
Systems biology and in vitro validation identifies FAM129A as 
asthma steroid response modulator

Michael J McGeachie, PhD1,2,*,†, George L Clemmer, SM1,†, Boris Hayete, PhD3, Heming 
Xing, PhD4, Karl Runge, PhD3, Ann Chen Wu, MD, MPH1,2,6, Xiaofeng Jiang, PhD5, Quan 
Lu, PhD5, Bruce Church, PhD3, Iya Khalil, PhD3, Kelan Tantisira, MD1,2, and Scott Weiss, 
MD, SM1,2

1Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, 
USA

2Harvard Medical School, Boston, MA 02115, USA

3GNS Healthcare, Cambridge, MA, 02139, USA

4Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA

5Program in Molecular and Integrative Physiological Sciences, Department of Environmental 
Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

6PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population 
Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA

Abstract

BACKGROUND—Variation in response to the most commonly used class of asthma controller 

medication, inhaled corticosteroids (ICS), presents a serious challenge in asthma management, 

particularly for steroid-resistant patients who display little or no response to treatment.

OBJECTIVE—We applied a systems-biology approach to primary clinical and genomic data to 

identify and validate genes that modulate steroid response in children with asthma.

METHODS—We selected 104 ICS-treated asthmatic non-Hispanic white children and determined 

a Steroid Responsiveness Endophenotype (SRE) using observations of six clinical measures over 

four years. We modeled each subject’s cellular steroid response using data from a previously 

published study of immortalized lymphoblastoid cell lines (LCL) under dexamethasone (DEX) 

and sham treatment. We integrated SRE with LCL DEX response and genotypes to build a 

genome-scale network using the Reverse Engineering, Forward Simulation (REFS) modeling 

framework, identifying seven genes modulating SRE.
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RESULTS—Three of these genes were functionally validated using a stable NFκB Luc reporter 

in A549 Human lung epithelial cells, IL1β cytokine stimulation, and dexamethasone treatment. 

Using siRNA transfection, knockdown of Family With Sequence Similarity 129 Member A 
(FAM129A) produced a reduction in steroid treatment response (p<0.001).

CONCLUSION—With this systems-based approach, we have shown that FAM129A is associated 

with variation in clinical asthma steroid responsiveness and that FAM129A modulates steroid 

responsiveness in lung epithelial cells.
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Introduction

Asthma affects approximately 23 million individuals in the United States and approximately 

300 million individuals worldwide.(1) Inhaled corticosteroids (ICS) are the most commonly 

prescribed medications to control asthma. However, not all individuals with asthma respond 

to these treatments; some are well-controlled on ICS, while others require additional or 

alternative medications.(2, 3) While asthma is a heterogeneous disease, even among a 

relatively similar cohort of children with mild-to-moderate asthma, there are noticeable 

differences in the efficacy of ICS at maintaining asthma control.(2) Several genetic markers 

have been found to be associated with the efficacy of ICS therapy, such as the glucocorticoid 

induced transcript 1 (GLCCI1)(4) and the corticotrophin releasing hormone receptor 1 

(CRHR1).(2, 5) Although these variants have fairly large effect sizes, in the case of 

GLCCI1, GWAS indicated up to 6% of variation in response to ICS treatment,(4) but 

attempts at clinical validation have produced mixed results.(6–9) These findings suggests 

that additional genes may be important for determining ICS response in asthma.(10)

While studies reviewed in a recently published systematic review of over 33 publications of 

ICS responsiveness have used particular asthma-related outcomes as proxies for response to 

ICS,(11) we previously demonstrated that a combination of multiple clinical outcomes 
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measures steroid responsiveness with higher accuracy, higher stability across populations, 

and higher robustness to missing data.(12) We refer to this herein as the Steroid 

Responsiveness Endophenotype (SRE), and it is a combination of six clinical factors: 

baseline lung function (forced expiratory volume in 1 second, FEV1); bronchodilator 

response (change in FEV1 after administration of albuterol); frequency of asthma-related 

emergency department and hospital visits; frequency of supplemental courses of oral 

corticosteroids required to maintain asthma control; airway hyperreactivity measured by a 

methacholine challenge test; and daily symptom diary cards. Integrating these factors 

provides a more complete picture of the response to ICS treatment, which may manifest 

differently in distinct individuals with asthma, and has been shown to measure steroid 

responsiveness more accurately than any of these clinical factors alone.(12)

Genomic systems biology approaches – defined as those that take a holistic approach to 

disease understanding informed by multiple disciplines, genomics, and bioinformatic data 

sources(13, 14) – have previously been effective at identifying biological processes 

contributing to the etiology of complex genetic diseases.(15, 16) Here, we take a systems 

approach to address the genomics of ICS response in individuals with asthma, building on 

our previous Bayesian-network based methodology, Reverse Engineering and Forward 

Simulation (REFS).(17) This method uses patient genomic and outcome data to identify 

genes driving the associations of interest, enriching for likely causal importance of such 

associations. REFS uses Markov Chain Monte Carlo sampling to construct a collection of 

Bayesian networks. This collection of networks is termed an ensemble, and by querying the 

ensemble as a whole, questions can be answered such as: how do SNPs and genes interact, 

and which genes have the greatest effect on patient outcomes?

