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Abstract

Humans have co-evolved alongside numerous other organisms, some having a profound effect on 

health and nutrition. As the earliest pharmaceutical subject, pharmacognosy has evolved into a 

meta-discipline devoted to natural biomedical agents and their functional properties. While the 

acquisition of expanding data volumes is ongoing, contextualization is lagging. Thus, we assert 

that the establishment of an integrated and open databases ecosystem will nurture the discipline. 

After proposing an epistemological framework of knowledge acquisition in pharmacognosy, this 

study focuses on recent computational and analytical approaches. It then elaborates on the flux of 

research data, where good practices could foster the implementation of more integrated systems, 

which will in turn help shaping the future of pharmacognosy and determine its constitutional 

societal relevance.
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Introduction

For healthcare, humankind has always depended on natural resources. Traditional medicines 

continue to represent the main source of therapy for the majority of the world’s population 

and rely on written documents, verbal teachings, and (in)formally transmitted practices. This 

study considers traditional medicines as being based on the outcomes of holistic 

experimentation (Figure 1, Corner A). Written pharmacognosy knowledge has evolved from 

documents such as the Eber’s Papyrus into contemporary publication formats that describe 

the discovery of bioactive natural products, usually based on reductionist experimental 

approaches (Figure 1, Corner B). Indeed, the main paradigm of the last 200+ years of 

pharmacognosy and related research consisted in studying complex solvent extracts and 

ideally characterizing its individual chemical principle. Coupled to bioassay, this method, 

known as bioactivity-guided fractionation (BGF), has contributed significantly to the fact 

that almost half of currently marketed drugs are related to natural products (NPs) [1].

However, associating the activity of a preparation to an alleged single chemical entity (SCE) 

overlooks that complex matrices comprised of hundreds or (tens of) thousands of 

metabolites often resist physical separation and attempts seeking to explain observed 

biological activities. To address these challenges, progress in computational and 

(bio-)analytical methodology are being integrated into pharmacognosy research. These 

advances now allow the characterization of multiple SCEs in complex organisms 

(metabolomics), which re-calibrates biological interpretation towards a more holistic 

experimental perspective (Figure 1, Corner A) and enables the prediction of 

physicochemical and spectral properties associated with real or surrogate SCEs 

(computational pharmacognosy), using reductionist strategies as input (Figure 1, Corner C). 

As reductionist experiments involving physical separation foster SCE identification, the 

fuzzier, yet deeper, world of metabolomics coupled with computational chemistry tools 

becomes the best available complement to address the complexity of structurally and 

biologically diverse matrices. Nevertheless, precision and accuracy for the efficient 

annotation of extensive metabolite pools is lagging and remains a major challenge. Re-
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contextualizing SCEs within their organisms, pathways, and molecular targets will 

strengthen the metabolite identification process and promote the recognition of new potential 

biological activities [2,3]. Efficient ways of standardization, dissemination, and open sharing 

of relevant data sets are prerequisites for advancing this contextualization. They will enable 

the diversification of knowledge acquisition methods in pharmacognosy (Figure 1 Corner A, 

B, and C), the results of which could be re-assembled into holistic computational approaches 

(Figure 1, Corner D) and advance pharmacognosy in(to) the digital era.

Computational advances in metabolomics

Acquiring observational data at the molecular level is central to both classical reductionist 

and modern metabolomics experiments. Thus, acceleration and enhancement of instrumental 

and computational efforts to identify and characterize SCEs need to be pursued. Indeed, one 

of the key challenges in these fields consists in the unambiguous(!) identification of multiple 

SCEs in complex matrices.

Metabolomics data annotation

Metabolite qualification

When physically isolated, SCEs are classically identified through a combination of extensive 

1D and 2D NMR experiments, establishing atom connectivity, and HRMS measurement 

assigning the molecular formula (MF). Additionally, chiroptical and/or X-ray measurements 

can establish the spatial conformation and configurations, including atropisomerism [4]. 

