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Abstract

Passenger flow prediction is important for the operation, management, efficiency, and reli-

ability of urban rail transit (subway) system. Here, we employ the large-scale subway smart-

card data of Shenzhen, a major city of China, to predict dynamical passenger flows in the

subway network. Four classical predictive models: historical average model, multilayer per-

ceptron neural network model, support vector regression model, and gradient boosted

regression trees model, were analyzed. Ordinary and anomalous traffic conditions were

identified for each subway station by using the density-based spatial clustering of applica-

tions with noise (DBSCAN) algorithm. The prediction accuracy of each predictive model was

analyzed under ordinary and anomalous traffic conditions to explore the high-performance

condition (ordinary traffic condition or anomalous traffic condition) of different predictive

models. In addition, we studied how long in advance that passenger flows can be accurately

predicted by each predictive model. Our finding highlights the importance of selecting proper

models to improve the accuracy of passenger flow prediction, and that inherent patterns of

passenger flows are more prominently influencing the accuracy of prediction.

Introduction

Public transportation plays an indispensable role in modern big cities. Developing public

transportation is regarded as the most effective way to solve the ubiquitous traffic congestion

problems [1, 2]. The subway is regarded as the backbone of urban public transportation, and is

characterized by high speed, convenience, and mass flow features [3–7]. Despite the fact that

subway services have been continuously improved in many big cities, the upgraded supply

usually cannot meet the even faster growing demands of human mobility, especially in devel-

oping countries. Compared with opening new lines or increasing the operating frequency of

trains, intelligent operation is a smarter and more cost-efficient way to improve the level of ser-

vice. This calls for accurate and robust prediction of passenger flows to guide better use of the

capacity of subway networks. Despite that some passenger flow prediction models have been

proposed, we revisited this important problem from two new perspectives.

First, we analyzed the performance of different predictive models under different passenger

flow (traffic) conditions. In general, traffic conditions can be classified into ordinary
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conditions, for example morning commutes in a typical weekday, and anomaly conditions,

such as bursts of passenger flow in a specific subway station due to a large commercial or recre-

ational event. Moreover, the variance of travel time under the congestion state is remarkably

larger than that under the free-flow state [8]. We identified the traffic conditions of each sub-

way station using the density-based spatial clustering of applications with noise (DBSCAN)

algorithm, and explored the high-performance passenger flow models under different traffic

conditions.

Second, previous works rarely explored how long in advance that passenger flows can be

well predicted by each kind of predictive model. Most models were tested by inputting data

collected in a time window to predict passenger flows in the next adjacent time window. How-

ever, this type of input data setting is hard to implement in practice because collection of

smartcard data usually has a delay. Moreover, for some practical applications, such as prevent-

ing a large crowd gathering that may cause a dangerous crowding situation, it is important to

predict passenger flows a long time before high-density crowding is realized because it is diffi-

cult to evacuate high-density crowds both safely and rapidly.

In the following, we make a brief review of existing traffic prediction models, which can be

generally classified into three types: (1) mathematical analytical models; (2) traffic simulation

models; and (3) knowledge discovery models.

Early traffic prediction models were mostly based on mathematical analytic approaches.

Time series models, which include the auto regression (AR) model, moving average (MA)

model, auto regressive moving average (ARMA) model, and autoregressive integrated moving

average (ARIMA) model, are typical examples. In 1927, Yule developed the AR model to study

the periodicities of Wolfer’s sunspot numbers [9]. In this AR model, the curve of the time

series was fit by the linear combination of the observed historical values. Walker developed the

MA model based on the AR model in 1931 [10]. The MA model used a linear combination of

historical random disturbances and prediction errors to obtain the current predictive value. In

the same year, Walker proposed the ARMA model, which combined the AR model and MA

model. In 1970, Box and Jenkins proposed the ARIMA model [11], which incorporated a

differencing process (data values were replaced by the differences of current data values and

historical data values) in the ARMA model.

Despite the long history of the time series model, it was first used in transportation studies

by Ahmed and Cook in 1979 [12]. They employed the ARIMA model to predict traffic flow in

freeways; however, the accuracy of prediction was not satisfying. In the 1980s, Stephanedes

and Okutani respectively applied the historical average (HA) model and the Kalman filter

model to the urban traffic control system of Minneapolis-St and Nagoya City [13, 14].

Recently, Wang et al. [15] developed a general approach for real-time freeway traffic state pre-

diction based on stochastic macroscopic traffic flow modeling and extended Kalman filtering,

and Li studied the prediction of traffic flow based on interval type-2 fuzzy sets theory [16].

Given that the HA model is prominently influenced by random disturbance, the Kalman filter

model was used to adjust the Kalman gain weight every time, resulting in a heavy computing

burden. Time series of traffic states sometimes show obvious periodic variation (quarterly,

monthly, weekly, etc.), and thus, the seasonal ARIMA (SARIMA) model was developed to cap-

ture periodic variations of traffic states by Williams and Hoel in 2003 [17]. They applied the

SARIMA model in the prediction of traffic flow in freeways, and found that it outperformed

the HA model. Recently, Schimbinschi et al. [18] proposed a novel model named topology-

regularized universal vector autoregression (TRU-VAR) for traffic flow prediction, which per-

forms better than ARIMA model. In addition, Xue et al. [19] proposed a hybrid model com-

bining the time series model with interactive multiple model (IMM) algorithm to predict the

short-term bus passenger demand, it is superior to times series model. Ma et al. [20] used a
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geographically and temporally weighted regression (GTWR) model to identify the spatiotem-

poral influence of the built environment on transit ridership.

