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Early identification of younger, non-demented adults at elevated risk for Alzheimer’s disease (AD) 

is crucial because the pathological process begins decades before dementia onset. Toward that end, 

we showed that an AD polygenic risk score (PRS) could identify mild cognitive impairment (MCI) 

in adults who were only in their 50s. Participants were 1176 white, non-Hispanic community-

dwelling men of European ancestry in the Vietnam Era Twin Study of Aging (VETSA): 7% with 

amnestic MCI (aMCI); 4% with non-amnestic MCI (naMCI). Mean age was 56 years, with 89% 

<60 years old. Diagnosis was based on the Jak-Bondi actuarial/neuropsychological approach. We 

tested six P-value thresholds (0.05–0.50) for single nucleotide polymorphisms included in the 

ADPRS. After controlling for non-independence of twins and non-MCI factors that can affect 

cognition, higher PRSs were associated with significantly greater odds of having aMCI than being 

cognitively normal (odds ratios (ORs) =1.36–1.43 for thresholds P < 0.20–0.50). The highest OR 

for the upper vs. lower quartile of the ADPRS distribution was 3.22. ORs remained significant 

after accounting for APOE-related SNPs from the ADPRS or directly genotyped APOE. Diabetes 

was associated with significantly increased odds of having naMCI (ORs =3.10–3.41 for thresholds 

P < 0.05–0.50), consistent with naMCI having more vascular/inflammation components than 

aMCI. Analysis of sensitivity, specificity, and negative and positive predictive values supported 

some potential of ADPRSs for selecting participants in clinical trials aimed at early intervention. 

With participants 15+ years younger than most MCI samples, these findings are promising with 

regard to efforts to more effectively treat or slow AD progression.

Introduction

Because the pathological process in Alzheimer’s disease (AD) begins long before onset of 

clinical dementia, early identification of at-risk individuals is of paramount importance [1–

3]. Toward that end, we examined risk prediction in midlife adults with respect to mild 

cognitive impairment (MCI), a transitional phase in the progression from normal cognition 

to AD [4, 5]. Genome-wide association studies (GWAS) from the International Genomics of 

Alzheimer’s Project (IGAP) database have identified at least 20 AD susceptibility loci at 

genome-wide significance level (P < 5 × 10−8) in older adults of European ancestry [6]. 

Most [7–10], but not all [11], samples of older controls and AD cases have also shown 

evidence of a significant polygenic component of AD based on an AD polygenic risk score 

(ADPRS) derived from the IGAP data. Other studies have shown that higher ADPRSs were 

associated with greater abnormalities in endophenotypes such as cortical thickness, and 

hippocampal volume [9, 11–15]. Results from two studies were mixed for beta-amyloid and 

tau levels [9, 16]. In adults in their 20s, results were also somewhat mixed for hippocampal 

volume and memory [9, 17]. We are aware of two out of three studies showing associations 

of ADPRSs with MCI [9, 11, 18].

These results were largely based on cohorts with an average age in the mid-70s, were 

generally stronger when more single nucleotide polymorphisms (SNPs) were included in the 

PRS, and usually held up after excluding APOE. Given the critical importance of early 

identification, further examination of MCI—particularly in relatively younger, non-

demented adults—is warranted [1–3]. Here we focused on adults who were cognitively (CN) 

or at increased risk for AD because they had MCI. We tested whether this ADPRS was 
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associated with increased odds of having MCI in men in the Vietnam Era Twin Study of 

Aging (VETSA) [19, 20], almost 90% of whom were only in their 50s.

We used the well-validated, Jak-Bondi actuarial/neuropsychological diagnostic approach 

[21–30]. We have argued that a more extensive test battery is essential for detecting 

impairment in middle-aged, compared with older, adults [23, 31]. Thus, employing the Jak-

Bondi approach with our test battery could be particularly useful because our sample was 

16–22 years younger than prior samples examining MCI and ADPRSs [9, 11]. Over 20% of 

healthy older adults have one impaired score in 2 different cognitive domains, but <5% have 

≥2 impaired within a domain [32]. By defining impairment as ≥2 tests impaired within a 

cognitive domain, the Jak-Bondi approach improves the balance between sensitivity and 

specificity [21–23]. Compared with clinical diagnosis of Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) participants, Jak-Bondi diagnoses resulted in higher proportions 

converting to AD, lower proportions reverting to normal, and higher proportions with 

abnormal beta-amyloid, abnormal tau, and at least one APOE-ε4 allele (the major AD risk 

allele) [21]. Elevated ADPRSs in our MCI group would provide further validation of this 

diagnostic approach.