NMR can be considered the most appropriate tool for overall accuracy of structural 

elucidation, whereas MS is most suitable for metabolite annotation within complex 

mixtures. Both roles are central to metabolomics [5,6]. In NP research, metabolomics 

mainly relies on (U)HPLC hyphenated HRMS and HRMS/MS. For complex matrices, pre-

separation of the extract is generally required. While C18 phases are most commonly used in 

(U)HPLC, a wide variety of phase chemistry can accommodate the separation of diverse 

NPs [7]. Mining of LC-MS data generally involves peak-picking algorithms for the 

identification of so-called “features”, i.e., ions of specific m/z value at a specific retention 

time (m/z@RT). The high number of degenerated MS features (adducts, dimers) requires 

deconvolution into single features [8], which can then be linked to MFs by applying various 

filtering steps [9]. Feature alignment across samples leads to matrices that can be mined for 

differential biomarkers using multi-variate data analysis (MVDA) [10]. As fragmentation 

spectra are related to structure, they bring valuable complementary information to the MF. 

MS/MS spectra are generally interpreted by applying spectral matching against experimental 

or theoretical spectral databases. Access to an experimental MS/MS database acquired at a 

standardized ionization energy and on a specific instrument would be ideal, but is unrealistic 

given the number of NPs reported to date (>200,000). In fact, accessible experimental 

databases are limited in size (typically, ca. 25,000 compounds) and diversity [11].

Metabolite annotation can also benefit greatly from direct NMR-based fingerprinting [5]. 

One recent methodology deconvolutes and annotates 13C data directly within complex NPs 

extracts [12], and minimal NMR data input approaches permit the combination of 

analytically orthogonal spectroscopic data (NMR plus MS) and databases [13].
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Metabolite quantification

While MS and UV detectors are intrinsically limited to the quantification of metabolites for 

which reference standards are available, Corona Discharge (CDD) and Evaporative Light-

Scattering (ELSD) detectors can sometimes overcome this limitation. MS-based approaches 

are usually not quantitative, unless being calibrated for every targeted SCE. Recent progress 

towards establishing of quantitative structure-response relationships for defined classes of 

analytes by means of artificial neural networks shows high predictability of the ESI-MS 

responsiveness [14], and might hold a possible solution for the development of truly 

quantitative MS-based metabolomics studies. As NMR does not require identical standards 

for absolute quantification and has 100% quantitation capabilities, qNMR has become 

applied widely [15]. Advancement in both probe and qNMR methodology, as well as the 

availability of 2D qNMR methods further increase the number of metabolites that can be 

studied concurrently [16].

Metabolite localization and dynamics

The spatial localization of specific metabolites in tissue can provide important clues when 

studying interactions between organisms or when surveying the distribution of metabolites 

within an organism up to the scale of ecosystems. A recent review has covered the use of 

Mass Spectrometry Imaging from the nano to the macro range [17]. Beyond spatial 

dimensions, time is also critical, as certain metabolites may be produced only during specific 

developmental stages of the organism [18].

Metabolite properties prediction

Structural, spectral, and biological data have been used to annotate, sort, and predict the 

roles of metabolites, with objectives ranging from dereplication [19] to prediction of 

biological properties [2], and prioritization of high-added value molecules [3]. Additionally, 

bioactives can be inferred from traditional knowledge [20] or genomic mining aimed at 

predicting metabolic products [21]. Spectral prediction [22,23] of metabolites is becoming 

an essential dereplication tool for unknowns, or when original data are missing. One critical 

step when annotating metabolites via experimental or theoretical spectral matching is the 

establishment of a scoring system that rates the confidence of the annotation. For this, 

statistical methods to estimate false discovery rates of annotations have been developed [24] 

and applied to high-resolution imaging mass spectrometry data [25].