We hypothesized that it should be possible to integrate the ICS responsiveness signal 

measured in clinical trial subjects with the dexamethasone response signal measured in 

immortalized lymphoblastoid cell lines (LCL DEX response) from those subjects to create 

an informative steroid response network. Thus we expected to determine network edges that 

are indicative of interactions in steroid biology. We further hypothesized that this integrative 

network will not just represent steroid biology, but that secondary sources of variation in 

LCL DEX response are due to the variation in the donor’s genotypes and steroid 

responsiveness endotype. Thus we expected, if relevant signals were detected with sufficient 

power, to determine network edges indicative of variations in genotypes and SRE, and for 

the first neighbors of SRE to be genes or SNPs that modulate ICS response.

Methods

Our study design is shown in Figure 1. We selected a cohort from mild-to-moderate 

childhood asthmatics who were on ICS therapy in the Childhood Asthma Management 

Program (CAMP)(18, 19) trial and for which LCL DEX response and genotypes were 

available. These data were filtered and combined in the REFS framework to identify genes 

associated with SRE. To guard against false positives, we carried genes forward for 

functional validation in human airway epithelial cells where we measured the effect of gene 

knockdown on NFκB response to treatment with dexamethasone (DEX) and interleukin-1 

beta (IL1β).
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CAMP

The Childhood Asthma Management Program was a randomized clinical trial of the efficacy 

of long-term daily ICS treatments at managing asthma symptoms and improving lung 

function.(19) CAMP enrolled 1,041 children ages 5 to 12 years with mild to moderate 

persistent asthma over a 23-month period, and followed them for an additional 4 years. 

Recruitment criteria and study characteristics have been described previously.(18, 19) 

During the original trial, CAMP participants were randomized into three treatment arms: 

budesonide (ICS), nedocromil, or placebo. We utilized three major types of data from 

selected CAMP participants: clinical data (from which we calculated SRE); genotype SNP 

data; and transcriptomic profiling from LCLs. CAMP participants were selected for the 

present study cohort as described below.

Expression Data, Preprocessing, and QC

After the main CAMP trial concluded, subjects were followed for at least yearly observation. 

CAMP participants were recontacted for additional blood draw roughly 6 years after study 

conclusion. Of participants randomized to ICS treatment, 161 non-Hispanic white subjects 

provided blood samples from which CD4+ lymphocytes were isolated. These samples were 

immortalized and transcriptomically profiled under two treatment conditions: 

dexamethasone treatment (10−6 M) and a sham (ethanol) control. After six hours, expression 

levels were measured using the Illumina HumanRef8 v2 BeadChip (Illumina, San Diego, 

CA). Bead-level data was stored using BeadStudio (Illumina) and arrays which had low 

detection thresholds or low dynamic range were marked as failed. Differential and eQTL 

analysis of this expression set has been previously described,(20) although we used a 

different QC and filtering process for the present study, as described below.

We used the beadarray package(21) for the R statistical language to read the previously 

saved bead-level data of passing arrays and to produce QC plots, Log-2 transformed bead-

level data, bead-type statistics, bead summary data, and to perform differential expression 

analysis. We assembled an expression set of DEX and sham arrays, filtered out low quality 

probes based on the R illuminaHumanv2.db annotation package, and quantile normalized 

the data. We used the Bioconductor limma package(22) to examine the multidimensional 

scaling (MDS) clustering of all arrays including replicates. We identified and discarded 

defective arrays and sample mix-ups. We identified arrays with treatment condition 

mislabeling and either discarded the array or corrected the label. We created a paired set of 

arrays by discarding subjects with only one treatment condition and remaining replicates in 

such a way as to favor array pairs on the same chip or processed on the same day. We batch-

corrected this set using the sva package ComBat function(23) and examined the MDS plot of 

DEX-Sham differential expression. We identified and removed outliers to produce the final 

set of paired DEX and Sham arrays.

