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Abstract

Objective—To accurately calculate the risk for postoperative complications and death after 

surgery in the preoperative period using machine-learning modeling of clinical data.

Summary Background Data—Postoperative complications cause a two-fold increase in the 

30-day mortality and cost and are associated with long-term consequences. The ability to precisely 

forecast the risk for major complications prior to surgery is limited.

Methods—In a single-center cohort of 51,457 surgical patients undergoing major inpatient 

surgery, we have developed and validated an automated analytics framework for a preoperative 

risk algorithm (MySurgeryRisk) that uses existing clinical data in electronic health records to 

forecast patient-level probabilistic risk scores for eight major postoperative complications (acute 

kidney injury, sepsis, venous thromboembolism, intensive care unit admission > 48 hours, 

mechanical ventilation > 48 hours, wound, neurologic and cardiovascular complications) and 

death up to 24 months after surgery. We used the area under the receiver characteristic curve 

(AUC) and predictiveness curves to evaluate model performance.

Results—MySurgeryRisk calculates probabilistic risk scores for eight postoperative 

complications with AUC values ranging between 0.82 and 0.94 (99% confidence intervals 0.81–

0.94). The model predicts the risk for death at 1-, 3-, 6-, 12-, and 24-month with AUC values 

ranging between 0.77 and 0.83 (99% confidence intervals 0.76–0.85).

Conclusions—We constructed an automated predictive analytics framework for machine-

learning algorithm with high discriminatory ability for assessing the risk of surgical complications 

and death using readily available preoperative electronic health records data. The feasibility of this 

novel algorithm implemented in real time clinical workflow requires further testing.

Keywords

Machine learning; predictive analytics; preoperative risk; postoperative complications; major 
surgery; mortality

INTRODUCTION

In the United States, where the average American can expect to undergo seven surgical 

operations during a lifetime, each year 1.5 million patients develop a medical complication 

and at least 150,000 patients die within thirty days after their surgery.1, 2 The risk for 

complications arises from the interactions between a patient’s preoperative health and 

physiologic capacity to withstand surgery-related stress, modulated by the type and quality 

of surgery and anesthesia that the patient undergoes.3 In the preoperative period, the accurate 

measurement of this risk can facilitate a discussion about the risks and benefits of surgery 
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and can identify patients who would benefit from intraoperative strategies that could offset 

the risk.

Preoperative assessment of surgical risk requires integration and interpretation of the large 

amount of clinical information scattered throughout the healthcare system. A number of 

surgical risk scores have been developed to estimate postoperative mortality and less 

frequently specific complications. The most commonly used by anesthesiologists, the 

American Society of Anesthesiologists (ASA) physical status classification, relies on 

physicians’ subjective assessment of a patient’s preoperative health.4 Other scores are 

limited by the inclusion of intraoperative data, need for elaborate data extraction and 

specialized tests, applicability to only specific surgery types, inability to efficiently handle 

different data types found in electronic health records (EHR), and modest accuracy and 

precision for patient-level risk prediction.5–12 Although the American College of Surgeons 

National Surgical Quality Improvement Program (ACS NSQIP) risk score was developed as 

a universal surgical score, it requires data that is not readily available in EHR. 6 For 

prediction of some major complications, such as acute kidney injury and sepsis, current 

validated risk scores are limited when the complications are defined using contemporary 

definitions.12, 13

More importantly the existing surgical risk scores have not been developed as machine-

learning algorithms with the potential for real-time automation.14, 15 Our objective was to 

develop an algorithm that could fulfill this role by being universally applicable for any type 

of surgery, while using all available data within any EHR platform, and by having the 

capacity for automation and implementation in real-time clinical workflow.16 Here we 

present the development and validation of an automated predictive analytics workflow for a 

preoperative risk algorithm MySurgeryRisk for major complications and death after surgery 

using resampling of a single-center perioperative longitudinal cohort.

