Skip to main content
. 2018 Aug 21;12:258. doi: 10.3389/fncel.2018.00258

Table 1.

Reported microglial-G protein-coupled receptors (GPCRs) and their role in Alzheimer’s disease (AD).

Microglial GPCRs Sub-types Endogenous modulators Synthetic modulators Mechanism Role in AD Reference
nAChR α7 nAChRs Aβ, Choline, Kynurenic acid Galantamine ↑NO, ↑TNF-α expression and ↑IL-6 activation induces ↑Ca2+ influx, ↑Calmodulin-CaMKII pathway ↑Aβ clearance through microglia phagocytosis Takata et al. (2010) and Steiner et al. (2014)
mAchRs M1 Dopamine Carbachol, Aβ(40, 42 and 25), AF267, Dicyclomine, C-2 ceramide ↑PKC-α, ↑PKC-γ and/or ↑CREB, ↑pMAPK ↑α-secretase, ↑sAPP release and P3, ↑Aβ generation Buxbaum et al. (1992); Hung et al. (1993); Farber et al. (1995); Caccamo et al. (2006); Joseph et al. (2006) and Joseph et al. (2007)
Adenosine A1 ATP, Adenosine Caffeine, DPCPX, SCH58261 ↓Ca2+ influx, ↑Cyclic nucleotide signaling, ↑p21 Ras activation, ↑ERK1/2 phosphorylation ↓Microglial activation, ↑neuronal damage ↑phosphorylation and translocation of tau, ↑Aβ toxicity Schubert et al. (2000); Angulo et al. (2003); Giunta et al. (2014); and Luongo et al. (2014)
A2A Adenosine Caffeine, DPCPX, SCH58261 ↑Cyclic nucleotide signaling ↑Neuronal damage, ↑Aβ toxicity Schubert et al. (2000) and Giunta et al. (2014)
A2B Adenosine MRS1754, BAY60-6583 ↑IL-6 and ↑IL-10, ↑p38 MAPK, ↑pCREB ↓Microglia activation Koscsó et al. (2012) and Merighi et al. (2017)
A3 Adenosine Cl-IB-MECA, and MRS1523 ↓PI3 kinase/Akt, ↓NF-κB and ↓TNF-α ↓Microglia activation Hammarberg et al. (2003) and Lee et al. (2006)
Purinergic P2Y2 ATP and UTP ↑Nox ↑Aβ degradation and clearance Kim et al. (2012); Mead et al. (2012) and Ajit et al. (2014)
P2Y4 ATP ↑Nox, the ↑PI 3-kinases/Akt cascade ↑Microglial uptake of Aβ Mead et al. (2012) and Li et al. (2013)
P2Y6 UDP MRS2578 ↑NFATc1, ↑c2, ↑CCL2 and CCL3 production ↑Microglial chemotaxis, ↑Microglial phagocytosis Koizumi et al. (2007) and Kim et al. (2011)
P2Y12 ADP ↑cAMP-dependent PKA ↑Microbial chemotaxis Nasu-Tada et al. (2005)
P2Y13 ADP ↑cAMP-dependent PKA ↑Microbial chemotaxis Nasu-Tada et al. (2005)
mGluRs Group I (mGluR1 and mGluR5) Triptolide (T10), CHPG, MTEP and VU0360172 ↓iNOS, TNF-α, and IL-1β and IL-6 and MAPKs pathway, ↑Shedding of the microvesicle from microglia, ↑Microglia-induced astrocyte ↓Microglial-mediated neurotoxicity, modulate microglia-neuron communication Beneventano et al. (2017) and Huang et al. (2018)
Group II (mGluR2 and mGluR3) LYY37926, (RS)-α-methyl-4-sulphonophenylglycine mGluR2: ↑TNF-α release and caspase-3 activation and FasL expression, mGluR3:↑BDNF mGluR2: ↑Microglial neurotoxicity, ↑sAPPα, ↑Non-amyloidogenic cleavage of APP. mGluR3: ↑sAPPα and ↓Amyloid level. Switching of microglial phenotype to neurotoxic phenotype Kingham et al. (1999); Taylor et al. (2002); Taylor et al. (2003); Durand et al. (2014) and Durand et al. (2017)