We selected probes for the training set using the intra-class correlation (ICC) method 

provided by the R beadarrayFilter package.(24) We used a cutoff of 0.5 to select probes for 

which the between array variability exceeded the within array variability. This package and 

cutoff value have been demonstrated to produce more powerful analysis of differentially 

expressed genes on a publicly available Illumina Spike-in expression set.(25) We selected 
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probes separately for the DEX and Sham treatment conditions and, using probes that were 

informative in both conditions, took the (Log2(DEX) − Log2(sham)) difference to produce 

the LCL DEX response data for the training set.

SRE phenotype

In this study we used the Corticosteroid Responsiveness Endophenotype Model previously 

described.(12) Briefly, it allows the combination of multiple observations of six clinical 

measures to assess a subject’s responsiveness to ICS. This results in one continuous variable 

that measures the effectiveness of steroid therapy for an individual. A more positive value 

indicates a stronger response to ICS. SRE has been shown to produce more accurate 

measurements of ICS response than individual phenotypes in white replication populations 

of children and adults with mild to moderately severe asthma and, for children, of multiple 

races.(12) We applied it throughout the four years of the clinical trial portion of CAMP to 

produce SRE and its 6 components for each subject.

Genotypes

Genome-wide genotyping was previously performed at the Channing Division of Network 

Medicine (CDNM), using Illumina HumanHap 610 bead chips (Illumina, Inc., San Diego, 

CA).(26) After pruning for minor allele frequency (less than 5%) and probability of Hardy-

Weinberg equilibrium (less than 0.1%), and removing discordant probes identified by 

Illumina, 471,851 SNPs remained genotyped among 581 non-Hispanic white CAMP 

participants in 551 families with a genotyping rate of .998. We imputed missing genotypes 

using MaCH.(27)

SNP Selection

To identify potentially informative SNPs for REFS modeling, we performed an SRE 

genome-wide association study (GWAS) within the CAMP Budesonide ICS treatment arm 

(N=172) using the R GenABLE package.(28) We selected one sibling from each family for 

inclusion based on which sibling had LCL DEX response data, or randomly if no sibling had 

response data, excluded subjects with too high autosomal heterozygosity, and excluded 

markers with <1.5% minor allele frequency. We performed statistical tests for each SNP’s 

association with SRE based on an additive SNP-model using the GenABLE qtscore 
function.(28) We used the R fdrtool package(29) to filter GWAS results using the Higher 

Criticism Statistic(30) (function hc.thresh) and a p-value threshold of p < 0.001 to select 

SNPS for the training set. This was expected to produce a tractable number of SNPs 

containing mostly GWAS false positives from which the REFS modeling system could 

select significant predictors.

Integrative Training Set

We selected the cohort of non-Hispanic white CAMP participants from the ICS treatment 

arm who had 1) computable SRE measures, 2) genotype data, and 3) LCL DEX response.
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REFS

We modeled the training set using GNS Healthcare’s REFS (GNS Healthcare, Cambridge, 

MA) modeling pipeline. This method has been previously described.(17) Briefly, REFS 

learns directly from data without need for a pre-specified hypothesis, producing an 

“ensemble” or set of Bayesian networks (BNs). Because REFS uses the stochastic Markov 

chain Monte Carlo (MCMC)(31) and simulated annealing methods, each network in the 

ensemble is different. The number of networks to be generated is specified as an input 

parameter. These networks are generated and converged in parallel to produce a 

representative sample of all possible Bayesian networks that could have generated the 

observed data.

We configured REFS to model our training set variables as continuous values and to allow 

each variable to act as an input to or output from any other variable, with the exception of 

SNP genotypes which were constrained to act as inputs only. After generation, the ensemble 

was checked to confirm that the process had converged (Supplemental Figures 7 & 8) and 

predicted the training data reasonably well.

The REFS ensemble consists of possible network topologies that might have generated the 

observed data. In order to integrate the predictions of the ensemble and ascertain statistical 

relevance of individual relationships, as well as to identify functional indirect relationships, 

it is necessary to perform in silico simulations. Using such simulations, we perturbed all 

possible input variables and measured the effect on all possible downstream targets.

The stochastic nature of the REFS modeling approach causes variability in results. We 

performed the REFS modeling step twice, each with an ensemble size of 256 networks, 

using the same input parameters but different random seeds, to limit dependence of our 

results on a single stochastic simulation.

Interaction Network

We created a secondary “interaction network” to summarize each REFS ensemble. In this 

network we included a vertex for every training set variable and a directed edge for every 

downstream target for which REFS in silico simulation produced a P-value of less than 0.05. 

This is an empirical p-value computed using a permutation-based procedure.(17) This 

produced networks potentially containing multiple isolated subgraphs. We stored the REFS 

statistics characterizing the ensemble and simulation results as edge and vertex attributes. 

We assembled, manipulated, and plotted the interaction network using the R igraph package. 