Materials and methods

Participants

There were 1329 men in the Vietnam Era Twin Study of Aging (VETSA) [19, 20] who were 

determined to be of white, non-Hispanic European ancestry. As described elsewhere, we 

then excluded those with missing data that would preclude a possible MCI diagnosis, and 

with conditions that could cause cognitive deficits unrelated to MCI including seizure 

disorder, multiple sclerosis, stroke, HIV/AIDS, schizophrenia, substance dependence, brain 

cancer, or dementia [23]. The final sample comprised 1176 participants (Fig. 1).

Sample characteristics are shown in Table 1. VETSA constitutes a national sample 

comparable to American men in their age range with respect to health and lifestyle 

characteristics [33]. All were in some branch of military service sometime between 1965 

and 1975. Nearly 80% report no combat exposure. VETSA participants had to be 51–59 

years old at the time of recruitment in wave 1, and both twins in a pair had to be willing to 

participate [19, 20]. Here we included wave 1 and new wave 2 participants, so that all were 

undergoing their initial assessment. In sum, VETSA constitutes a reasonably representative 

sample of community-dwelling men in their age range who were not selected for any 

characteristic other than age.

Participants chose to go to the University of California, San Diego or Boston University 

where they underwent identical protocols. Brothers almost always chose the same study site. 

A small number who could or would not travel to the study sites were tested in their 

hometowns. The study was approved by the Institutional Review Boards of participating 

institutions, and all participants gave written informed consent.
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Measures

Neuropsychological function—The test battery was designed to capture the breadth 

and depth of cognitive function without having ceiling effects in a middle-aged sample. 

Table 2 shows 18 measures covering 6 cognitive domains, as described elsewhere [23, 34].

Health/medical measures—We included health/medical measures as covariates in order 

to know if associations with MCI were truly accounted for by the ADPRS. Depressive 

symptoms were assessed with the Center for Epidemiological Studies Depression Scale. 

Hypertension was based on measured blood pressure ≥140 systolic or 90 diastolic, having 

been told by a physician that the participant had hypertension, or use of medication for 

hypertension. Blood pressure was measured with an automated cuff: twice in the morning 

and twice in the afternoon, with each pair of readings separated by 1 min. Medication 

information was obtained by a standard “brown bag” method. Diabetes was assessed if a 

participant reported being told by a physician that he had diabetes or if he was taking 

medication for diabetes. Type 1 diabetes would have ruled out entry into the military. 

History of head injury was based on a question asking if the person ever had a serious head 

injury with loss of consciousness or confusion during their lifetime. This constitutes a very 

liberal threshold for head injury.

Definition of MCI—MCI is generally defined as impairment in one or more cognitive 

domains, but with functioning generally preserved [4]. In an early article on MCI, Petersen 

explained that, in the absence of prior cognitive test data, subjective cognitive concern 

provided a way to infer change from previous levels to avoid labeling people with lifelong 

static cognitive deficits as having MCI [23, 35]. VETSA is, however, one of a very few 

studies with actual prior cognitive test data from a period in life that would be unconfounded 

by aging-related changes. At an average age of 20 years, VETSA participants took the 

Armed Forces Qualification Test (AFQT) just prior to their induction into the military. The 

AFQT is an index of general cognitive ability that is correlated about .85 with Wechsler IQ 

in the VETSA and other studies, and had a 42-year test-retest correlation of 0.73 in VETSA 

[36, 37]. At VETSA wave 1, 495 individuals had 12 years of education; however, in this 

subsample with no educational variability, there was a normal distribution of AFQT scores. 

This illustrates the advantage of this direct measure of “premorbid” cognitive ability over a 

proxy such as education.