METHODS

The University of Florida Institutional Review Board and Privacy Office approved this as an 

exempt study with waiver of informed consent. The analytical and writing plan followed the 

recommendations for the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) under the Type 1b analysis category 

(development and validation of the model using random data resampling)( Supplemental 

Digital Content (SDC) Table 1).17

Source of Data

Using the University of Florida Health (UFH) Integrated Data Repository as Honest Broker, 

we have created a single-center perioperative longitudinal cohort that integrated the EHR 

with public datasets.13 Using residency zip code, we linked the cohort with the United State 

Census data18 to calculate residing neighborhood characteristics and distance from hospital. 

We included all inpatient operative procedures requiring at least 24 hours hospital stay 

performed between January 1, 2000 and November 30, 2010. The date of death was 

determined using hospital records and the search of the Social Security Death Index and 
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Florida Bureau of Vital Statistics in July 2014 to assess survival through January 31, 2014 

using the full name, birth date, and social security number.

Participants

We included all patients with age greater or equal to 18 years admitted for longer than 24 

hours following any type of inpatient operative procedure. We collapsed self-reported race 

categories to account for the association of African-American ethnicity with increased risk 

for kidney disease and to adjust for estimation of glomerular filtration rate. The final cohort 

consisted of 51,457 patients.

Outcomes

We modeled preoperative risk probabilities for eight major postoperative complications 

occurring anytime during hospitalization after the index surgery, including infectious and 

mechanical wound complications (wound complications), acute kidney injury (AKI), 

mechanical ventilation (MV) and intensive care unit (ICU) admission for greater than forty-

eight hours, cardiovascular complications (CV), neurological complications and/or delirium 

(neurologic complications), sepsis, and venous thromboembolism (VTE). The algorithm 

also calculates risk probabilities for death at 1, 3, 6, 12 and 24 months after index surgery.

We used the exact dates to calculate the duration of MV and ICU stay. We defined AKI 

using consensus criteria while a set of previously described criteria was applied to annotate 

the remaining complications. 14, 19

Predictor Features

We have derived preoperative predictor features from 285 available preoperative 

demographic, socio-economic, administrative, clinical, pharmacy and laboratory variables 

(SDC Table 2) and use them all for each patient. Preoperative comorbidities were derived 

using up to fifty International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) codes as binary variables and with the Charlson comorbidity 

index.19–21 We extracted medications dispensed on the admission day using RxNorms data 

grouped into drug classes using existing ontologies.22

Sample Size

We included all patients in the cohort. The algorithm was trained on the development 

cohorts while the reported results were obtained from the validation cohorts. Using one fifth 

of the cohort as the validation cohort (n= 10,291) in each of the 50-time repeated 5-fold 

cross validation runs (resulting in 250 different cohorts), we estimated that the overall 

sample size allows a maximum 99% confidence interval for the area under the receiver 

operating characteristic curve (AUC) of 0.04 for each model when prevalence of predicted 

complication is 5% and 0.02 when prevalence is 40%.

Predictive Analytics Workflow

MySurgeryRisk (Figure 1A) is an automated EHR algorithm that will be implemented in 

real-time using the intelligent perioperative platform developed by our group.16 This 

platform resides in a secure environment and in real time integrates and transforms EHR 
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data, runs predictive algorithms, produces outputs for physicians, inputs their feedback and 

prospectively collects data for the future retraining of the prediction models (Figure 1B). 

The MySurgeryRisk algorithm consists of Data Transformer and Data Analytics modules. 

The Data Transformer layer integrates data from various sources and then uses data 

preprocessing, feature transformation, and feature selection to optimize the data for analysis. 

The Data Analytics layer uses multiple computational algorithms to compute risk 

probabilities for postoperative complications and mortality for an individual patient.

Data Transformer Layer

In this layer the algorithm transforms data from any native EHR format to the processed 

dataset optimized for use in predictive models. New complex variables are created (as 

described above in “Predictor Features”) and are used in data preprocessing, feature 

transformation and feature selection. For data preprocessing (SDC Table 2) we use a set of 

automatic rules to remove errors and outliers. We replace missing nominal variables with a 

distinct “missing” category while missing continuous variables are replaced by the mean 

value for a given variable.