We queried the interaction network to identify SNPs and genes that interact directly or 

indirectly with SRE. We focused our analysis on the subgraph containing SRE and 

characterized the size of each interaction network by the size of this SRE subgraph.. We 

examined the immediate vicinity of SRE by selecting vertices within 3 hops of SRE (using 

R igraph package ego function) and identifying neighborhoods based on community 

structure using the igraph cluster_walktrap function to find densely connected subgraphs via 

random walks. We simplified plots of these neighborhoods by removing neighborhoods not 

containing a first neighbor gene.
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Cell culture, siRNA Transfection and Chemical Treatment

A549/NFκB-Luc human lung epithelial cells were maintained in high-glucose Dulbecco's 

Modified Eagle Medium (DMEM) containing 10% Fetal Bovine Serum (FBS). Transfection 

of target gene small interfering RNA (siRNA) and non-targeting siRNA (ON-TARGETplus 

pools; GE Dharmacon, Lafayette, CO) was performed using DharmaFECT 1 reagent 

according to the recommended protocol from the manufacturer (GE Dharmacon). The final 

concentration of siRNA was 25 nM. 72 hours after transfection, cells were washed and 

switched to F-12 medium supplemented with 5% dialyzed FBS. Cells were treated with 5 

nM DEX (Sigma-Aldrich, Natick, MA) or 5 ng/mL IL1β (ThermoFisher Scientific, 

Waltham, MA) in the medium for 16 hours.

Luciferase Assay

Cells were washed with phosphate buffered saline (PBS) and lysed with Glo Lysis Buffer 

(Promega, Fitchburg, WI). Protein concentration was measured using bicinchoninic acid 

(BCA) agent (Promega). Luciferase assays were performed using Steady-Glo luciferase 

agent (Promega). Luminescence was measured by using Synergy 2 plate reader (BioTek 

Instruments, Winooski, VT). Each sample was measured in triplicates. Statistical 

significance was assessed using a double-sided t-test.

Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated from cells by using QIAshredder and RNeasy kits (Qiagen, 

Germantown, MD). Oligo(dT)-primed cDNA was prepared from 50 ng of total RNA by 

using SuperScript III First-strand Synthesis System (ThermoFisher). qRT-PCR was set up in 

the presence of 0.5 µM primers by using QuantiTect SYBR Green PCR kit (Qiagen). qRT-

PCR was performed on an StepOne Plus real time PCR machine (Applied Biosystems, 

Foster City, CA) and analyzed using Ct method. β-actin was used as an internal control for 

data normalization. Each sample was measured in triplicates.

Study Approval

Written informed consent for CAMP participants was obtained at CAMP enrollment by the 

child’s parent or guardian, and again at blood draw for the collection of biological materials 

for the purpose of genetic and genomic investigation. These studies were approved by the 

Partners Human Research Committee, the institutional review board for Brigham and 

Women’s Hospital.

Results

LCL DEX response

We used bead-level data from 362 previously passed arrays for 151 CAMP non-Hispanic 

white subjects. MDS clustering (Supplemental Figure 1) indicated that additional QC was 

required. We discarded 5 defective arrays, discarded nine sample mixups, discarded three 

mislabeled arrays, relabeled the treatment condition for seven arrays, and discarded 

unpairable arrays and unneeded replicates to produce a set of paired Dex-Sham arrays for 

148 subjects (Supplemental Figure 2). We discarded five subjects for which batch corrected 
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differential expression exhibited outlier behavior. We identified 3732 probes that were 

informative in both DEX and Sham conditions for which we took the (Log2(DEX) − 

Log2(sham)) difference to determine LCL DEX response in 3732 genes for 143 subjects.

SNP selection

After selection of subjects and exclusion of markers with low MAF, our SRE GWAS panel 

contained 165 subjects (74 female, 91 male) with 471,322 markers. After SRE GWAS and 

selection using higher criticism we retained 360 SNPs (with p < 0.001) to carry forward to 

the training set.

Cohort characteristics

Following quality control (see Methods), we identified a cohort of 104 participants with 

complete genotypes, LCL DEX response, and SRE (Table 1). In the cohort, SRE exhibited a 

reasonably normal distribution (Supplemental Figure 3), and, with Area Under the receiver-

operator characteristic Curve (AUC) of 0.75, measured ICS responsiveness significantly 

more accurately than any of the individual clinical measures (AUCs of 0.58 to 0.68, p-values 

for difference with SRE of <0.001 to 0.018. Supplemental Table 2). After removing 5 SNPS 

for which MAF fell below 0.05 in the cohort population, we finalized the REFS training set 

with 1 phenotype (SRE), 255 SNPS, and 3732 LCL DEX response genes for 104 subjects. 