Traffic simulation models were widely used with the popularization of computers in scien-

tific research. In 2001, Chrobok et al. [21] presented an approach based on a micro-simulator

to predict traffic flow in the freeway network of North Rhine-Westphalia. In 2010, McCrea

et al. [22] proposed a novel hybrid approach that combines the advantages of the traffic simu-

lation model and linear system theory. In their model, traffic dynamics was first simulated

using a continuum mathematical model to obtain relevant traffic parameters of road segments,

and the obtained parameters were used as inputs for the Bayesian model for traffic flow predic-

tion. Under the same requirement of prediction accuracy, the hybrid approach improved the

computing efficiency compared to the Bayesian network model.

In recent years, knowledge discovery methods have been used more frequently in traffic

prediction. Representative methods include nonparametric regression analysis, artificial neural

networks, support vector machines, wavelet analysis, and gradient boosting decision tree [23].

In 1991, Davis and Nihan applied nonparametric regression to predict traffic flow in a freeway;

however, the accuracy of prediction was lower than that of the linear time-series method [24].

Twelve years later, Clark applied the method of multivariate nonparametric regression to pre-

dict the traffic state of a motorway [25]. The method was simple and easy to implement,

requiring only modest data storage, and produced reasonably accurate short-term forecasts of

traffic flow and loop occupancies (in the percentage of time a loop is covered by a vehicle).

Artificial neural networks were born in the 1940s, and first introduced in traffic flow predic-

tion by Vythoulkas in 1993 [26]. He employed an artificial neural network to predict the traffic

state of a city road network. Two years later, Dougherty summarized the application of neural

networks in transportation studies [27]. The transportation research community saw an explo-

sion of interest on neural networks in the 1990s. A variety of neural network models have been

proposed to predict traffic conditions. Representative examples include the multilayer percep-

tron neural network model [28], radial basis function neural network [29, 30], spectral basis

artificial neural network [31], time delayed neural network [32], and recurrent neural network

[33]. Models combining neural networks with other factors (e.g., time series [34], genetic algo-

rithms [35], fuzzy logic rules [36], empirical mode decomposition [37], etc.) were also studied.

Support vector machines were formally published in 1995 [38], and studies on support vec-

tor regression (SVR) began in 1997 [39]. Support vector regression was used for travel-time

prediction [40, 41]. Wu et al. [40] validated the feasibility of applying support vector regression

in travel-time prediction, the mean relative errors for traveling different distances were less

than 5% in the test dataset. Vanajakshi et al. [41] found the support vector regression performs

better than artificial neural network when the training data is less or when there are a lot of

variations in the training data. Recently, Jiang et al. [42] combined the ensemble empirical

mode decomposition with gray support vector machine to predict the short-term passenger

flow of high-speed rail (HSR), and the mean absolute percentage errors of the hybrid model is

about 6%, which performs better than the SVM model and the ARIMA model.

Wavelet analysis, which was developed in the 1980s, is usually used to decompose a set of

original traffic flow signals into signals with different time series to reflect and distinguish the

internal variation trend and stochastic disturbance of traffic flows. He et al. [43] proposed a

method based on wavelet decomposition and reconstruction combined with the time series

model for traffic volume prediction. And the processed signals with different characteristics

can be combined with the dynamic neural network [44], support vector machines [45], and

other methods, to predict traffic flow.

In this study, the smartcard data of more than 6 million subway passengers and geographic

information data of the Shenzhen subway network were used. We analyzed four classical
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predictive models: the historical average (HA) model, multilayer perceptron (MLP) neural net-

work model, support vector regression (SVR) model, and gradient boosted regression trees

(GBRT) model. Different from previous studies, we explored the high-performance models

under different traffic conditions, and studied how long in advance that passenger flows could

be accurately predicted by each predictive model.

The paper is organized as follows. Section II describes the geographic information data and

passenger mobility data used in this study. Section III introduces the passenger flow prediction

models and algorithm used to classify passenger flow (traffic) conditions. Section IV analyzes

and discusses the passenger flow prediction results of different models, and identifies the high-

performance models under different traffic conditions and different model implementation

conditions (how long passenger flows are predicted in advance). Section V concludes the

results, and discusses future research directions.

Materials and methods

Data

The geographic information systems (GIS) data and smartcard data of Shenzhen subway pas-

sengers were both provided by Shenzhen Transportation Authority. Data collection was con-

ducted in 2014; the collection of smartcard data was from October 1, 2014 to December 31,

2014. In 2014, the subway network consisted of 118 subway stations. Stations opened after

2014 were not considered due to lack of smartcard data for the new stations. Once a subway

passenger employs his/her smartcard when entering or existing a subway station, the time,

card ID, and subway station ID are recorded. In the three-month data collection period, a total

of 262 million passenger records were generated. For some days, there was data missing for a

few hours or the whole day; therefore, only days with complete records were used in this study

(80 days in total).

The three-month observation period was split into 7,680 time windows, with each time

window spanning 15 min. Taking the operation period of Shenzhen Metro into consideration,

the time period of data collection for each day was from 7:00 a.m. to 10:30 p.m.. Therefore,

there are only 62 time windows in each day used for training data and testing data. The time

windows from 10:30 p.m. to 7:00 a.m. are not considered because few smartcard data are avail-

able during the late-night period. We calculated the number of passengers entering a subway

station s during each time window t, in-passenger-flow Nin(s,t), and the number of passengers

exiting a subway station s during each time window t, out-passenger-flow Nout(s,t) (Fig 1A and

1B). Heterogeneous distribution of passenger flows is observed in the studied subway network

(Fig 2A and 2B). The in-passenger-flow can be approximated by two different fitting functions

for large and small Nin(s,t) (gray dashed lines are plotted to guide the eyes):

fit1: P(Nin(s,t)) = 0.017 (Nin(s,t))−0.304 when Nin(s,t)� 150 persons;

fit2: P(Nin(s,t)) = 0.009 exp(−0.006 Nin(s,t)) when Nin(s,t)> 150 persons.