Feature transformation is applied to reduce dimensionality of the data and to decrease 

overfitting. We optimize categorical and nominal variables with multiple levels (such as 

surgeon’s identities and zip codes) by calculating, for each postoperative complication 

separately, conditional probabilities for a particular variable value (such as each surgeon’s 

ID number or each zip code value in the dataset) to be associated with the occurrence of the 

complication. The probabilities are calculated as the log of the ratio of the prevalence of a 

particular variable value among cases with a complication (events) to cases without 

complication (nonevents) (SDC Methods). 23 Surgical procedure codes are optimized using 

a forest of trees approach to reduce the 4-digit primary procedure ICD-9-CM codes that are 

prefix-based on the anatomical location of surgery. Each node represents a group of 

procedures, with roots representing most general groups of procedures and leaf nodes 

representing specific procedures. 23 This grouping method reduces the number of discrete 

procedure codes from 1536 to 187 and improves the analysis of low frequency procedures 

(SDC Methods and SDC Table 2). Supervised feature selection uses variance inflation 

factors to evaluate collinearity and remove highly collinear predictors.

Data Analytics Layer

A set of algorithms was trained to calculate patient-level risk probabilities for each of eight 

complications. The calculated risk probabilities were subsequently used as input data for the 

algorithm trained to calculate mortality risk scores. The final output produces 

MySurgeryRisk, a personalized risk panel for eight major complications and mortality risk 

at 1, 3, 6,12 and 24 months after surgery (Figure 2A–B) together with a list of the top three 

features contributing to each of the calculated risk scores.

Patient-Level Risk Scores, representing the probability of each complication during 

hospitalization after index surgery, were calculated using a generalized additive model 

(GAM) with logistic link function as previously described. 14, 23 All models were adjusted 

for nonlinearity of all covariates using nonlinear risk functions fi estimated with cubic 
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splines.23 For each complication separately, we used risk probabilities calculated by the 

GAM algorithm to define the optimal cutoff values that best categorize patients into low and 

high risk categories by maximizing the Youden index.24 The most important features 

contributing to the risk for an individual patient were derived based on how different she or 

he is from the patient with an “average” risk (Supplemental Methods).

Patient-Level Mortality Scores, representing the probability of death at 1, 3, 6, 12 and 24 

months after index surgery, were calculated using a random forests classifier trained over the 

individual complication risk probabilities within a 5-fold cross validation design (SDC 

Figure 1).25 We automatically tuned the parameters for each classifier through maximizing 

accuracy as the cross validation performance score over searching a parameter space. We 

evaluated 675 random forest models to find the best performing one.

Validation

The results were reported based on a 5-fold cross validation procedure on 50 bootstrap 

samples, resulting in 250 different validation cohorts (with a total of 10,291 patients in each 

validation cohort). Data were randomly split into five disjoint folds in each run, taking one 

fold for validation and the other four folds for training the model. In each run, the data were 

reshuffled before splitting the data. Using the values obtained from the 250 validation 

cohorts, we calculated nonparametric confidence intervals for each of the performance 

metrics.

Model Performance

We assessed each model’s discrimination using the AUC and model accuracy by 

determining the fraction of correct classification for each model. Using the optimal 

thresholds for risk probabilities we built the classification table from which we calculated 

sensitivity, specificity, and positive and negative predictive values for each model. Model 

calibration was tested using the Hosmer-Lemeshow statistic and predictiveness curves were 

used to plot the distributions of risk scores for each complication. 26 Relative risk was 

calculated as the ratio of the absolute risk of the complication for high and low risk groups 

for each complication. We used bootstrap sampling and nonparametric methods to obtain 

99% confidence intervals for all performance measures.

RESULTS

Participant Baseline Characteristics and Outcomes

Among 51,457 adult patients who underwent major inpatient surgery requiring longer than 

24 hours inpatient admission in a quaternary-care academic center, all surgery types were 

well represented (Table 1 and SDC Table 3). The cohort included data for 520 operating 

surgeons with an average of 99 procedures per surgeon. The acuity of the patient population 

was high as 46% of surgeries were categorized as non-elective or associated with emergent/

urgent hospital admissions and 52% had ICU admission with a median length of stay of 4 

days (25th–75th percentiles 2–8 days) while median hospital length of stay was 7 days (25th–