We performed the REFS modeling step twice and produced two REFS ensembles of 256 

networks each.

Interaction Network

Following our first hypothesis, we created an interaction network for each of the two REFS 

ensembles. These contained SRE subgraphs with 3319 and 3313 vertices connected to SRE 

either directly or indirectly using 7958 and 8028 edges, respectively. The second REFS 

ensemble SRE subgraph contained 3302 (88%) of training set genes and 10 (2.8%) of 

training set SNPs as shown in Figure 2. We inspected the networks to identify candidate 

steroid response controller genes, in the present analysis choosing genes that were first-

degree neighbors of SRE in either network. Six genes appeared in both interaction networks 

(CEP152, EDARADD, FAM129A, FAM174B, FICD, YY1) and FAF1 appeared in only one 

(Table 2); that FAF1 appears in some but not all networks is not surprising given the 

stochastic modeling process and the potentially nascent signals associated with SRE. Gene 

neighborhoods from the second REFS ensemble are shown in Figure 3. Detailed views of 

the FAM129A and other gene neighborhoods are shown, respectively, in Figure 4 and 

Supplemental Figure 9. REFS simulation statistics for the firstdegree SRE neighbors in the 

second REFS network are shown in Supplemental Table 1. As predicted in our second 

hypothesis, all seven first-neighbor genes showed significant changes with SRE (p < 0.05) 

and high correlation between the predicted expression levels and the LCL DEX expression 

training values (Spearman correlations 0.657 to 0.894). We examined the association of LCL 

DEX response with SRE for these genes and found uncorrected p-values of .0004 to .02 

(Supplemental Figure 5).

We performed PubMed literature searches to determine if these genes had previously been 

associated with asthma or nuclear factor kappa-light-chain-enhancer of activated B-cells 
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(NFκB). We found that CRP152, EDARADD, FAF1 and YY1 had a higher number of 

publications, FAM129A, FAM174B, and FICD had fewer publications; FAM129A and YY1 
were reported to be associated with asthma; and EDARADD and YY1 were reported to be 

associated with NFκB.

Resource limits constrained us to limit our cellular validation experiments to four genes. We 

chose EDARADD, FAM129A, FICD, and YY1, in order to include genes that were better 

represented in the literature (YY1, EDARADD), less well represented (FAM129A, FICD), 

associated with asthma (FAM129A, YY1) and associated with NFκB (YY1, EDARADD).

Differential Expression Analysis

We analyzed differential expression in the training set genes (Supplemental Figure 4). We 

found that, had we used a typical differential expression cutoff such as fold change > 2 to 

select genes for the training set, 6 of the 7 SRE 1st neighbor genes would not have been 

included in the training set and thus would not have been found. While only a few genes 

were connected directly to SRE, gene-gene interactions were reported for 96% of fold 

change > 2 genes and 91% of fold change < 2 genes with p-value for differential expression 

<= 0.05. Interactions were also reported for 87% of the 2682 genes with p > 0.05 that would 

be consider not significant in differential expression analysis (Supplemental Table 3).

NFκB activation

Our functional validation strategy is based on NFκB, a master transcription factor that 

controls the expression of a large number of inflammation factors, including cytokines and 

chemokines known to be mediators of asthma. Crucially, NFκB is a transcription factor 

central to the modulation of glucocorticoid induced transrepression, a mechanism underlying 

the anti-inflammatory effects of corticosteroids.(32, 33) Accordingly, we used NFκB as a 

functional read-out of inflammation response and anti-inflammation activity. We used A549 

human lung epithelial NFκB-Luc reporter cells for functional validation. We created an 

inflammatory-response with cytokine IL1β treatment and compared the response to IL1β + 

dexamethasone treatment to determine the anti-inflammation treatment effect of 

glucocorticoids.

We used targeted small interfering RNA (siRNA) transfection to knockdown the expression 

of candidate genes. We achieved efficient knockdown of mRNA for FAM129A (Fig. 5A), 

EDARADD (Supplemental Figure 6A) and FICD (Supplemental Figure 6A). YY1 
knockdown failed and is not reported further.

Knockdown of the FAM129A gene reduced IL1β-induced NFκB activity and (Figure 5B), 

more importantly, produced a moderate but statistically significant (P<0.001) reduction in 

steroid treatment response (Figure 5C). EDARADD and FICD knockdown slightly affected 

IL1β-induced NFκB activity (Supplemental Figure 6B) but did not alter the effect of DEX. 

(Supplemental Figure 6C).