To account for change from “premorbid” levels, we adjusted neuropsychological scores for 

age 20 AFQT scores. These adjusted scores were then defined as impaired if they were >1.5 

SDs below age- and education-adjusted normative means. This criterion is stricter than the 

more commonly used Jak-Bondi cut-off of >1SD below normative means [21–23] because 

we had a community-based cohort, almost all of whom were in their 50s, which is much 

younger than MCI samples that typically average 15–20 years older. Thresholds for defining 

impairment often need to be different depending on expected base rates, and base rates will 

differ as a function of factors such as community vs. clinic samples or sample age [38, 39].

As in prior studies using the Jak-Bondi actuarial/neuropsychological approach, impairment 

in a cognitive domain was defined as having at least two tests that met the criterion for 
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impairment [21, 22]. With this criterion, out of a total of 1176, the diagnoses were as 

follows: 1050 CN (89%); 83 aMCI (7%); and 43 non-amnestic MIC (naMCI; 4%). Of those 

with aMCI, 69 had single-domain aMCI and 14 had multiple-domain aMCI. Of those with 

naMCI 37 had single-domain naMCI and 6 had multiple-domain naMCI. 11% of the 

VETSA sample was diagnosed with MCI, 7% with aMCI.

Genotyping methods

Other than a small number of MZ pairs that were included as a quality control check, 

genome-wide genotyping was conducted on individual DZ and unpaired twins and one 

randomly selected twin from each MZ pair.

Whole-genome genetic variation was assessed at deCODE Genetics (Reykjavík, Iceland). 

DNA samples were whole-genome amplified, fragmented, precipitated and resuspended 

prior to hybridization on Illumina HumanOmniExpress-24 v1.0A beadchips for 20 h at 

48 °C according to the manufacturer’s protocol (Illumina, San Diego, CA). After 

hybridization, a single-base extension followed by a multi-layered staining process was 

performed. Beadchips were imaged using the Illumina iScan System and analyzed with 

Illumina GenomeStudio v2011.1 software containing Genotyping v1.9.4 module. A 

GenomeStudio project was created with a custom genotyping cluster file, and average call 

rate was 0.996. GenomeStudio final report files for 1162 participants were generated and 

supplied to VETSA investigators for cleaning and analysis.

SNP cleaning and imputation—Cleaning and quality control of genome-wide genotype 

data were performed using PLINK v1.9 [40]. One participant with more than 5% missing 

data was excluded. SNPs with more than 5% missing data or SNPs with Hardy-Weinberg 

equilibrium P-values < 10−6 were excluded. Relationships and zygosity (MZ vs. DZ) were 

confirmed by estimating the proportion of the autosomal genome shared identical by decent 

using PLINK’s genome procedure. Relationships based on genome-wide genotype data were 

concordant with the previously determined relationships derived from the microsatellite 

markers. As expected, analysis of X-chromosome heterozygosity indicated that all samples 

were from male participants.

Self-reported ancestry was confirmed using both SNPweights [41] and a principal 

components (PCs) analysis performed in PLINK v1.9 in conjunction with 1000 Genomes 

Phase 3 reference data [42]. Participants of self-reported European ancestry or with 

primarily (>50%) European ancestry according to SNPweights (n = 1067) were analyzed 

with PCs computed based on a linkage-disequilibrium (LD)-pruned set of 100,000 common 

(minor allele frequency (MAF) > 0.05) SNPs merged with the 1000 Genomes reference 

data. Weights for PCs were computed based on 1000 Genomes data and then applied to the 

VETSA sample. Three participants >6 SDs away from the 1000 genomes European-decent 

population (EUR) mean on either of the first 2 PCs were excluded. PCs were then 

recomputed within the remaining putatively white non-Hispanic (WNH) participants, this 

time without 1000 Genomes reference data. Weights for PCs were computed based on a set 

of unrelated participants (1 individual per twin pair) and then applied to the whole sample. 

Within this set, an additional 8 participants were >6 SDs away from the WNH mean on the 
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first 10 PCs and were excluded, leaving 1056 genetically confirmed WNH participants: 115 

MZ twin pairs, 264 DZ twin pairs, and 298 individuals whose twin was not genotyped.

