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Abstract
Our study aimed to elucidate the plant growth-promoting characteristics and the structure and composition of Sphingomonas 
sp. LK11 genome using the single molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results 
revealed that LK11 produces different types of gibberellins (GAs) in pure culture and significantly improves soybean plant 
growth by influencing endogenous GAs compared with non-inoculated control plants. Detailed genomic analyses revealed 
that the Sphingomonas sp. LK11 genome consists of a circular chromosome (3.78 Mbp; 66.2% G+C content) and two circular 
plasmids (122,975 bps and 34,160 bps; 63 and 65% G+C content, respectively). Annotation showed that the LK11 genome 
consists of 3656 protein-coding genes, 59 tRNAs, and 4 complete rRNA operons. Functional analyses predicted that LK11 
encodes genes for phosphate solubilization and nitrate/nitrite ammonification, which are beneficial for promoting plant 
growth. Genes for production of catalases, superoxide dismutase, and peroxidases that confer resistance to oxidative stress 
in plants were also identified in LK11. Moreover, genes for trehalose and glycine betaine biosynthesis were also found in 
LK11 genome. Similarly, Sphingomonas spp. analysis revealed an open pan-genome and a total of 8507 genes were identi-
fied in the Sphingomonas spp. pan-genome and about 1356 orthologous genes were found to comprise the core genome. 
However, the number of genomes analyzed was not enough to describe complete gene sets. Our findings indicated that the 
genetic makeup of Sphingomonas sp. LK11 can be utilized as an eco-friendly bioresource for cleaning contaminated sites 
and promoting growth of plants confronted with environmental perturbations.
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Introduction

Endophytic microorganisms, specifically bacteria or fungi, 
are known to inhabit plant tissues without causing disease 
symptoms in the host plant (Hallmann et al. 1997; Reiss-
inger et al. 2001; Wilson 1995). Endophytic microbial com-
munities have vital roles in the development and growth 
of various host plants under favorable and various stress 
conditions, such as heat, salinity, heavy metal contamina-
tion, and drought (Yaish et al. 2015). Among endophytes, 
bacteria have a knack for inhabiting internal plant tissues 
and imparting beneficial effects for host growth. Such traits 
have been shown to improve growth and developmental pro-
cesses (Glick 1995; Ryan et al. 2008) of the host through 
the ability of endophytes to perform a range of functions, 
including assisting both primary and secondary nutrient 
uptake via atmospheric nitrogen fixation (Gothwal et al. 
2008), synthesizing iron siderophores (Wang et al. 1993), 
and solubilizing minerals such as phosphate, potassium, and 
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zinc (Basak and Biswas 2009; Iqbal et al. 2010; Kang et al. 
2009). Facilitation of plant growth promotion by endophytic 
bacteria occurs through several mechanisms; these include 
mineralization of inorganic substances from the soil into 
host roots and production of enzymes, phytohormones, and 
defense-related constituents within the host environment 
(Khan et al. 2016a; Santoyo et al. 2016). In addition, these 
endophytic microbes can support the plant by providing 
nitrogen sources (by fixing atmospheric nitrogen into ammo-
nia) and other nutrients, such as sulfur, iron, and phosphate. 
Furthermore, these microbes can protect their host plants 
from pathogenic attacks by regulating host plant physiology 
and phytohormones (Bach et al. 2016).

The endophytic bacterium Sphingomonas sp. LK11 was 
first isolated from the leaves of the arid medicinal plant 
Tephrosia apollinea and was subsequently found to actively 
increase growth and stress tolerance in tomato plants dur-
ing salinity and cadmium stress (Halo et al. 2015; Khan 
et al. 2014). It has also been suggested that LK11 can pro-
duce phytohormones such as gibberellins (GAs) and auxins 
(Khan et al. 2014). Members of the genus Sphingomonas are 
yellow-pigmented, rod-shaped, nonsporulating, Gram-neg-
ative, chemoheterotrophic, and aerobic bacteria that belong 
to class Alphaproteobacteria within the phylum Proteobac-
teria (Busse et al. 2003). Sphingomonas species have been 
isolated from several different environments; novel strains 
have recently been isolated from abandoned heavy metal 
sites (Feng et al. 2014), forest soil (Kim et al. 2014), indoor 
air of pharmaceutical environments (Park et al. 2015), pur-
plish paddy soil (Huang et al. 2014), glaciers (Miteva et al. 
2004), volcano-associated lakes (Farias et al. 2011), space 
shuttles (Pan et al. 2016b), permafrost (Piao et al. 2016), 
and the sediment of a eutrophic reservoir (Huy et al. 2014). 
However, there are few reports describing Sphingomonas 
species as endophytes.