Post-hoc investigation of the 355 SNPs included in REFS and FAM129A revealed no SNPs 

that were identified as expression quantitative trait loci (eQTLs) for FAM129A in GTEx 

data. FAM129A was differentially expressed in asthmatics vs. healthy controls in the 
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Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort 

Gene Expression Omnibus (GEO) data (p = 5.9*10−6).(34)

Discussion

We hypothesized that we could identify a network representative of steroid biology using 

LCL DEX response. Using systems biology, detailed clinical observations, and blood drawn 

from children with asthma, we identified seven genes associated with steroid response. A 

key finding of our study is that FAM129A modulates the in vitro steroid anti-inflammation 

response in A549 human lung epithelial cells from the three genes successfully tested in 

knockout experiments. Thus both hypotheses, that the network would represent steroid 

biology and individual variations in SRE, were confirmed. The direction of effect of 

FAM129A in our airway epithelial cell model supports FAM129A as augmenting the anti-

inflammatory effects of ICS in asthma. In addition, we found that the systems biology model 

helps to ensure the biologic validity of these genes through the multiple REFS iterations 

resulting in carefully annotated interaction networks.

Our finding that FAM129A modulates steroid response is supported by a study by King et 
al. on glucocorticoid repression of inflammatory genes, also in A549 cells. They found 34 

genes, including FAM129A that, at 6 hours, exhibited more than 10-fold induction by IL1β 
and significant repression by the addition of dexamethasone.(35) FAM129A mRNA was 

measured at 1, 2, 6, and 18 hours for cells treated with IL1β, IL1β + DEX, DEX alone, or no 

treatment. FAM129A mRNA was observed to remain at basal levels at 1 and 2 hours; be 

repressed to 47% (P<0.001) of the IL1β induction level by the addition of DEX at 6 hours, 

and returned to basal levels at 18 hours independent of IL1β and/or DEX treatment. Thus, 

IL1β induced FAM129A expression, and the induction was repressed with DEX. 

Collectively, our and King et al.'s results point to FAM129A's active role in airway epithelial 

cell inflammatory response and steroid treatment effect, both as control variable and 

controlled variable. This suggests the existence of a FAM129A regulatory circuit playing a 

central role in airway epithelial cell inflammatory response, where FAM129A seems to 

promote inflammation but enhance the anti-inflammation effect of DEX. Additionally, 

FAM129A has been reported as a marker(36) and modulator of thyroid tumors.(37) It is 

possible that dysregulation of FAM129A leads to cell cycle abnormalities and aberrant cell 

growth, which could cause both cancers and airway remodeling.

Our network indicates an interaction between FAM129A product and steroid responsiveness 

in children with asthma. Other work shows that the FAM129A regulatory circuit observed in 

airway epithelial cells is active in asthma inflammation and steroid treatment response: in a 

study of 12 asthmatics, Yick et al. found that prednisolone upregulated 85 genes, one of 

which was FAM129A in laser microdissected airway smooth muscle.(38) In a subsequent 

study, Yick et al. found FAM129A to be one of eight genes exhibiting differential expression 

in asthma.(39)

Our study demonstrates how a systems biology model can help identify biologically relevant 

genes. Such methods have been successfully applied in other studies of lung disease, 

identifying gene groups associated with asthma control,(40) gene groups associated with 
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severity of chronic obstructive pulmonary disease,(41) and identifying GAB1 as a novel 

regulator of inflammatory response in asthma.(42) Furthermore, the REFS modeling 

technique has been effective in a variety of other applications, including novel gene 

identification for rheumatoid arthritis,(17) type 2 diabetes,(43) and breast cancer.(44) 

Interestingly, GLCCI1(4), a GWAS hit found in CAMP, was not a SRE 1st neighbor. This 

may be related to different phenotypes used: the GWAS phenotype which identified 

GLCCI1 was change in FEV1 after 4–8 weeks of ICS treatment; whereas the phenotype 

used in the current work, SRE, is a composite of 6 phenotypes and is not strongly correlated 

with FEV1. These studies are thus likely to select different genomic features. CRHR1(2, 5) 

may not have been identified in the current study for similar reasons.

We expected the REFS modeling system to connect genes and SNPs with SRE that would 

not otherwise be identified by traditional differential expression analysis. This is evidenced 

by the divergence between genes that would be judged important in a differential expression 

volcano plot (Supplemental Figure 4) and the SRE 1st neighbor genes we identified. Most 

genes included in the REFS modeling step were connected or indirectly connected to SRE in 

the consensus network ensemble (88%, see Supplemental Table 3), most of which would 

typically be ignored in differential expression analysis. This suggests the potential of the 

study methodology to extract additional information from existing expression sets.

Our study has several strengths. We used a composite measure of steroid-responsiveness, the 

SRE, which allowed us to interrogate a general, asthma-related steroid response phenotype. 