The out-passenger-flow also can be approximated by two different fitting functions for

large and small Nout(s,t) (gray dashed lines are plotted to guide the eyes):

fit3: P(Nout(s,t)) = 0.017 (Nout(s,t))−0.384 when Nout(s,t)� 150 persons;

fit4: P(Nout(s,t)) = 0.005 exp(−0.004 Nout(s,t)) when Nout(s,t)> 150 persons.

Roughly 58.47% of in-passenger-flow Nin(s,t) and 50% of out-passenger-flows Nout(s,t) were

smaller than 200 passengers/15 min; for some stations, passenger flows were larger than 1,000

passengers/15 min. In the following sections, measured in-passenger-flow Nin(s,t) and out-
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passenger-flow Nout(s,t) were used as the ground truth data to train the passenger flow predic-

tion models and validate the predictive results.

The used subway smartcard data were split into two parts. The first part of the data,

which recorded the subway passenger trips generated during October and November of 2014,

were used as the training dataset. The second part of the data, which recorded the subway pas-

senger trips generated during December of 2014, were used as the testing dataset. Training

datasets were denoted by D = {(x1,y1),(x2,y2),. . .,(xn,yn)}, where xn 2 Rd represent the input fea-

tures of the training data, and yn 2 Rl represent the output results of the training data. The

sample size n equals 59 because there were 59 days’ smartcard data in the training dataset.

Data dimensions d and l represent the number of input and output features used in the models

respectively.

Fig 1. (a), (b) In-passenger-flow Nin(s,t) and out-passenger-flow Nout(s,t) of each subway station s during the time

window 9:00 a.m.–9:15 a.m. of a typical weekday in 2014.

https://doi.org/10.1371/journal.pone.0202707.g001
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The prediction models

When predicting the passenger flow of a subway station s during a time window ttarget, subway

station s is called target station, and time window ttarget is called target time window. We evalu-

ated the performances of four predictive models under different model implementation condi-

tions; predictions were made in different number (nstep) of time windows before ttarget, and

nstep =1,2,. . .7,8 were tested. Here, we briefly introduce the advantageous and disadvantageous

features of each of the four predictive models used in this study. The HA model is easy to

implement in practice, but performs poorly under unexpected traffic conditions. The multi-

layer perceptron (MLP) neural network employed in study is trained using back-propagation.

In general, the MLP model works well in capturing complex and nonlinear relations; however,

it usually requires a large volume of data and complex training procedures. For the employed

SVR model, a linear kernel function was used to predicts passenger flows; however, the selec-

tion of best kernel functions is an unsolved problem in this scientific community. Lastly, the

GBRT model uses a negative gradient of loss function as an estimate of residuals. In general,

the GBRT model also works well in exploring complex and nonlinear relations; however, it

cannot train data parallelly.

In the generated HA model, the average in-passenger-flow (or average out-passenger-flow)

during the target time window ttarget of all days in the training dataset were used as the predic-

tive result in the target time window for all days in the testing dataset. Clearly, the HA model

was unable to capture the random disturbances of passenger flows, and therefore had the

worst prediction accuracy and served as a baseline model for comparison with the other three

models. For the MLP model, SVR model, and GBRT model, in-passenger-flows Nin(s,t) during

time window t of all days in the training dataset were used as inputs, and in-passenger-flows

Nin(s,ttarget) during the target time window of all days in the training dataset were used as out-

puts to train the predictive model; t is nstep time windows before the target time window ttarget.
In a given day of the testing dataset, the in-passenger-flows Nin(s,t) were used as inputs to pre-

dict Nin(s,ttarget), where t is nstep time windows before the target time window ttarget. Parameter

nstep determines how long in advance predictions are conducted. Similarly, models were gener-

ated to predict Nout(s,ttarget). Methods for generating the MLP model, SVR model, and GBRT

model are briefly described in the following subsections. Please refer to the literature [46–49]

for further details on the generations of these models.
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Fig 2. Distributions of passenger-flow show heterogenous patterns in different subway stations. (a) is for in-

passenger-flow Nin(s,t), (b) is for out-passenger-flow Nout(s,t).

https://doi.org/10.1371/journal.pone.0202707.g002
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The training dataset D = {(x1,y1),(x2,y2),. . .,(xn,yn)}, xn 2 Rd,yn 2 Rl were used in the MLP

model, SVR model, and GBRT model. Parameters d and l represent the dimensions of x and y,

respectively. In this paper, parameters d = 1, l = 1 are selected because only passenger flows of

a station itself are used as the model inputs to predict the passenger flows of the station. Param-

eter n represents the sample size of D (i.e., 59 days’ smartcard data in the training dataset).

Taking the prediction of out-passenger-flows Nout(s,ttarget) at the subway station “Window

of World” during 9:00 a.m.–9:15 a.m. of December 30 as an example, s denotes the “Window

of World” subway station, and ttarget denotes the target time window 9:00 a.m.–9:15 a.m.

When predicting passenger flows at one time window ahead of the target time window (nstep =

1), historical passenger flows at the station s during the time window ttarget − 1 of all days in the

training dataset D = {(x1,y1),(x2,y2),. . .,(xn,yn)} are used. For the proposed example, xn repre-

sents the out-passenger-flows at the subway station “Window of World” during time window

8:45 a.m.–9:00 a.m. of the nth day in the training dataset, and yn represents the out-passenger-

flows of the “Window of World” station during time window 9:00 a.m.–9:15 a.m. of the nth

day in the training dataset.

Multilayer perceptron neural network model. The multilayer perceptron is a forward

structure artificial neural network that maps a set of input vectors to a set of output vectors.

An MLP consists of multiple layers, including an input layer, one or more hidden layers, and

an output layer. Each layer of neurons is interconnected with the next layer of neurons. There

is no connection between neurons in the same layer, and there is no cross-layer connection.