Sphingomonas species have been mostly described 
regarding their roles in remediating or degrading various 
kinds of organic and inorganic pollutants from different con-
tamination sources. Similarly, the LK11 strain can reduce 
Cd2+ uptake, accumulate intracellular Zn2+, and increase 
metallothionein expression (which excludes heavy metals 
and prevents their binding by related proteins) in their host 
plants (Khan et al. 2014). This endophyte has the potential to 
thrive in high salinity (contaminated with sodium chloride) 
without utilizing its cellular mechanisms for producing anti-
oxidants and related enzymes, such as peroxidases (PODs), 
polyphenol oxidases (PPOs), and catalases (CATs) (Halo 
et al. 2015). Furthermore, LK11 was recently reported to 
improve plant growth in both wild type and Got-3 mutant 
tomato plants when exogenously introduced to the plants 
via jasmonic acid (JA) treatment (Khan et al. 2017). The 
combined effects of LK11 and JA treatment caused plants 
to respond positively to salinity stressors by dramatically 

regulating glutathione content in Got-3 mutant and wild type 
tomato plants (Khan et al. 2017). Recent studies have also 
demonstrated the role of Sphingomonas spp. in the degra-
dation of organic chemical compounds, such as bisphenol 
(Fujiwara et al. 2016), phenol (Gong et al. 2016), triclocar-
ban (Mulla et al. 2016), phenanthrene (Liu et al. 2016), chlo-
rogenic acid (Ma et al. 2016), nonylphenol polyethoxylates 
(Bai et al. 2016), astaxanthin (Ma et al. 2016), dioxin (Miller 
et al. 2010), γ-hexachlorocyclohexane (Tabata et al. 2013), 
nicotine (Zhu et al. 2016), plasticizers (Kera et al. 2016), and 
hexachlorocyclohexane isomers (Kumari et al. 2002) among 
others. In addition to these degradation abilities, the Sphin-
gomonas genus can also produce bioactive metabolites, such 
as indole acetic acid, gibberellins, sphingan (Li et al. 2016), 
and gellan gum (Gai et al. 2011b).

Previous studies have suggested the potential of LK11 as 
a plant growth-promoting bacterium; however, this strain has 
not been fully investigated for these characteristics. There-
fore, the current study aimed to elucidate the whole LK11 
genome and its plant growth-promoting activity. Sequencing 
the complete genome of LK11 will aid in resolving the com-
plex biological mechanisms of this microorganism that pro-
mote plant growth and induce hardiness against salinity and 
heavy metal stress. These genomic analyses will provide a 
foundation towards fully understanding the characteristics of 
this microorganism and its potential for broader application 
against environmental stressors. Furthermore, comparisons 
with other completely sequenced Sphingomonas genomes 
will help delineating the unique and shared traits among 
different Sphingomonas species, offering insights into the 
evolutionary changes that have occurred within this genus.

Materials and methods

Detection of gibberellins (GAs) in cell‑free cultures

Sphingomonas sp. LK11 was cultured in NB media and 
incubated for 7 days at 30 °C and 200 rpm. Quantification 
of GA in bacterial cultures was carried out according to the 
protocol described by Kang et al. (2016) and Waqas et al. 
(2012). Bacterial culture filtrates supplemented with [2H2] 
GA standards were processed for detection, identification, 
and quantification of GA using gas chromatography and 
mass spectroscopy.

Sphingomonas sp. LK11‑plant interaction

Healthy soybean seeds were obtained from the Soybean 
Genetic Resource Center (Kyungpook National University, 
Daegu, South Korea) with a 95% germination rate. Surface 
sterilization and germination experiments were carried out 
according to Asaf et al. (2017b). Sterilized germination trays 
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and pots were filled with horticulture soil that had been auto-
claved (121 °C and 15 psi for 15 min) three times and had 
the nutrient composition of peat moss (Asaf et al. 2016). 
After germination, randomly selected uniform plant seed-
lings were planted in one round plastic pot (10 × 9 cm) and 
grown for 20 days using one of two treatments, (1) control 
plants without LK11 or (2) plants inoculated with LK11. 
Distilled water was applied to plants as needed and with care 
to prevent leaching. LK11 cells dissolved in 35-mL sterilized 
double-distilled water were applied three times to treatment 
(1) plants to ensure efficient transformation and then twice 
consecutively at 1-week intervals. Endophyte cells were col-
lected as described above. The harvested cells were then 
washed with 0.8% NaCl solution and dissolved in autoclaved 
double-distilled water adjusted to an optical density (OD) 
of 0.5. Different plant physiological parameters like shoot 
length, root length, and fresh and dry weight were analyzed. 
Furthermore, plants were transferred to liquid nitrogen and 
freeze-dried for 1 week using a freeze dryer (VirTis, Gar-
diner, NY, USA) for GA analysis.