Group III (mGluR4, mGluR6, mGluR7 and mGluR8) (L)-2-amino-4-phosphono-butyric acid (L-AP-4), (R, S)-phosphonophenylglycine (RS-PPG) ↓Microglial glutamate release, ↓Excitotoxicity, ↑Astrocytic glutamate ↓Microglia-mediated neurotoxicity Taylor et al. (2003)
Adrenergic α2A Nonspecific Atipamezole, BRL-44408 and Dexmedetomidine (DEX) ↓TLR4 overexpression, ↓IL-4, ↓Arg-1, ↓Resistin-like α (Retnla/Fizz1), and ↓Chitinase 3-like 3 (Chi3l3/Ym1) expression ↓Cognitive impairment, ↓Polarization of microglia to M1 Yamanaka et al. (2017) and Zhang et al. (2017)
β1 . Xamoterol and STD-101-D1 ↓Iba1 and GFAP, ↓(Iba1, CD74, CD14 and TGFβ), ↓TNF-α ↓Microgliosis Ni et al. (2006); Yu et al. (2011) and Ardestani et al. (2017)
β2 Isoproterenol ↑α secretase activity, ↑Aβ level Ni et al. (2006)
FPRL1/2 42 42, Annexin A1 (ANXA1), Humanin, palmitoyl-cys[(RS)-2, 3-di(palmitoyloxy)-propyl]-Ala-Gly-OH (PamCA), and muramyl dipeptide (MDP) ↑TNF-α and ↑MAPK p38 ↑Microglial chemotaxis, ↓Aβ level Cui et al. (2002); Ying et al. (2004); Iribarren et al. (2005); and Ries et al. (2016)
CMKLR1 42 ↑ERK1/2, PKA, and Akt ↑Processing and clearance of Aβ42 Peng et al. (2015)
Chemokine receptors CCR5 CX3CR1 CCL2 CCL3 CCL4 CXCL8 NA Associated with amyloid deposits, ↓Microglial neurotoxicity, ↓γ-secretase activity Xia et al. (1998); Bakshi et al. (2008) and Hickman and El Khoury (2010)
Cannabinoid receptors CB1 Endocannabinoids Tetrahydrocannabinol (THC), Agonist: HU-210, WIN55, 212–2, and JWH-133 ↓NADPH oxidase reactive oxygen species, ↓IL-1β and TNF-α and NO CB1 expression decreased as AD progresses Howlett et al. (1986); Glass and Felder (1997); Ramírez et al. (2005); and Manuel et al. (2014)
CB2 Endocannabinoids Tetrahydrocannabinol (THC), Agonist: AM1241, HU-210, WIN55, 212–2, and JWH-133 Antagonist: AM630 ↓IL-6, TNF-α and free radical production ↓Aβ-induced microglial activity Howlett et al. (1986); Glass and Felder (1997); Facchinetti et al. (2003); Walter et al. (2003); Carrier et al. (2004); Ramírez et al. (2005); Eljaschewitsch et al. (2006); Bisogno and Di Marzo (2010); and Ma et al. (2015)
GPR55 Lysophophatidylinositol (LPI) Abnormal-cannabidiol (Abn-CBD), Antagonist: CID16020046 ↑ERK phosphorylation Involved in spatial learning and memory, motor function, memory formation and neuroinflammation Brosnan and Brosnan (2013) and Stojanovic et al. (2014).
Orphan GPCRs GPR18 N-arachidonoyl glycine (NAGly) ↑MAPK activation ↑Microglial migration to neuronal damage McHugh et al. (2010)

Up arrow denote increase and the down arrow denotes decrease.