For both the hidden layer and output layer, neurons have activation functions, whereas on the

input layer, neurons only receive the input dataset and do not have activation functions. The

learning process in neural networks involves adjusting the connection weights between neu-

rons and the threshold of each functional neuron.

We considered a three-layer MLP network consisting of d input neurons, a hidden layer

with q hidden neurons, and an output layer with l output neurons. The threshold of the jth
neuron in the output layer is defined as θj, and the threshold of the hth neuron in the hidden

layer is defined as γh. Connection weight vih represents the weight between the ith neuron in

the input layer and the hth neuron in the hidden layer, whereas connection weight whj repre-

sents the weight between the hth neuron in the hidden layer and the jth neuron in the output

layer. Therefore, each hidden neuron h firstly computes the net input ah ¼
Pd

i¼1
vihxi and gen-

erates an output bh. Each output neuron j uses the outputs of the hidden layer as inputs

bj ¼
Pq

h¼1
whjbh.

For a single training sample (xk,yk), ŷk ¼ ðŷk
1
; ŷk

2
; . . . ; ŷk

l Þ is the output of the neural net-

work, that is ŷk
j ¼ f ðbj � yjÞ, where f(�) is the activation function, and the rectified linear unit

function f(x) = max(0,x) is used here as the activation function. Therefore, the mean square

error of the network is

Ek ¼
1

2

Pl
j¼1
ðŷk

j � yk
j Þ

2
: ð1Þ

The update of any parameter v is defined as v v + Δv. The training process of the MLP with

backpropagation is as follows.

Step 1: Input the training dataset D = {(x1,y1),(x2,y2),. . .,(xn,yn)},xn 2 Rd,yn 2 Rl and deter-

mine the activation function. In this paper, the number of hidden neurons q was set to 100, the

tolerance for stopping criterion is set to 0.0001(i.e. value of (1) is smaller than 0.0001), and the

maximum number of iterations is 200.

Step 2: All connection weights and thresholds in the neural network are initialized ran-

domly in the range of (0, 1).

Subway passenger flows prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0202707 August 27, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0202707


Step 3: For (xk,yk), according to current parameters and function ŷk
j ¼ f ðbj � yjÞ, calculate

the value of ŷk. The mean square error of the network is computed as Ek ¼
1

2

Pl
j¼1
ðŷk

j � yk
j Þ

2
.

Step 4: Update the connection weights whj and vih and the thresholds θj and γh.

whj  whj þ Dwhj; ð2Þ

vih  vih þ Dvih; ð3Þ

yj yj þ Dyj; ð4Þ

gh  gh þ Dgh: ð5Þ

The error backpropagation (BP) algorithm based on the gradient descent strategy adjusts

the parameters [46, 47].

Step 5: Repeat Steps 1–4 until the value of (1) satisfies the predefined tolerance for stopping

criterion.

Support vector regression model. The kernel function F is used to map data into a high-

dimensional feature space, such that the nonlinear fitting problem in the input space is trans-

formed into a linear fitting problem in the high-dimensional feature space. Common kernel

functions include linear kernel, polynomial kernel, gaussian kernel, Laplace kernel, and sig-

moid kernel, where the nonlinear mapping function is k(xi,xj) = F(xi)T � F(xj). The goal of the

support vector regression model is to find the partition hyperplane with the maximum margin.

The partition hyperplane is represented by f(x) = wTF(x) + b, where w 2 Rd is the normal vec-

tor, and b is the displacement.

Suppose ε is the error bound between observation value y and predicted value f(x). With f
(x) as the center, the epsilon-tube with a width of 2ε is established, and then the problem is for-

malized [46] as

minw;b
1

2
kwk2

þ C
Pn

i¼1
‘εðf ðxiÞ � yiÞ; ð6Þ

where C is the penalty coefficient, and

‘εðZÞ ¼

(
0; if jZj � ε;

jZj � ε; otherwise:
ð7Þ

In summary, the support vector regression model can be described as follows.

Step 1: Input training dataset D = {(x1,y1),(x2,y2),. . .,(xn,yn)},xn 2 Rd,yn 2 Rl and select a ker-

nel function k(xi,xj). In this paper, the linear kernel was chosen as the kernel function, the

parameter C was set to 1, ε was set to 0.1, and the tolerance for stopping criterion is set to

0.001 (i.e. the value of (6) is smaller than 0.001).
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Step 2: Search for the best solution �að�Þ ¼ ð�a1; �a1
�; . . . ; �a l; �a l

�Þ to

minα;α�
1

2

Pn
i;j¼1
ða�i � aiÞða

�

j � ajÞkðxi; xjÞ þ ε
Pn

i¼1
ðai þ a�i Þ � yi

Pn
i¼1
ða�i � aiÞ ð8Þ

s:t:
Xn

i¼1

ðai � a�i Þ ¼ 0

0 � ai; a
�

i � C; i ¼ 1; 2; . . . ; n:

Step 3: Calculate parameter b. Select the positive subvector of �a ð�a j > 0Þ, or the positive sub

vector of �a� ð�a j
� > 0Þ, and calculate parameter

b ¼ yj �
Pn

i¼1
ð�a i
� � �a iÞkðxi; xjÞ þ ε; 0 < �a j < C;

b ¼ yj �
Pn

i¼1
ð�a i
� � �a iÞkðxi; xjÞ � ε; 0 < �a j

� < C: ð9Þ

Step 4: Obtain the model

f ðxÞ ¼
Pn

i¼1
ða�i � aiÞkðx; xiÞ þ b: ð10Þ

Gradient boosted regression trees model (GBRT)

The gradient boosted regression trees model (GBRT) is described as follows.