75th percentiles 4–12 days). The overall mortality was 3.4% at thirty days and 17% at two 

years after index admission (Table 2 and SDC Table 4). A wide range of comorbidities was 
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documented on admission with cancer and diabetes mellitus being most prevalent. One third 

of the population were from rural areas while on average 10% of the patients resided in 

neighborhoods with household income below the poverty level.18 The prevalence of 

examined complications ranged from 3% for venous thromboembolism to 39% for acute 

kidney injury. As expected we observed a variation in the prevalence of complications 

among different surgery types likely reflecting the effect of the underlying primary disease 

process that may predispose to certain types of complications. Acute kidney injury, 

admission to ICU and mechanical ventilation for > 48 hours were the most common 

complications among all surgeries. The distribution of outcomes and preoperative clinical 

characteristics did not differ between training and validation cohorts.

Risk Score Stratification and Model Performance

For each patient in the validation cohort the MySurgeryRisk algorithm uses available 

preoperative clinical data to calculate the probability risk (range from 0 to 1) for having each 

of the eight complications and automatically determines the optimal threshold for stratifying 

patients into low and high-risk groups (Figure 2 and SDC Figure 2). The algorithm’s output 

provides a list of the most important features contributing to the risk for an individual patient 

based on how different she or he is from the “average” risk patient (the list of most 

important features for each model is provided in SDC Table 5). The predictive performance 

for each complication was very good with AUC values ranging between 0.82 and 0.94 and 

accuracy between 0.74 and 0.86 (Figures 3A–B). The cutoff values were similar to the 

prevalence of complications and ranged from 0.35 for the most prevalent complication AKI 

to 0.03 for least prevalent complication VTE. The calculated thresholds had sensitivity 

ranging between 0.74 and 0.86 while specificity ranged between 0.69 and 0.86. The risk 

models for the top three most common complications (AKI, ICU admission for > 48 hours 

duration and mechanical ventilation for > 48 hours duration) had the best positive (ranging 

from 0.37 to 0.72) and negative predictive values (0.85 to 0.98). The risk models for the 

complications with low prevalence had excellent negative predictive values but lower 

positive predictive values.

In the second analytics step, for each patient in the validation cohort the MySurgeryRisk 

algorithm uses calculated risk probabilities for complications to calculate the probability 

(range from 0 to 1) for mortality up to two years after index admission and automatically 

determines the optimal threshold for stratifying patient into low and high-risk mortality 

groups (Figure 2). The performance metrics was tested for two approaches, the first using 

the cutoff at which the maximum accuracy was acquired (selected thresholds 0.26, 0.29, 0.3, 

0.33, and 0.32 for 1, 3, 6, 12, and 24-month mortality, respectively, SDC Figure 3) and the 

reported one where the cutoff was based on the maximum Youden index at which both 

sensitivity and specificity were optimized (selected thresholds 0.12, 0.17, 0.20, 0.26, and 

0.24 for 1, 3, 6, 12, and 24-month mortality, respectively, Figure 3C). Both approaches 

showed very good performance for specificity ranging between 0.91 and 0.99, accuracy 

ranging between 0.81 and 0.96 and AUC ranging between 0.75 and 0.83.

Bihorac et al. Page 7

Ann Surg. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparison of Risk Groups

The observed absolute risk for each complication was distinctly different between high and 

low risk groups. Patients classified as high-risk for complications had a significant increase 

in relative risk compared to low-risk patients, ranging from 13.5 (99% CI: 11.4, 15.9) for the 

least prevalent complication (VTE) to 5.0 (99% CI: 4.8, 5.1) for the most prevalent 

complication (AKI) (Table 3). We used the integrated predictiveness and classification plots 

to demonstrate the distribution of patients with different risk probabilities in the cohort 

(SDC Figures 4A–H). For less common complications, such as sepsis, the predictiveness 

curve demonstrates that a majority of the cohort (82%) have risk scores below the high-risk 

cutoff of 0.06. By considering patients with risk scores at or above the cutoff value of 0.06 

as the high-risk group for sepsis, we can identify 82% (99% CI: 78%, 86%) of subjects with 

sepsis while 14% (99% CI: 13%, 15%) of subjects without sepsis are falsely identified. In 

contrast, for the more prevalent complication such as AKI, almost half of the cohort (44%) 

had risk scores above the high-risk cutoff of 0.35. By considering patients with risk scores at 

or above the cutoff value of 0.35 as the high-risk group for AKI, we can identify 80% (99% 

CI: 78%, 82%) of subjects with sepsis while 21% (99% CI: 20%, 22%) of subjects without 

AKI are falsely identified.