Most of the twins whose co-twin was not genotyped were from MZ pairs for which only one 

twin was selected for genotyping. All of these remaining participants had a >89% European 

ancestry as estimated by SNPweights. PCs for use as covariates to control for population 

substructure were recomputed among this WNH set, again based on 100,000 randomly 

chosen common (MAF > 5%) markers with weights determined in a set of unrelated 

participants. Imputation was performed using MiniMac [43, 44] computed at the Michigan 

Imputation Server (https://imputationserver.sph.umich.edu). The 1000 genomes phase 3 

EUR data were used as a haplotype reference panel. Owing to the concerns about potential 

distortion in the haplotype-phasing step of imputation, only one randomly chosen participant 

per genotyped MZ twin pair was submitted for imputation, and that participant’s resulting 

imputed data were applied to his MZ co-twin. See Supplementary text for more details.

The final WNH dataset included 1329 participants, including 388 MZ twin pairs, 264 DZ 

pairs, and 25 unpaired twins.

ADPRS calculation—ADPRSs were computed using summary data from the AD GWAS 

as presented in Lambert et al. [6]. Individual SNP effect estimates and P-values were 

downloaded from http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php. The 

ADPRS is a weighted average of VETSA sample additive imputed SNP dosages with the 

log-odds ratios (ORs) for each SNP estimated in the GWAS used as the weights. Rare SNPs 

(MAF < 1%) and SNPs with poor imputation quality (R2 < 0.5) were excluded from ADPRS 

calculation. The remaining SNPs were trimmed for LD using PLINK’s clumping procedure 

(r2 threshold of 0.2 in a 500 kb window) based on LD patterns in the 1000 Genomes EUR 

cohort. ADPRSs were computed by PLINK v1.9 using six different P-value thresholds: P < 

0.05, 0.10, 0.20, 0.30, 0.40, and 0.50 (see Supplementary text and Supplementary Figure 1 

for details on the choice of these thresholds).

To determine whether or not observed ADPRS associations were being driven by the APOE 
locus or were independent of APOE, a second version of the ADPRS was computed that 

excluded the region of LD surrounding the APOE gene (44,409,039–46,412,650 bp 

according to GRch37/Feb 2009). The number of SNPs included in ADPRS calculation and 

in the “No APOE” ADPRS for each P-value threshold is presented in Supplementary Table 

1. We also examined the influence of APOE-ε4 and APOE-ε2 measured by direct 

genotyping (method described previously [45]).

Statistical analysis

We performed mixed effects logistic regression analyses to examine the ability of 

standardized ADPRSs to predict group membership using SAS PROC GLIMMIX [46]. The 

unit of analysis was the individual, and the non-independence within twin pairs was 

accounted for in these mixed models. In order to obtain more accurate parameter estimates, 

we used the METHOD = QUAD statement. This statement performs maximum likelihood 

estimation by adaptive Gauss–Hermite quadrature.
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All analyses adjusted for the first three PCs to account for any cryptic population 

substructure [47–49]. We also adjusted for the following factors that may affect cognitive 

function: age; depressive symptoms; hypertension; type 2 diabetes; and history of head 

injury. We tested six P-value thresholds (0.05–0.50) for SNPs included in the ADPRS. 

Analyses included Type III (unique) effects of predictor variables.

The ADPRSs computed at the different levels were very highly correlated (pairwise rs = 

0.81–0.99), making Bonferroni correction for six different tests highly conservative. We 

used the Li and Ji method [50] to estimate the effective number of tests = 2. Hence, we used 

a P-value cut-off of 0.025 two-tailed for multiple-testing significance.

To test for incremental value of the ADPRS, we compared model-fit as we added predictors. 

We then calculated sensitivity, specificity, positive predictive values (PPV), and negative 

predictive values (NPV) for the best-fitting model with the ROCR package in R v3.3.2 [51]. 

We focused on two optimal cut-points: (1) the probability at which the sum of sensitivity and 

specificity were weighted most equally; and (2) the probability that minimizes cost of 

misclassifications (PPV and NPV weighted most equally). These were also the probabilities 

at which both pairs were highest. The area under the curve (AUC) and receiver operating 

characteristic (ROC) curve plot was calculated with the R package pROC. The 95% 

confidence intervals (CI) were calculated for the AUC using a stratified bootstrap with 2000 

replicates.