Step 1: Input the training dataset D = {(x1,y1),(x2,y2),. . .,(xn,yn)},xn 2 Rd,yn 2 Rl and initiali-

zation function

f0ðxÞ ¼ arg minc

Pn
i¼1

Lðyi; cÞ: ð11Þ

The loss function is L y; f ðxÞð Þ ¼ 1

2
ðy � f ðxÞÞ2, where the constant value c minimizes the

value of
Pn

i¼1
Lðyi; cÞ, namely, c is as close as possible to yi. Here, f0(x) is a tree with only one

node.

Step 2: The training dataset is used as input to iteratively build M trees, M was set to 100 in

this paper.

(a) For the mth tree, m = 1,. . .,M, calculate the negative gradient of the loss function in the

current model

rmi ¼ � ½
@Lðyi; f ðxiÞÞ

@f ðxiÞ
�f ðxÞ¼fm� 1ðxÞ

: ð12Þ

Then, use rmi as an estimate of residuals, where i = 1,. . .,n, @ stands for the derivative, and n
is sample size.

(b) Fit a regression tree for rmi to obtain the leaf node regions Rmj of tree m, where

j = 1,2,. . .,J, and J is the number of leaf nodes, which is not limited in the present study.

(c) For the leaf node region Rmj, where j = 1,2,. . .,J, calculating the best fitting value cmj to

minimize the loss function L(y,f(x)).

cmj ¼ arg minc

P
xi2Rmj

Lðyi; fm� 1ðxiÞ þ cÞ: ð13Þ

Then, update

fmðxÞ ¼ fm� 1ðxÞ þ
PJ

j¼1
cmjIðx 2 RmjÞ: ð14Þ

Subway passenger flows prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0202707 August 27, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0202707


Step 3: The final prediction model is

~f ðxÞ ¼ fMðxÞ ¼
PM

m¼1

PJ
j¼1

cmjIðx 2 RmjÞ: ð15Þ

Detecting anomalous passenger flow condition

The DBSCAN algorithm was used to identify anomalous passenger flows. We normalized in-

or out-passenger-flow of a subway station s during each time window t of a day N(s,t) with the

minimum and maximum values of N(s,t) observed in the same time window during the whole

data collection period, and take it as the original data set S. In the DBSCAN algorithm, the

maximum radius of neighborhood ε defines the eps-neighborhood of a data point i 2 S,

denoted by Nε(i) = {j 2 S|dist(i,j)� ε}, and MinPts determines the minimum number of data

points within the eps-neighborhood. The Euclidean distance dist(i,j) = |N(s,t)j − N(s,t)i| was

used to locate the ε neighborhood of each data point i, and the typical parameter setting of

MinPts = 4 was used. The maximum radius of neighborhood ε was set using the fourth dis-

tance (4-dist) probability [50]: the distance between a data point and its fourth nearest neigh-

bor is denoted as the 4-dist. The probability distribution of 4-dist was fitted by an exponential

function, and the 4-dist value at which the slope of the fitting curve equaled -1 was used as the

parameter setting of ε.

Passenger flows were classified using the DBSCAN algorithm: passenger flows larger than

the maximum flow fε of the largest cluster were classified into the anomalous passenger flow

(traffic) condition. Passenger flows smaller than or equal to fε were classified into the ordinary

traffic condition. We use the out-passenger-flows Nout(s,t) at the subway station “Window of

World” during the time window 7:00 p.m.–7:15 p.m. as an example (Fig 3B). Here, s denotes

the subway station “Window of World”, the target time window of the prediction is t = 76.

The label of each cluster generated by the DBSCAN algorithm is denoted by the label(r), where

1� r� nc, nc is the total number of clusters. During time window t of the ith day, the out-pas-

senger-flows at the studied station s is denoted as label(Nout(s,t)i). When the label label(Nout(s,
t)i) is the same with the label of the largest cluster generated label(r)max, the threshold passen-

ger flow fε is determined fε ¼ maxlabelðNout ðs;tÞ
iÞ¼labelðrÞmax

ðNoutðs; tÞ
i
Þ.

In Fig 3A out-passenger-flows Nout(s,t) at “Window of World” station of the Shenzhen sub-

way system are illustrated for every 15 min time windows. Using the DBSCAN algorithm, the

threshold passenger flow fε for each 15 min time window was determined. Anomalous growth

of passenger flows was observed on December 31, which was caused by the firework show at

the plaza of the recreational park at “Window of World” [51]. For all subway stations, anoma-

lous in-passenger-flows were found in 12.2% of time windows, whereas out-passenger-flow

were found in 10.3% of time windows.

Results

Predicting dynamical passenger flows

Previous passenger flow prediction models have been seldom analyzed under anomalous traf-

fic conditions, such as abrupt bursts of passenger flows in a particular subway station due to

mass commercial or recreational events. Under anomalous traffic conditions, passenger

demands may exceed the maximum capability that a subway station can provide; emergent

managements are therefore required to protect the safety and order of subway transportation.

In addition, under large crowd gatherings, subway service restrictions can be an important

way to prevent passengers from flowing into the crowded area, hence avoiding dangerous

crowding situations [52]. Therefore, predicting passenger flows under anomalous traffic con-

ditions is even more important than predicting flow under ordinary conditions.
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Three typical indexes, mean absolute percentage error (MAPE), variance of absolute per-

centage error (VAPE), and root mean square error (RMSE) were used to evaluate the accuracy

of prediction:

MAPE ¼
1

n
Pn

i¼1

yi � ŷ i

yi

�
�
�
�

�
�
�
�� 100%; ð16Þ

VAPE ¼ Var
jyi � ŷ ij

yi

� �

� 100%; ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
Pn

i¼1
ðŷ i � yiÞ

2

r

; ð18Þ

where y = {y1,y2,. . .,yi,. . .yn} is the sequence of the observation values, ŷ ¼ fŷ1; ŷ2; . . . ; ŷ i; . . . ŷng

is the sequence of the prediction values, and n is the number of observation values.
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Fig 3. Anomalous passenger flow detection for “Window of World” subway station. (a) Out-passenger-flows of the