DISCUSSION

In a large single-center cohort of surgical patients we have developed and validated an 

automated machine-learning algorithm MySurgeryRisk that uses existing clinical data in 

electronic health records to predict the risk for major complications and death after surgery 

with high sensitivity and high specificity. This algorithm will serve as an essential 

component of the intelligent perioperative platform designed by our group16 and will be 

deployed in a real-time clinical workflow for automated surgical risk prediction as a part of a 

prospective clinical trial.27 This automated system for surgical risk prediction offers several 

advantages including prediction based entirely on routinely available data prior to surgery, 

universal applicability to any surgical context and any type of surgery, exportability to other 

EHR systems and the ability to handle any data type in EHR (such as semi-structured data, 

missing or sparse data). The algorithm accounts for patient (characteristics of residing 

neighborhoods) and physician specific characteristics (the association between their case-

mix and performance and postoperative complications in the past), provides consistency of 

interpretation (a machine makes the same prediction on a specific set of data every time), 

gives predictions with high sensitivity and specificity and has the potential for near 

instantaneous reporting of results. In addition, because an algorithm produces a precise 

probability of the risk, the thresholds for high-risk group can be set at different operating 

points so that sensitivity and specificity can be tuned to match the requirements for specific 

clinical settings, such as high sensitivity for a screening setting. In this study, sensitivities 

ranging between 0.74 to 0.86 were achieved for the single threshold maximized for the 

screening settings for the postoperative complications. In contrast, we maximized both 

sensitivity and specificity and negative predictive value when determining threshold for risk 

for mortality to achieve specificity ranging between 0.91 and 0.99. Furthermore, inclusion of 

personalized variables in the training dataset, such as surgeons’ previous performances in 

relation to his case-mix and patients’ residing neighborhoods allows the model to be tuned 
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for a specific population and provides more personalized prediction. The social determinants 

of health such as income, poverty and inequality can be reflected in patients’ residing ZIP 

codes and their impact on health has been increasingly recognized. 28, 29

A number of surgical risk models have been developed to estimate postoperative risk for 

adverse outcomes but the development of a user-friendly, reliable model for individualized 

prediction across multiple surgery types has remained a challenge. 5–7, 30, 31 The ASA 

physical status classification relies on physicians’ subjective assessment of a patient’s 

preoperative health.4 Despite its wide inter-observer variability and limited utility for the 

quantitative assessment of surgical morbidity or mortality risk 32 it remains the most 

commonly used tool for preoperative risk assessment among anesthesiologists. The 

Physiologic and Operative Severity Score for the Enumeration of Mortality and Morbidity 

(POSSUM) predicts the probability of surgical mortality using twelve preoperative variables 

and six discharge variables. 10 The need for manual data collection beyond the EHR and the 

overestimation of the mortality risk among patients undergoing low-risk procedures are 

major limitations.33 A surgical APGAR score is a simple yet crude summary score of risk,11 

but its widespread adoption has been slowed by skepticism.15 The ACS NSQIP risk score 

was developed as a universal surgical score utilizing population-based standardized surgical 

cases from participating institutions. The hierarchical linear regression models using twenty-

three preoperative variables were developed to predict eight surgical outcomes occurring in 

the thirty postoperative days only.6 Although the model had good performance in validation 

studies (c statistics 0.81–0.94), its practical use is limited by the need for data not readily 

available in EHR, and limited accessibility through a web-based interface rather than 

through an automatic interface with the EHR. The NSQIP database does not utilize the 

contemporary consensus definitions for AKI and sepsis, leading to underestimation of the 

occurrence of these complications and questionable performance of the score when 

consensus definitions for sepsis and AKI are used in clinical practice.13 The Revised Cardiac 