Results

As seen in Table 1, the CN, aMCI, and naMCI groups did not differ with respect to age, 

depressive symptoms, hypertension, or history of head injury. There were very small but 

significant differences in young adult/premorbid general cognitive ability (AFQT), and in 

education. The naMCI group had 0.7 years less education than the aMCI and 1.2 years less 

than the CN group. The mean AFQT score for the VETSA cohort was above the average of 

50th percentile because individuals who scored below the 10th percentile were not admitted 

for military service. The highest mean percentile score (65.7) was in the aMCI group, 

followed by the CN group (62.2), and then the naMCI group (59.2). These are 

approximately equivalent to IQs ranging from 106 to 111 across the three groups. Current 

AFQT scores were uncorrelated with the ADPRS (rs = −0.040 to −0.064, Ps = 0.222 to 

0.064 at different thresholds). The proportion of individuals with type 2 diabetes also 

differed significantly among the three groups. The prevalence was similar in the CN and 

aMCI groups (10.6% and 12.1%, respectively). It was more than double those levels in the 

naMCI group, with 25.6% of this group having diabetes.

After multiple-testing correction, higher ADPRSs were associated with significantly greater 

odds of being in the aMCI group than in the CN group (ORs estimated for 1SD increase in 

ADPRS: range = 1.363–1.427 for ADPRS thresholds of P < 0.20–0.50) (Table 3a). Results 

were essentially unchanged in a model with the first 10 PCs (Supplementary Table 2). For 

the most significant threshold, P < 0.50, the odds of having aMCI were 3.215 times greater 

(95% CI: 1.392; 7.424) for those in the upper vs. the lower quartile of the ADPRS 

distribution (Table 3b). ORs for naMCI vs. CN groups were only slightly lower than those 
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for aMCI, but they were nonsignificant (Table 3c), probably due to lower power given the 

smaller size of the naMCI group. ORs were significant but slightly lower for the combined 

MCI groups vs. the CN group (not shown).

After excluding SNPs within the APOE-region, the ADPRS still significantly differentiated 

aMCI and CN groups (ORs estimated for 1SD increase in ADPRS: range = 1.397–1.419 for 

ADPRS thresholds of P < 0.30–0.50) (Table 3d). In models including genotyped APOE-ε4 

and APOE-ε2, the highest magnitude ORs for APOE-ε4 and APOE-ε2 were 1.437 and 

0.515, respectively, but none of these were statistically significant. After adjusting for 

APOE-ε4 and APOE-ε2, the ADPRS remained significantly associated with increased odds 

of being in the aMCI group (range = 1.387–1.408 for thresholds of P < 0.30–0.50) (Table 4). 

In contrast to aMCI, diabetes was associated with significantly increased odds of having 

naMCI (ORs estimated for 1SD increase in ADPRS: range = 3.103–3.341 for ADPRS 

thresholds of P < 0.05–0.50) (Table 5). None of the other covariates was associated with 

increased odds of either aMCI or naMCI. An additional ADPRS comprising only the 19 AD 

risk genes (excluding APOE) previously identified at genome-wide significance level [6] 

was not correlated with our ADPRS, nor was it associated with increased odds of MCI 

(Supplementary Table 3).

The best-fitting model (Table 6, Model 4) shows that the ADPRS provided a significant 

improvement in prediction beyond age, risk factors for AD (covariates), and APOE 
genotype. For the best-fitting model, the AUC was 0.955 (95% CI: 0.93; 0.97) 

(Supplementary Figure 2). When the cut-off was selected for high and balanced sensitivity 

(0.910) and specificity (0.886), NPV was high (0.992) and PPV was modest (0.376). When 

cut-offs resulted in high and balanced NPV (0.953) and PPV (0.737), specificity was very 

high (0.990), and sensitivity was modest (0.359).

Discussion

We demonstrated the ability of ADPRSs to differentiate individuals with MCI from those 

who are CN in a community-dwelling sample of men, 89% of whom were only in their 50s. 

With the average age of this sample being 16–22 years younger than other studies of MCI to 

date, our results hold promise for early identification of increased risk for AD. Consistent 

with results in older adults [9, 18], the full ADPRS differentiated groups far better than the 

19 genome-wide significant SNPs. Also, as described in the introduction, our use of the Jak-

Bondi approach [21] might be more sensitive for diagnosing MCI than traditional 

approaches.