“Window of World” subway station over the whole observation period. Anomalous flows and ordinary flows are

discriminated by the green line fε. (b) Red circles represent anomalous out-passenger-flow of the station during the

time window 7:00 p.m.–7:15 p.m., while blue circles represent passenger flows under ordinary traffic conditions.

https://doi.org/10.1371/journal.pone.0202707.g003
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Fig 4 shows the prediction results and the ground-truth passenger flow observation at the

subway station “Window of World” during a typical weekday (December 30, 2014) and a day

when mass events occurred at the plaza near the subway station (December 31, 2014). The per-

formances of four predictive models were similar in the ordinary traffic condition, and all

models offered accurate prediction results. However, under the anomalous traffic condition,

the HA model failed to capture the trend of abrupt growth of passenger flow as expected, and

the prediction of the GBRT model had large fluctuations. Meanwhile, the SVR model and

MLP model had a relatively good performance. The results shown in Fig 4 highlight the impor-

tance of selecting the proper model under different traffic conditions.

Table 1 shows the RMSE, MAPE, and VAPE values of predictive results of passenger flows

at the “Window of World” station based on the SVR, MLP, GBRT and HA model. The predic-

tion time is nstep = 1 time window ahead of the target time window.

High-performance regions of different predictive models

We analyzed the performances of four predictive models under different numbers of time win-

dows nstep that a prediction is made before the target time window ntarget. When a larger nstep
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Fig 4. Predictive results versus ground-truth data for subway station “Window of World” when nstep = 1. (a)

Results for a typical weekday. (b) Results for a day when mass events occurred near the station.

https://doi.org/10.1371/journal.pone.0202707.g004
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was set, the passenger flow prediction results could be obtained early; meanwhile, the accuracy

of prediction decreased as more recent data were not used. Here, we explored the high-perfor-

mance regions of different predictive models under ordinary and anomalous traffic condi-

tions. Fig 5 shows the predicted passenger flows at the subway station “Window of World” on

December 30, 2014. We found that under the ordinary condition, except for the MLP model,

the predictive models performed well even when the passenger flow prediction was conducted

2 h before the target time window. The prediction accuracy of the MLP model began to

decrease when nstep was larger than two time windows, indicating that under the ordinary traf-

fic condition the MLP model only worked well for short-term (less than 30 min) prediction.

Fig 6 shows the predicted passenger flows of the subway station “Window of World” on

December 31, 2014. In contrast to the results under the ordinary traffic condition, we found

that under anomalous traffic condition, the MLP model performed the best. Given that the

HA model is insensitive to the prediction time, the same predictive results were obtained for

different numbers of time windows nstep that a prediction is made before the target time win-

dow, and the HA model could not capture the anomalous traffic condition at all. For all pre-

dictive models, the prediction accuracy was not acceptable when the target time window was

four time windows (1 h) later than the prediction time. The predicted results of all models had

a trend to approach historical average values when nstep� 4.

Table 2 shows the RMSE, MAPE, and VAPE values of predictive results of passenger flows

at the “Window of World” station based on the SVR, MLP, GBRT and HA model. The predic-

tion was made 1 to 8 time windows ahead of the target time window, respectively.

We summarized the performance of the four predictive models in Fig 7. Under the ordinary

traffic condition, the prediction errors of the SVR model, MLP model, and GBRT model all

increased with the increase of the number of time windows nstep between the prediction time

and target time windows. In particular, the RMSE and MAPE values of the prediction results

of the MLP model increased much faster than for the SVR and GBRT models. When predic-

tion was made nstep> 5 time windows earlier than the target time window, the MLP model

had even worse performance than the HA model. The minimum MAPE = 16.9% was gener-

ated by the SVR model when nstep = 2, implying that the most recent data may be not the best

data input. Furthermore, the GBRT model had a larger VAPE value than the MLP and SVR

models. All the results taken together, the SVR model performed best in the ordinary traffic

condition.

When a larger nstep was set (the prediction time (t) is earlier than the target time window

ttarget, prediction errors of the SVR model, MLP model, and GBRT model increased faster

under the anomalous traffic condition than under the ordinary traffic condition. The RMSE

value and MAPE value of the prediction results of the MLP model, SVR model, and GBRT

model were similar, but for most nstep settings the MLP model was slightly better. The mini-

mum MAPE = 18.0% was generated by the MLP model when nstep = 2, also implying that the

most recent data may be not the best data input. The GBRT model had a larger VAPE value

Table 1. The average error of the four models when nstep = 1.

Method December 30 December 31

RMSE MAPE

(%)

VAPE

(%)

RMSE MAPE

(%)

VAPE

(%)

SVR 56.22 8.83 1.30 209.10 12.98 0.60

MLP 68.91 11.50 1.39 145.58 10.33 0.44

GBRT 50.37 9.22 0.95 274.75 17.11 1.72

HA 86.72 19.20 2.23 718.70 29.12 6.72

https://doi.org/10.1371/journal.pone.0202707.t001
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when nstep was small, which increased slowly with increasing nstep; meanwhile, the VAPE value

for the prediction of the MLP model was small when nstep� 2, but had faster growth afterward.