Risk Index 9 has been widely used for cardiac risk prediction, although it had moderate 

performance for non-cardiac surgery patients in a systematic review. 34 The majority of AKI 

preoperative risk scores are limited to cardiac surgery and have modest accuracy. 35, 36 No 

validated risk scores exist for sepsis or ICU admission. Recent risk models for respiratory 

failure have improved accuracy but have not been evaluated fort the potential for automation 

with EHR and personalization. 37–39

In the preoperative period, knowing the extent to which preoperative health predisposes a 

patient for postoperative complications, even if not all predictors are modifiable, can 

facilitate a discussion about the risks and benefits of surgery, and thereby decrease 

uncertainty regarding outcomes. An accurate risk assessment allows physicians to identify 

patients who would benefit the most from strategies that can offset the risk. A patient with 

stage two chronic kidney disease with albuminuria, undergoing high risk surgery, is at 

increased risk for postoperative AKI. While his risk factors are not modifiable, knowing that 

he is at high risk allows providers to implements changes in perioperative management to 

lower that risk for this particular patient. Some of these strategies, like invasive monitoring, 
42–44 are costly and carry their own risks while others, such as the avoidance of nephrotoxic 

medications and individualized blood pressure management, 41 are easy to implement if the 

risk is identified. On an institutional level, accurate risk assessment may help to quantify the 
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complexity of work being undertaken and provide a method for documenting a risk-adjusted 

outcome for different health care providers. Our algorithm predicts risk for major 

complications with systemic effects and profound impact on patient outcomes thus potential 

interventions need to be multimodal, sequential and cross-disciplinary.40 Several 

interventions may reduce postoperative complications when applied to patients at risk, such 

as individualized intraoperative blood pressure management,41 hemodynamic optimization, 
42–44 use of neuraxial anesthesia and volatile agents,45–47 glycemic control,48 non-invasive 

ventilation,49 remote ischemic preconditioning50–52, the use of standardized clinical 

protocols for prevention of AKI and sepsis. 12, 53, 54 Finally, the expansion of the use of 

EHR for the real-time tracking of systemic complications using computational algorithms as 

a higher-capacity and lower-cost information processing service is a logical next step for 

linking risk prediction with impact on healthcare outcomes.55

There are limitations to this system. The reference standard used for some of the 

complications, such as cardiovascular complications and sepsis, was based on administrative 

codes and is dependent on the institutional coding practice. Thus the algorithm may not 

perform as well for those cases with subtle findings that would not be identified in 

administrative codes. Another limitation arises from the nature of machine learning, in 

which the algorithm was provided with only the data and associated outcomes in the training 

dataset, without explicit definitions of features. Because the algorithm “learned” the features 

that were most predictive for the risk implicitly, it is possible that the algorithm is using 

features previously unknown to, or ignored by, physicians. The expansion of input features 

to include text notes may increase the accuracy but will require more elaborate 

computational approaches. The algorithm has been trained to work within the referral 

population of a large academic medical center in north-central Florida and can capture 

specific population characteristics as well as practice pattern for individual providers within 

that population. Further training and validation of the algorithm is necessary in a data set 

with different population characteristics and practice patterns. The algorithm was designed 

to be used by physicians and we are currently testing whether a simplified web version of 

the algorithm targeted for patients’ use provides comparable performance.

CONCLUSIONS

In a large single-center cohort of surgical patients we have developed and validated an 

automated machine-learning algorithm that uses existing clinical data in electronic health 

records in real-time to forecast the risk for major complications and death after any type of 

surgery with high sensitivity and specificity. Given the association between greater number 

of postoperative complications and increased adverse outcomes and costs, there is a critical 

need for accurate preoperative risk stratification for postoperative complications. Further 

research is necessary to externally validate this approach and to determine the feasibility of 

applying this algorithm in a real-time clinical setting in order to assess whether use of the 

algorithm could lead to improved care and outcomes compared with current practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Figure 1A. The conceptual framework of MySurgeryRisk analytics platform. The diagram 

shows sequence of steps from aggregation of raw data, data engineering and data analytics to 

final output.