Metabolomics data contextualization

Analyte specificity and “individualization” for effective detection is a common denominator 

in modern analytical methods. Thus, contextualizing these singleton molecular data is a 

means of accessing the reality of the studied organism and helps with the metabolite 

annotation process. One game-changing tool in this field is the Global Natural Products 

Social molecular networking (MN) platform [26]. MN organizes untargeted MS/MS data 

and allows for the visualization of the analytes’ relationships in the form of clusters of 

structurally-related molecules. Thus, MN offers a way to propagate annotation information 

among generated networks, providing an efficient tool for NP dereplication [27]. The 

annotation potential can be extended by automatically querying constituents of the MN 
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against vast theoretical spectral NP DBs [28]. Further contextualization by overlaying MN 

of large NP extract libraries with biological and taxonomical information can lead to 

prioritization of bioactive NPs [3]. An additional layer of biological significance can be 

obtained by gathering information about the metabolic reactions expressed in the studied 

biological system and placing the detected features into a relevant biochemical context [29]. 

The in silico metabolic expansion of structural DBs, followed by conversion of these 

expanded DBs to theoretical spectral DBs used to automatically annotated experimental data 

organized as MN becomes achievable. When followed by re-injection of the annotated 

structures at the metabolic expansion phase and feeding of structural/spectral pairs for 

improvement during the in silico fragmentation phase, this approach could lead to a virtuous 

cycle of metabolite identification [30], provided that solid annotation scoring systems can be 

established. Recently, such an integrated approach was devised for the annotation of 

unknowns in GC-MS data [19]. Regarding NMR data contextualization, an algorithm 

comparing 2D NMR spectra was trained on >2,000 HSQC spectra using deep convolutional 

neural networks [31]. This tool, SMART, assisted in NP discovery efforts and detected 

several new compounds of known skeletons.

Integrative solutions are essential for NP studies, and to grasp the complexity of the 

biochemical interactions involved in pharmacognosy. For their efficiency, the development 

of open and integrated DBs capable of linking structural, spectral, genetic, phylogenetic, 

ethnomedical, biological, clinical, and regulatory information is critically important. (Figure 

1, Corner D) The creation of such a DB ecosystem depends on the efficient accessibility, 

diffusion, and sharing of accurately curated data.

Evolution of Pharmacognosy through enhanced data integration

Almost all pharmacognosy research endeavors start, and are guided, with collected and 

taxonomically identified organisms, possibly annotated by traditional use. At this initial 

stage of documentation and data production, existing resources are typically consulted 

(Figure 2). As Open Access and continuous data reuse models are being taken seriously 

[32], studies show the positive impact of data-sharing on scientific productivity [33] – 

despite newly emerging issues [34]. Additionally, access to biological resources and 

traditional knowledge today must follow a strict legal framework within a country [35]. 

Furthermore, most of the published research knowledge that has accumulated over the past 

200 years is owned by third-parties, and access is tightly regulated. In comparison with other 

fields, current data-sharing practices are sub-standard in pharmacognosy. The behavior of 

researchers towards data-sharing is not only dictated by norms (however, efficient policies 

should be implemented [36]), but is also driven by personal attitude towards the behavior. 

Thus, data reuse should also be encouraged by demonstration of it’s continuing intrinsic 

value [37].

How to manage, curate and share data

It is paramount that the data produced today will be available in the future. This requires 

open, properly-documented, quality-controlled formats, and, ideally, associated tools for 

analysis. Regrettably, contemporary analytical instruments typically produce data only in a 
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vendor-specific, undocumented format. For MS data, functional alternatives exist, especially 

the mzXML format [38]. While no widely accepted format exists yet for NMR, candidates 

such as nmrML [39], NMReDATA (http://nmredata.org), and the Allotrope Foundation (AF) 

data standard (https://www.allotrope.org) have started to appear. The AF initiative consists 

of a network of the major instrument manufacturers, industries, and academics. AF aims at 

developing a common format for analytical data, including LC, UV, IR, NMR, MS, and 

more. The collectively built ontologies, and the use of computationally efficient, standard 

hierarchical data format containers (HDF5), make this a most promising project, and worthy 

to follow.