Ultimately, the MLP model performed best in the anomalous traffic condition. Table 3 and

Table 4 shows the RMSE, MAPE, and VAPE values of the four models under different nstep set-

tings for in-passenger-flow and out-passenger-flow predictions.
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Fig 5. Performance of four models when predicting out-passenger-flow records in subway station “Window of World” on December

30, 2014. (a-h) When the prediction was made 1 to 8 time windows ahead of the target time window, respectively.

https://doi.org/10.1371/journal.pone.0202707.g005
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Given that all validations were made for all subway stations (118 in total) of the Shenzhen

subway network, the average MAPE and RMSE values were enhanced by the majority of low-

passenger-flow stations. If we concentrated on subway stations with the top 25% average pas-

senger flows, the minimum MAPE = 11.1% was generated by the SVR model (and GBRT

model) when nstep = 2 for the ordinary traffic condition; meanwhile, the minimum
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Fig 6. Performance of four models when predicting out-passenger-flow records in subway station “Window of World” on December

31, 2014. (a-h) When the prediction was made 1 to 8 time windows ahead of the target time window, respectively.

https://doi.org/10.1371/journal.pone.0202707.g006
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MAPE = 12.3% was generated by the MLP model when nstep = 2 for the anomalous traffic con-

dition. This result indicates that the inherent pattern of passenger flows at a subway station

prominently determines the prediction accuracy. In general, passenger flows of large-flow sta-

tions are more predictable than passenger flows of low-flow stations. In addition, for a specific

group of subway stations, the best model may be different from the model obtained for all sub-

way stations. In practice, more detailed model selection strategies can be implemented to dif-

ferent subgroups of subway stations. Table 5 and Table 6 describe details of RMSE, MAPE and

VAPE values of the four models when nstep = 2.

Conclusions

An effective and reliable passenger flow prediction model can be beneficial to the management

of transportation systems, such as operation planning, revenue planning, and facility

Table 2. The average error of the four models.

RMSE

December 30 December 31

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 56.22 68.91 50.37 86.72 209.10 145.58 274.75 718.70

2 56.68 88.19 58.99 86.72 335.46 216.29 346.33 718.70

3 60.22 110.36 61.43 86.72 434.83 285.31 413.02 718.70

4 57.31 131.77 74.33 86.72 510.15 346.55 507.99 718.70

5 54.90 144.90 71.67 86.72 576.58 403.94 588.75 718.70

6 53.65 151.60 68.89 86.72 612.60 449.57 649.52 718.70

7 55.40 154.21 72.24 86.72 649.76 490.85 689.43 718.70

8 56.16 159.15 85.71 86.72 691.83 536.35 726.10 718.70

MAPE(%)

December 30 December 31

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 8.83 11.50 9.22 19.20 12.98 10.33 17.11 29.12

2 10.09 13.50 10.22 19.20 16.80 11.73 19.59 29.12

3 9.98 15.85 10.26 19.20 20.30 14.08 23.90 29.12

4 11.08 18.48 11.96 19.20 23.76 16.53 25.77 29.12

5 10.91 19.14 12.17 19.20 27.06 18.56 28.51 29.12

6 10.72 19.83 12.37 19.20 28.70 21.94 30.08 29.12

7 11.67 20.06 13.08 19.20 28.90 22.80 31.30 29.12

8 11.17 21.03 12.81 19.20 30.15 24.18 33.66 29.12

VAPE(%)

December 30 December 31

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 1.30 1.39 0.95 2.23 0.60 0.44 1.72 6.72

2 1.42 1.54 0.90 2.23 1.41 0.91 2.06 6.72

3 1.02 1.29 0.81 2.23 1.91 0.94 2.62 6.72

4 0.97 1.87 0.91 2.23 2.93 1.38 3.21 6.72

5 0.82 1.47 1.30 2.23 3.43 1.75 3.20 6.72

6 0.91 1.87 1.23 2.23 3.93 1.83 4.15 6.72

7 0.89 2.07 1.51 2.23 4.38 1.96 4.42 6.72

8 0.96 2.34 1.95 2.23 5.05 2.69 4.74 6.72

https://doi.org/10.1371/journal.pone.0202707.t002
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improvement. In this paper, we generated four models to predict passenger flow in each sta-

tion of the Shenzhen subway system. We investigated how long in advance passenger flows

could be accurately predicted. Under ordinary traffic condition, acceptable results can be

obtained even 2 h in advance, while under anomalous traffic condition, the prediction accu-

racy of all predictive models was not acceptable when prediction was made 1 h in advance. Li

et al. [53] compared detrending models and multi-regime models trying to find appropriate

traffic prediction models in practices. Our finding highlights the importance of selecting

proper models, SVR model and MLP model respectively performed best in ordinary and

anomalous traffic conditions. Our finding also highlights that compared with the selection of

models, inherent patterns of passenger flows are more prominently influencing the accuracy

of prediction. According to the analysis and results of the present study, when passenger flows

are relatively stable, SVR prediction model is suggested. When passenger flows show anoma-

lous patterns, the MLP prediction model can achieve more reliable prediction results. In addi-

tion, how long the prediction is made in advance of the target time window should also be

considered. As the time window ahead of the target time window nstep increases, the prediction
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Fig 7. Performance analysis of the predictive models. (a), (b), (c) Performance of the four predictive models under the ordinary out-passenger flow condition for all

stations during the whole test period. (d), (e), (f) Same as (a), (b), and (c), but for the results under the anomalous out-passenger flow condition.

https://doi.org/10.1371/journal.pone.0202707.g007

Subway passenger flows prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0202707 August 27, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0202707.g007
https://doi.org/10.1371/journal.pone.0202707


Table 3. The average error of all in-passenger-flow of all stations.