Figure 1B. The conceptual diagram of the Intelligent Perioperative Platform. This platform 

resides in a secure environment and in real time integrates and transforms electronic health 

records data, runs predictive algorithms, produces outputs for physicians, inputs their 

feedback and prospectively collects data for the future retraining of the prediction models
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Figure 2. 
MySurgeryRisk Output. The sample ouput for subjects with A, low mortality risk, and B, 

high mortality risk. Figure shows the predicted risks for eight postoperative complications 

for the given patient in eight equal-sized pies. The calculated cutoff values for AKI, ICU, 

MV, WND, CV, NEU, SEP, and VTE, were 0.35, 0.35, 0.13, 0.1, 0.07, 0.07, 0.06, and 0.03 

respectively. Subjects are classified as high risk for a complication if calculated risk score 

exceeds the respective cutoff and respective pie is marked as red, and green otherwise. The 

size of the pie represents the proportion of the risk, scaled based on the cutoff for each 

complication. Green background color represents low mortality risk (Figure 2A) whereas red 

background color shows high mortality risk (Figure 2B).

Abbreviation: AKI, acute kidney injury, CV, cardiovascular complications, ICU, intensive 

care unit addmission > 48 hours, MV, mechanical ventilation > 48 hours, NEU, neurologic 

complications, SEP, sepsis, VTE, venous thromboembolism, WND, wound complications.
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Figure 3. 
Receiver operating characteristic curves and performance metrics for MySurgeryRisk 
algorithm in predicting A, more prevalent complications, B, less prevalent complications, 

and C, mortality.
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Table 3

Absolute and relative risk associated with high and low risk groups.

Absolute risk % (99% Confidence Interval) Relative risk (99% Confidence Interval)

Postoperative complication Low risk groupa High risk groupa High vs low risk group

Acute kidney injury 14.7% (14.1%, 15.2%) 72.6% (71.8%, 73.4%) 5.0 (4.8, 5.1)

Intensive care unit admission > 48 hours 11.9% (11.5%, 12.4%) 68.3% (67.5%, 69.2%) 5.7 (5.5, 6.0)

Mechanical ventilation > 48 hours 2.5% (2.3%, 2.7%) 47.6% (46.5%, 48.8%) 19.4 (17.8, 21.1)

Wound complications 3.7% (3.5%, 4.0%) 25.9% (25.1%, 26.7%) 6.9 (6.4, 7.5)

Cardiovascular complications 2.2% (2.0%, 2.3%) 20.5% (19.7%, 21.3%) 9.5 (8.6, 10.5)

Neurologic complications 1.8% (1.7%, 2.0%) 24.1% (23.2%, 25.1%) 13.1 (11.8, 14.5)

Sepsis 1.2% (1.0%, 1.3%) 25.8% (24.6%, 26.9%) 21.8 (19.3, 24.7)

Venous thromboembolism 0.7% (0.6%, 0.9%) 10.1% (9.4%, 10.8) 13.5 (11.4, 15.9)

Mortality Low risk groupb High risk groupb High vs low risk group

1-month mortality 0.4% (0.3%, 0.5%) 52.6% (50.2%, 55.0%) 133.3 (115.0, 154.7)

3-months mortality 0.7% (0.6%, 0.8%) 60.6% (58.8%, 62.4%) 86.2 (77.1, 96.5)

6-months mortality 1.2% (1.0%, 1.3%) 67.3% (65.7%, 68.8%) 58.3 (53.3, 63.7)

12-months mortality 1.7% (1.6%, 1.9%) 78.8% (77.5%, 80.0%) 45.1 (42.0, 48.5)

24-months mortality 2.1% (1.9%, 2.3%) 69.9% (68.7%, 71.1%) 32.7 (30.6, 35.1)

a
Patients were classified as low risk if their prediction score was less than or equal to cutoff and high as otherwise where cutoff values were 0.35, 

0.35, 0.13, 0.10, 0.07, 0.07, 0.06, and 0.03 for acute kidney injury, intensive care unit admission > 48 hours, mechanical ventilation > 48 hours, 
wound complications, cardiovascular complications, neurologic complications, sepsis, and venous thromboembolism, respectively.

b
Cutoff values were 0.12, 0.17, 0.20, 0.26, and 0.24 for 1, 3, 6, 12, and 24-month mortality, respectively.
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