akin10 p < 0.006;
akin10-2 p < 0.001). In addition to changes in phytohormone
signalling, the reduced hypocotyl elongation of akin10 mutations
might derive from altered seed quality,16 attenuated seedling
development as occurs in tps1 knockouts,17 altered circadian reg-
ulation,18 or altered carbohydrate utilization.12,19

The greater proportional increase in hypocotyl length that was
caused by sucrose in akin10mutants compared with the wild type
suggests that SnRK1 activity might contribute to suppression of
hypocotyl elongation in response to sucrose. This is because

KIN10 forms a catalytic subunit of SnRK1, and in the absence of
this catalytic subunit there was an increase in the magnitude of
sucrose-induced hypocotyl elongation. Although KIN10 and
KIN11 are thought to confer kinase activity to the SnRK1 com-
plex,12, 15 akin10 single mutants change the response of elongating
hypocotyls to sucrose (Fig. 1). This indicates that KIN11 cannot
completely replace KIN10 within the mechanisms underlying
sucrose-induced hypocotyl elongation. This is consistent with the
loss of SnRK1 kinase activity in the akin10 single mutant.15 An
alternative interpretation is that there is some suppression of hypo-
cotyl elongation in the akin10 mutants in the absence of sucrose,
and that this phenotype is lost in the presence of sucrose supple-
mentation (Fig. 1A). Under long photoperiods, sucrose does not
cause hypocotyl elongation in the wild type (Fig. 1B), which
appears to be due to a combination of photoperiod and daily light
input.1 In comparison, there was sucrose-induced hypocotyl elon-
gation in two akin10 mutants under long photoperiods. However,
under 16 h photoperiods sucrose induced a smaller increase in
hypocotyl length in the akin10 mutants than in akin10 mutants
under 4 h photoperiods. Therefore, as with the wild type,1 photo-
period and/or daily light input influence the magnitude of sucrose-
induced hypocotyl elongation in akin10 mutants. This suggests
that mechanisms additional to KIN10 activity within SnRK1 con-
tribute to the photoperiod/daily light input within the response of
elongating hypocotyls to sucrose. Such additional mechanisms
could include the circadian oscillator, phototransduction pathways,
and additional energy-sensing mechanisms.
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