RMSE

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 32.57 34.27 37.34 87.16 65.71 58.17 86.38 162.09

2 41.15 44.24 43.32 87.16 86.69 73.54 92.37 162.09

3 51.91 56.98 51.11 87.16 98.04 89.02 98.77 162.09

4 64.68 70.85 58.38 87.16 105.96 102.05 106.85 162.09

5 72.32 82.74 64.39 87.16 115.83 115.81 111.66 162.09

6 75.65 92.17 68.65 87.16 127.21 130.67 118.09 162.09

7 78.04 98.19 69.72 87.16 128.26 141.21 124.02 162.09

8 79.88 102.37 70.66 87.16 126.41 148.13 127.95 162.09

MAPE(%)

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 15.16 17.05 15.62 24.22 17.12 14.78 18.18 34.21

2 15.75 18.68 16.35 24.22 18.83 16.54 19.73 34.21

3 16.48 20.41 17.05 24.22 20.35 18.14 20.56 34.21

4 17.09 22.01 17.72 24.22 21.79 20.05 21.54 34.21

5 17.50 23.27 18.02 24.22 23.17 22.17 22.39 34.21

6 17.88 24.60 18.46 24.22 24.35 24.22 23.02 34.21

7 18.11 25.53 18.68 24.22 24.67 26.08 23.52 34.21

8 18.32 26.43 18.80 24.22 25.32 28.10 23.91 34.21

VAPE(%)

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 5.66 6.70 7.46 13.38 2.13 2.01 2.17 2.27

2 5.87 6.86 7.91 13.38 2.25 2.34 2.40 2.27

3 7.01 8.69 9.24 13.38 2.39 2.48 2.39 2.27

4 8.09 9.98 10.39 13.38 2.65 3.08 2.60 2.27

5 8.58 9.50 10.24 13.38 3.21 4.14 2.77 2.27

6 9.68 11.27 11.48 13.38 3.53 5.28 2.80 2.27

7 9.34 10.61 11.23 13.38 3.42 6.34 2.86 2.27

8 9.37 10.97 10.95 13.38 3.67 8.11 2.93 2.27

https://doi.org/10.1371/journal.pone.0202707.t003

Table 4. The average error of all Out -passenger-flow of all stations.

RMSE

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 40.76 44.95 42.15 78.53 91.41 76.78 122.53 195.62

2 42.09 47.47 44.09 78.53 98.56 80.46 122.72 195.62

3 49.14 58.06 50.20 78.53 116.20 96.77 131.51 195.62

4 54.38 68.22 54.99 78.53 133.71 111.96 139.23 195.62

5 60.54 80.00 58.68 78.53 150.79 132.11 149.09 195.62

6 64.63 91.99 62.68 78.53 161.55 147.50 159.90 195.62

7 68.90 107.22 69.25 78.53 170.30 167.59 164.74 195.62

(Continued )
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Table 4. (Continued)

8 68.33 117.66 66.26 78.53 171.93 180.23 169.14 195.62

MAPE(%)

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 17.12 20.29 17.35 23.65 21.60 18.86 22.40 35.19

2 16.92 20.20 17.28 23.65 20.87 17.99 22.03 35.19

3 17.59 22.07 18.02 23.65 23.10 20.16 23.36 35.19

4 17.70 22.81 18.17 23.65 23.97 21.20 23.91 35.19

5 18.19 24.56 18.79 23.65 25.37 23.14 24.87 35.19

6 18.30 25.37 18.90 23.65 26.04 24.29 25.47 35.19

7 18.59 26.77 19.15 23.65 27.22 26.20 26.03 35.19

8 18.61 27.56 19.15 23.65 27.60 27.89 26.40 35.19

VAPE(%)

Ordinary Anomalous

nstep SVR MLP GBRT HA SVR MLP GBRT HA

1 7.21 7.01 9.78 19.13 2.21 2.27 2.60 2.93

2 6.84 6.63 8.98 19.13 2.12 2.10 2.62 2.93

3 7.19 7.40 9.38 19.13 2.37 2.55 2.73 2.93

4 7.46 7.60 9.07 19.13 2.66 2.89 2.86 2.93

5 7.52 8.00 10.05 19.13 2.73 3.37 2.95 2.93

6 7.83 8.35 9.61 19.13 2.92 3.69 3.04 2.93

7 7.89 8.92 9.51 19.13 3.01 4.15 3.08 2.93

8 7.96 9.10 9.55 19.13 3.14 4.60 3.17 2.93

https://doi.org/10.1371/journal.pone.0202707.t004

Table 5. The average error of all in-passenger-flow (nstep = 2).

Method TOP 25% ALL

RMSE MAPE

(%)

VAPE

(%)

RMSE MAPE

(%)

VAPE

(%)

SVR 82.01 10.51 1.18 50.05 17.29 6.41

MLP 80.73 12.02 1.28 51.41 19.99 6.21

GBRT 87.22 10.90 1.74 56.18 17.72 8.41

HA 174.14 22.61 9.12 95.56 24.73 17.73

https://doi.org/10.1371/journal.pone.0202707.t005

Table 6. The average error of all Out -passenger-flow (nstep = 2).

Method TOP 25% ALL

RMSE MAPE

(%)

VAPE

(%)

RMSE MAPE

(%)

VAPE

(%)

SVR 81.19 11.48 1.20 48.32 16.10 5.48

MLP 83.15 13.40 1.48 48.35 18.44 6.36

GBRT 94.29 11.58 1.46 51.09 16.73 7.31

HA 162.82 20.15 4.35 98.25 25.34 12.24

https://doi.org/10.1371/journal.pone.0202707.t006
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error increases. The prediction errors of the three types of knowledge discovery models gradu-

ally approach the prediction error of the simple HA model. Hence, in the condition that nstep is

large, the simple HA model can be a good option given its low computation cost. We think

our results can offer useful information for the management of public transportation, which

includes adjusting operating frequency and alleviating passenger congestion.

Finally, we would like to discuss the limitations of this study, and future work. First, the

four predictive models were used in their most basic forms and we did not cover all existing

models for traffic prediction. Variants of these fundamental models could further improve the

accuracy of predictions. Next, better classifications of traffic conditions or subway stations

could further improve the prediction accuracy, and are worthy of future work. Finally, trans-

portation information on social media websites is usually prior to the emergence of actual

mobility, and therefore incorporating this kind of information with traditional urban trans-

portation data is definitely an interesting future research direction [54, 55].
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