Best practices for data management

Data-sharing is essential to research, and gradually becomes mandatory for institutional and 

philanthropic funding. As stated in the FAIR principles, ideal data should be findable, 

accessible, inter-operable, and reusable [40]. While researchers are often tempted to 

establish individual repositories or indexing resources, making them sustainable and reliable 

requires efficient planning and business models [41]. Numerous DBs and tools address a 

diversity of data related to metabolites (see https://omictools.com/). Many are simply data-

silos, lack standardization or links with other resources and, thereby, diffuse the efforts of 

both the community and the DB developers. Metabolomics [42] and plant science [43] 

communities are currently debating the best practices for data management, ontologies 

development, controlled vocabularies, and tools that make data inter-operable [44]. The 

Unichem project [45] demonstrated the feasibility of linked DBs. PubChem and ChEMBL 

allow the upload of structural and bioassay data for compounds. While these resources do 

not provide storage space for spectral data, they can be combined with other repositories 

such as Dataverse (https://www.dataverse.org), Zenodo (https://zenodo.org/), or the Open 

Science Framework (https://www.osf.io) to cite a few of the >650 indexed resources (http://

tagteam.harvard.edu/hubs/oatp/tag/oa.repositories.data).

Data curation

The development and continuous improvement of machine learning, natural language 

processing, and the increase of computing power all enhance the means of extracting facts 

from the literature and other resources. Open initiatives, such as ContentMine (https://

contentmine.org/) provide tools, support, and opportunities for extracting knowledge from 

publications. However, for the foreseeable future, these tools can not replace human 

intelligence and dispense with the need for curation. In fact, the opposite is the case, as 

errors produced by “artificial intelligence” tend to be multiplied across different diverging 

resources. Automation may accelerate this trend.

Data re-use

From a scientific perspective, restrictive licenses increase the likelihood of users favoring 

lower quality and less-restricted data sources. Another consequence of overly strict licensing 

is that researchers utilize the data without referencing the origin, adding another layer of 

complexity to the problem of authorship and reference tracking. In contrast, mindful data 

licensing also nurtures new initiatives whenever projects lose funding or discontinue due to, 
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e.g., retirement, thereby promoting research efforts that otherwise would have been made in 

vain [41].

Experiment and data description and sharing

The design of scientific papers could be rethought to keep only the prosaic parts 

(discussions, reflections, opinions, new ideas, and new methods) in the current publication 

format. For reporting experimental research one alternative could be found in semantic and 

ontology-based publishing [46]. Both approaches can also be combined to offer the best of 

the two worlds. Particularly, nanopublications [47] may provide a way to reduce the time 

from discovery to publication and improve the quality and availability of research results, 

thereby fulfilling funder and societal translational expectations. Thus, the bioactivity of a 

previously described compound could be described as simple facts and re-usable protocols 

[48]. The IsaTab format (http://www.isacommons.org/), supported by several data-sharing 

platforms, also provides a standardized and well-supported way to describe and navigate the 

metadata of experimental data sets.

Conclusions

As the complexity of natural medicines goes beyond their elusive bioactivities and numerous 

constituents, much remains to be done in order to unambiguously define the precise 

metabolic content of an organism under given conditions. If the developments of 

computational solutions for identifying metabolites should be pursued, it is also crucial that 

these developments go hand in hand with the contextualization of the acquired data.

Thereby, it should be necessary to consider the elaboration of an open and accessible 

database ecosystem. Ideally, this will allow cross-linking and foster extracting more meaning 

from the accumulated data, regardless of origin and acquisition method, and ultimately 

gaining an overall view of the studied systems.