The ADPRS did significantly improve model-fit when added to a model with age, 

covariates, and APOE genotype. The best-fitting model had a very high AUC, but AUCs 

have been shown to be misleading and are problematic as comparative measures across 

studies [52]. In the most comparable study, the Rotterdam Study of older adults, the 

prevalence of aMCI was 4% and the AUC was 0.592 (sensitivity, specificity, NPV, and PPV 

were not presented). Here again, cross-study differences could be due to different ADPRSs 

and/or different approaches to diagnosis. Despite our high AUC, we focus on more 

informative indices. A threshold with high and balanced sensitive and specificity resulted in 
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high NPV and modest PPV, which may be useful for screening individuals to be referred for 

further evaluation because people classified as controls would be highly likely to be true 

controls even though aMCI classifications would include increased false positives. A 

threshold with high and balanced NPV and PPV resulted in high specificity and modest 

sensitivity. Thus, aMCI cases would be missed but false positives for aMCI would be 

reduced substantially. This threshold may be useful for clinical trials by providing greater 

certainty that cases are truly cases.

With a male-only sample, we cannot know how our results might generalize to women. 

Women are at higher lifetime risk of AD than men, the APOE-ε4 allele confers greater risk 

in women, and postmortem studies indicate female excesses of neuritic plaques and 

neurofibrillary tangles and greater cognitive deficit per unit of brain amyloid [53]. 

Differentiating MCI and CN groups may thus be more difficult in men, yet we were able to 

do so in this relatively young cohort. APOE effects are somewhat weaker in men than in 

women, and may not yet be prominent in the relatively young age range of our cohort [54, 

55]. However, as in most other studies of older adults [7–10, 13–15], the ADPRS retained 

predictive value after controlling for or removing APOE.

Male excesses of cerebrovascular pathologies have been associated with AD [53]. Diabetes 

increases risk for all-cause dementia, but that relationship may be stronger for vascular 

dementia than for AD [56]. Here diabetes—a cardiovascular-related condition—was 

associated with increased risk of naMCI, consistent with naMCI having more of a vascular 

component than aMCI. Although the ORs for the ADPRS did not suggest that aMCI is 

substantially more AD-related than naMCI, the different diabetes results do support the 

value of separately analyzing these MCI subtypes. Also, the most common deficits in the 

naMCI group were executive-attention deficits. Thus, our results are also consistent with 

findings that memory deficits are typically the prominent cognitive deficit in AD; yet there is 

also a significant proportion of AD patients who most prominently manifest a dysexecutive 

syndrome [57].

In conclusion, we view the young age of the sample as critically important. The results 

provide proof of principle for the value of ADPRSs to aid in identifying genetically at-risk 

individuals with MCI as early as the sixth decade of life, and they provide additional 

validation of the actuarial-neuropsychological approach to diagnosing MCI. The findings 

thus support the idea that ADPRSs can aid in predicting who will develop AD many years 

before they manifest any symptoms, although it must be acknowledged that we do not know 

which participants will, in fact, develop AD. It does, however, seem likely that the findings 

represent an AD-related phenomenon and not simply general cognitive ability because our 

MCI diagnosis included adjustment for age 20 AFQT scores and-- consistent with prior 

research [58]--the ADPRS and AFQT were not significantly correlated. ADPRSs may also 

be a useful additional tool for targeting individuals for clinical trials and individuals 

requiring clinical intervention at an earlier stage than is currently thought to be feasible. 