We used a powerful machine-learning and network-based methodology to identify 

interactions of several genes with SRE in children with mild-to-moderate asthma. We also 

provided strong functional evidence that FAM129A is an in vitro modulator of steroid 

efficacy in subsiding inflammation. However, our study also has several limitations. We had 

a modest sample size of LCLs. Although we did identify some steroid-response genes, we 

may have been able to identify more if the LCLs were stimulated with an inflammatory 

cytokine in addition to dexamethasone. This may provide a more direct read out of the 

cellular response to steroid remediation of inflammation. Alternatively, other steroids 

besides dexamethasone could be investigated; although our previous work has shown that 

clinical response to various ICS’s is distributionally similar,(5, 12) there may be differences 

in cellular response by the type of ICS used. Additionally, our study may have been 

weakened because LCLs were derived from blood drawn six years past the conclusion of the 

CAMP study trial rather than during the trial. There are also parameters of the REFS 

methodology that could be altered, with the possibility of identifying additional steroid-

response modulating genes, by, for example, altering the p-value threshold (p<0.05) for edge 

inclusion in REFS networks. Although our previous work on the SRE showed no significant 

age effect within the CAMP population and validated its accuracy in heterogeneous study 

populations with mean ages from 9 to 34 years,(12) it is possible that steroid responsiveness 

changed somewhat from CAMP enrollment to blood draw. Additionally, testing of in vitro 

steroid response in primary epithelial cells instead of the A549 Human epithelial cell line 

could improve the relevance of validation results. The observed change in steroid response 

with the FAM129A knockdown was small, and a change to primary cells may result in an 

increased observed effect size, since A549 cells have intact NFκB activation and 

glucocorticoid receptor responsive mechanisms, and thus may underestimate the 
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inflammatory response in asthma patients. Figure 5C may therefore underestimate the effect 

of FAM129A. Further functional validation would also be important, including testing of 

FAM129A in an independent cohort of children with asthma.

In conclusion, previous findings by others have shown that FAM129A responds to steroid 

treatment in asthma and in lung epithelial cells and that FAM129A is differentially 

expressed in asthma. We have shown that FAM129A is associated with variation in clinical 

asthma steroid responsiveness and that FAM129A modulates steroid responsiveness in lung 

epithelial cells. Further work is needed to validate the other SRE neighbor genes identified 

by the network (CEP152, FAF1, FAM174B & YY1). At the cellular level, additional 

investigations are needed to characterize the FAM129A circuit. At the clinical level, further 

work is needed to investigate the potential for translation of FAM129A to the management 

of steroid resistant asthmatics. Finally, the relevance of the FAM129A circuit to other 

inflammatory diseases needs to be investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations Used

AUC Area Under receiver operator characteristic Curve

CAMP Childhood Asthma Management Program

CD4+ Cluster of Differentiation 4

CEP152 Centrosomal Protein 152

CRHR1 Corticotropin Releasing Hormone Receptor 1

DEX Dexamethasone

EDARADD Ectodysplasia A Receptor Associated Death Domain

eQTL expression Quantitative Trait Loci

FAF1 FAS-Associated Factor 1

FAM129A Family With Sequence Similarity 129 Member A

FAM174B Family With Sequence Similarity 174 Member B
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FEV1 Forced Expiratory Volume in 1 second

FICD FIC Domain Containing

GEO Gene Expression Omnibus

GLCCI1 Glucocorticoid Induced 1

GWAS Genome Wide Association Study

ICS Inhaled Corticosteroid

IL1B Interleukin 1 Beta

LCL immortalized Lymphoblastoid Cell Lines

MAF Minor Allele Frequency

MCMC Markov Chain Monte Carlo

MDS Multidimensional Scaling

NFκB Nuclear Factor kappa-light-chain-enhancer of activated B-cells

QC Quality Control

qRT-PCR quantitative Reverse Transcription Polymerase Chain Reaction

REFS Reverse Engineering, Forward Simulation methodology

RNA Ribonucleic Acid

SNP Single Nucleotide Polymorphism

SRE Steroid Responsiveness Endophenotype

YY1 Yin Yang 1
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Key Message

• FAM129A is a modulator of inhaled corticosteroid response in asthmatic 

patients.

• Steroid response is usefully measured as a combination of asthma control 

outcomes.