None of the knowledge acquisition methods in the presented epistemological framework of 

pharmacognosy (Figure 1) should be neglected. Each method has its own advantage and 

disadvantage, and their combination can only be beneficial. It is timely to expand the 

necessary efforts within the scientific community to follow this global vision. Making 

research data both shared and shareable is definitely the first action item for implementation. 

This comprehensive view will then offer a means of preparing pharmacognosy for the digital 

era and, ultimately, tackling important public health issues and environmental challenges. 

However, more than just technical solutions and community commitment will be required to 

achieve this [49]. The recently emerged concept of ecopharmacognosy [50], which 

integrates pharmacognosy in the broader context of sustainability, offers specific thoughts on 

potential directions to be followed.
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Highlights

• Metabolomics and Pharmacognosy are naturally connected and cross-

fertilizing

• Improvement in computational tools and contextualization of analytical data 

are needed to potentiate translational applications

• Data-intensive metabolomics methods unveil the need for enhanced data 

practices

• Establishing an ecosystem of open, interactive databases will nurture both 

metabolomics and pharmacognosy research
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Box 1

A cautionary word regarding distracting compounds and residual 
complexity

Conclusion or interpretation errors from bioassay observations are common and may be 

due to several neglected factors (e.g., distracting compounds, Figure 2) such as 

aggregation, non-specific activities and reactivity [51], fluorescence quenching or 

overlapping spectra, redox cycling, among others [52]. False positives can arise from 

misidentified and/or contaminated cell-lines [53], which are difficult to track in 

publications. Failure to use adequate controls and ensuring material authenticity and 

integrity may also result in type I and II errors and lack of reproducibility. 

Unsubstantiated but reported bioactivities are probably one key aspect that leads to a 

waste of time, effort, and money in pharmacognosy research [52]. Importantly, 

considering the documented impact of Residual Complexity (Figure 2), the singleton 

character of an SCE (purity) should be proven experimentally rather than being assumed 

or even taken for granted [54]. Adding another layer of complexity, insight is growing 

that organisms such as “a plant” represent macro- and micro-complex ecosystems rather 

than single biological entities [55], involving endosymbionts (Figure 2) embedded into 

exuberant internal and surface communities. This unveils a new universe for the 

metabolomics-inclined researcher, actually one that complicates standardization and 

understanding significantly.
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Figure 1. 
Proposed epistemological framework of knowledge acquisition methods in pharmacognosy. 

At the bottom are depicted the main subjects of study of the discipline in order of increasing 

systems complexity: single chemical entities, natural product extracts, genetic material, 

proteins, microorganisms, plants, animals (including humans), the whole planet ecosystem 

and their possible interactions. Above are schematized knowledge acquisition methods in the 

discipline. They were divided four ways according to their tendency to rely on: holistic and 

experimental approaches (Corner A, e.g. traditional medicines), reductionist and 
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experimental approaches (Corner B, e.g. bio-guided fractionation), reductionist and 

computational approaches (Corner C, e.g. in silico fragmentation of a single chemical entity) 

and holistic and computational approaches (Corner D, a hypothetical ecosystem of open 

databases aggregating pharmacognostic knowledge). Grey links represent examples of 

information fluxes (solid lines as existing fluxes and dashed lines as potential ones). 

Actually, these knowledge acquisition methods are not mutually exclusive. For example: the 

use of an in silico annotated molecular network organizing fragmentation data acquired on 

plants selected trough an ethnopharmacological survey to highlight metabolites involved in 

the reported traditional use. This approach would feed from three knowledge acquisition 

methods (Corner A, B and C).
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Figure 2. 
Representation of the different types of data handled in pharmacognosy (non exhaustive). 

The blue network that circles the graphic represents the production and consumption 

processes of data in order to predict and annotate existing data or entities. The transparent 

red items on top of Bioactivity data, Source organism and Single Chemical Entity represent 

some of the different issues that can complicate the interpretation or identification of these 

elements. See Box. 1 for details
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