Such efforts at early identification and intervention are likely to be key factors for more 

effectively treating or slowing the progression of AD.
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Fig. 1. 
Flow chart of participant selection
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Table 1

Sample characteristics

Cognitively normal (N 
= 1050)
Mean

Amnestic MCI (N = 
83)
Mean

Non-amnestic MCI (N 
= 43)
Mean Significance test

Age 56.8 (3.3) 57.2 (3.5) 56.9 (3.3) F = 0.81 (2, 537), P = 0.44

Education 13.9 (2.2) 13.4 (2.2) 12.7 (1.3) F = 4.75 (2, 537), P < 0.01

Age 20 general cognitive 
ability

62.2 (21.8) 65.7 (20.7) 59.2 (20.8) F = 4.31 (2, 537), P = 0.01

Depressive symptoms 7.6 (7.5) 8.8 (8.6) 10.0 (10.6) F = 1.99 (2, 537), P = 0.14

% % %

Hypertension 56.6% 66.3% 58.1% χ2 = 1.48 (2), P = 0.48

Diabetes 10.6% 12.1% 25.6% χ2 = 9.40 (2), P < 0.01

Prior head injury 34.6% 34.9% 36.5% χ2 = 0.45 (2), P = 0.80
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Table 2

Neuropsychological tests and scores used to define MCI

Cognitive domain Tests and measures No. of measures

Episodic memory CVLT-II: sum of trials 1–5; delayed free recall (composite)a

WMS-III: Logical memory immediate, delayed free recall (composite)a,b

WMS-III: visual reproduction immediate and delayed free recall (composite)a

3

Executive function DKEFS Trails: switching
DKEFS fluency: category switching
Stroop: color-word, interference
WASI: matrix reasoning

4

Attention/working memory WMS-III: Digit span
WMS-III: spatial span
WMS-III: letter-number sequencing
DKEFS Trails: cancellations

4

Verbal/language DKEFS: letter fluency
DKEFS: category fluency

2

Visual-spatial Gottschaldt hidden figures
Card rotation
WMS-III: visual reproduction copy

3

Processing speed DKEFS Trails: number sequencing, letter sequencing (composite)a

Stroop: word condition, color condition (composite)a
2

CVLT-II California Verbal Learning Test-Version II, WMS-III Wechsler Memory Scale-Version III, DKEFS Delis–Kaplan Executive Function 
System, WASI Wechsler Abbreviated Scale of Intelligence.

a
Composite refers to the mean of two measures.

b
Standard WMS-III instructions call for reading the second logical memory story a second time, but it was read only once in our administration
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Table 5

Associations of type 2 diabetes with MCI in analyses with the ADPRS including APOE-region SNPs

GWAS threshold

aMCI vs cognitively normal naMCI vs cognitively normal

OR (95% CI) P OR (95% CI) P

P < 0.05 1.046 (0.464; 2.358) 0.9128 3.103 (1.386; 6.947) 0.0060

P < 0.10 1.094 (0.488; 2.453) 0.8274 3.181 (1.415; 7.154) 0.0052

P < 0.20 1.084 (0.480; 2.448) 0.8458 3.284 (1.441; 7.480) 0.0047

P < 0.30 1.084 (0.481; 2.442) 0.8456 3.341 (1.462; 7.634) 0.0043

P < 0.40 1.091 (0.484; 2.459) 0.8328 3.313 (1.453; 7.358) 0.0045

P < 0.50 1.086 (0.481; 2.448) 0.8426 3.273 (1.437; 7.452) 0.0048

All analyses were adjusted for clustering of twin data. Significant odds ratios at corrected P-value of 0.025 based on Li and Ji method are shown in 
bold font

MCI mild cognitive impairment, ADPRS Alzheimer’s disease polygenic risk score, SNP single nucleotide polymorphism, aMCI amnestic MCI, 
naMCI non-amnestic MCI, GWAS genome-wide association study
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Table 6

Model-fit comparisons for predictors of aMCI vs. CN

Model −2LL LRT ΔDF P

1 Age 560.03

2 Age + covariates 559.19 4.84 7 0.6795

3 Age + covariates + APOE-ε4 + APOE-ε2 552.49 2.70 2 0.2592

4 Age + covariates + APOE-ε4 + APOE-ε2 + ADPRS 546.41 6.08 1 0.0137

All analyses were adjusted for clustering of twin data. Each model is compared to the preceding model. A P-value < 0.05 indicates a significant 
improvement in model-fit. Best-fitting model is shown in bold font.

aMCI amnestic mild cognitive impairment, CN cognitively normal, −2LL −2 log-likelihood, LRT likelihood ratio test, ΔDF change in degrees of 
freedom, ADPRS Alzheimer’s disease polygenic risk score
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