• Systems biology methodologies can identify biologically relevant genes that 

would go undetected by traditional analysis.
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Capsule Summary

A systems biology investigation of gene expression data from a cohort of mild-to-

moderate persistent asthmatic children identified FAM129A as a regulator of inhaled 

corticosteroid efficacy. Differences in steroid response are at least partially due to 

genomic factors and future dosing and treatment recommendations will consider these.
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Figure 1. 
Study Design Diagram. We used 104 participants of the CAMP clinical trial all randomized 

to the budesonide ICS treatment arm. Each was assessed along 6 longitudinal measures of 

steroid treatment for the duration of the original CAMP trial (4 years) to obtain their Steroid 

Responsiveness Endophenotype (SRE) value, measuring the effectiveness of ICS therapy at 

managing asthma. These subjects further provided blood samples which were immortalized 

and treated with both a steroid, Dexamethasone, and a sham treatment. LCL DEX response 

and genome-wide SNPs from these participants were used in the REFS network modeling 

framework to identify a number of genes that interacted with SRE. Three of these seven 

genes were validated in lung epithelial cell lines, and FAM129A was shown to be 

significantly associated with IL1B under steroid treatment.
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Figure 2. 
Interaction network of Gene-SNP-phenotype associations for SRE. A plot of the interaction 

network SRE subgraph taken from the second ensemble of 256 REFs networks. Vertex type 

is indicated by: red star = SRE,. blue circle = gene, and green square = SNP. In the network, 

genes are seen to play a major role, and SNPs a minor role. The size of symbols is 

proportional to the number of edges incident on the vertex. The sizes of SRE and SNPs are 

exaggerated by factor of 3 and 2 respectively for readability. Vertices are located using 

multidimensional scaling of the network shortest path matrix using the R igraph 
layout_with_multidimentional function.
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Figure 3. 
Gene neighborhoods from the second REFS Interaction Network. Vertex type is indicated 

by: red star = SRE, circle = gene. Neighborhoods, indicated by colored outlines, were 

determined as described in Methods. Symbol size is proportional to the number of all 

interaction network edges incident on the vertex, some of which may not be shown. The 

figure was plotted using the Kamada-Kawai layout algorithm. SRE appears in a central 

location as a result of the neighborhood and layout selection.
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Figure 4. 
Neighborhood of the FAM129A gene, a direct neighbor of SRE. This shows that action of 

FAM129A on SRE is likely mediated by a number of genes including AGO2 and RAD21. 

Edge width is proportional to, and edges are labeled with, the proportion of the 256 

ensemble networks that contain the edge. Vertex type is indicated by: red star = SRE, circle 

= gene. The FAM129A neighborhood, indicated by the colored outline, was determined as 

described in Methods. Symbol size is proportional to the number of all interaction network 

edges incident on the vertex, some of which may not be shown. The figure was plotted using 

the same layout as Figure 2.
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Figure 5. 
Effects of FAM129A on NFκB activation and anti-inflammation effect of glucocorticoid. 

(A) A549/NFκB-Luc cells were transfected with non-targeting (NT) siRNA or siRNA 

targeting FAM129A, and 88 h later mRNA levels of FAM129A gene were measured using 

qPCR and normalized to the level in control siRNA transfected cells. (B) A549/NFκB-Luc 

cells were transfected with siRNA as in (A). 72 h after transfection, cells were treated with 5 

ng/mL IL1β for 16h. The luciferase (Luc) activity was measured and normalized with the 

amount of total protein. The Luc level was shown relative to that of untreated NT siRNA 

transfected cells. (C) In the same experiment as shown in (B), additional groups of cells 

were treated with 5 ng/mL IL1β+100 nM DEX and the Luc level normalized with that upon 

5 ng/mL IL1β treatment to determine the percentage values shown. **, P<0.01; ***, 

P<0.005.
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Table 1
Population characteristics

Characteristics of the study cohort. Subjects were children with asthma selected from the CAMP trial ICS 

treatment group.

Study CAMP ICS Treatment Arm P Value

Sample Size 104 311

Race (%) White(100%) White(65%), Black(14%), Hispanic(10%), Other(11%)

Age (years, SD) 8.6 (2.1) 9 (2.1) 0.331

Sex, male (n, %) 60 (58%) 181 (58%) 1

FEVPPB (SD) 95% (15%) 94% (14%) 0.478

LNPC20B (SD) 0.066 (1.2) 0.085 (1.2) 0.967

BDRB (SD) 12% (0.11%) 11% (0.11%) 0.986

SRE 0.79 (1.3) 0.59 (1.4) 0.207

(SD) = standard deviation; FEVPPB = FEV1 percent predicted at baseline; LNPC20B = natural log provocative concentration of methacholine 
required to effect a 20% reduction in FEV1 (PC20) at baseline; BDRB = bronchodilator percent change at baseline. For comparison, the full 

CAMP budesonide treatment group and p-values for the null hypothesis that both populations were drawn from the same distribution are presented. 
This comparison shows that our study cohort reasonably represented the full CAMP budesonide treatment group.
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