Quantification of endogenous GAs in soybeans 
treated with LK11

Quantification of GAs in the freeze-dried samples of soy-
bean plants was carried out according to the protocol estab-
lished by Lee et al. (1998) using gas chromatography with 
a mass spectrometer (6890N Network GC system and 5973 
Network Mass Selective Detector; Agilent Technologies). 
The results were calculated in ng/gof freeze-dried weight 
of plant samples.

DNA extraction, genome sequencing, and genome 
assembly

Sphingomonas sp. LK11 was previously isolated and identi-
fied by Khan et al. (2014). For complete genome sequenc-
ing, genomic DNA of LK11 was extracted from an over-
night cell suspension culture using the Qiagen™ QIAamp 
DNA Mini Kit (Qiagen, Hilden, Germany). Complete 
genome sequencing was performed using the Single Mol-
ecule Real Time (SMRT) sequencing technology of Pacific 
Biosciences (PacBio, Menlo Park, CA, USA) as described 
previously (Chan et al. 2014). Briefly, a PacBio large insert 
library (15–20 kb) was constructed from high molecular 
DNA (120.0 ng/µL) and sequenced on four V2 SMRT cells 
using P4-C2 chemistry with a running movie for 4 h at the 
Duke Center for Genome and Computational Biology, Duke 
University (Durham, NC, USA). PacBio produces data in 
HDF5 format (*.h5) and the corresponding input file of 
SMRT Analysis software is a bas.h5 file or an associated 
bax.h5 file. Assemblies were evaluated to ensure data quality 
using QUAST 2.3 (Gurevich et al. 2013). A total of 84,384 

reads, with a mean read length of 11,888 bp, was generated. 
The reads were de novo assembled into a circular chromo-
some and two circular plasmids, with an average genomic 
coverage of 150.26 reads (Table S1), using the Hierarchical 
Genome Assembly Process (HGAP) workflow in SMRT 
Portal (version 2.1.1).

Genome annotation

Complete genome annotation was performed using the 
NCBI Prokaryotic Genome Annotation Pipeline (Angiu-
oli et al. 2008). This annotation was used to predict coding 
genes through an ab initio gene prediction algorithm with 
homology-based methods. The annotation process helped 
elucidate functional genomic units, such as structural RNAs 
(5S, 16S, and 23S), tRNAs, and small noncoding RNAs. 
Additional gene prediction analysis and functional annota-
tion were performed by Rapid Annotation using Subsystem 
Technology (RAST) version 3.0 (Aziz et al. 2008a, b; Bret-
tin et al. 2015; Overbeek et al. 2014) and the Integrated 
Microbial Genomes platform (IMG) (Markowitz et  al. 
2012). The assembled and annotated sequences of LK11 
(one chromosome and two plasmids) were deposited in Gen-
Bank with accession numbers CP013916–CP013918. This 
information was submitted to the Genomes Online Database 
(Gs0118031) (Reddy et al. 2015).

Comparative genome analysis

To understand the genomic features of Sphingomonas sp. 
LK11 (CP013916), comparative assessments were made 
with the recently reported genome sequences of Sphin-
gomonas sp. MM1 [CP004036; (Tabata et  al. 2013)], 
Sphingomonas sp. NIC1 [CP015521; (Zhu et al. 2016)], 
Sphingomonas taxi [CP009571; (Eevers et  al. 2015)], 
and Sphingomonas hengshuiensis [CP010836; (Wei et al. 
2015)]—all of which were obtained from NCBI. Gene pre-
diction and functional annotation of these Sphingomonas 
spp. were performed using the RAST subsystem (Aziz et al. 
2008b; Brettin et al. 2015; Overbeek et al. 2014). For com-
parison purposes, we created a circular genomic map of each 
genome using Interactive Microbial Genome Visualization 
with GView (Petkau et al. 2010) and Ring Image Generator 
(BRIG, version 0.95) (Alikhan et al. 2011). Each circular 
genomic map was generated with BLAST+, with standard 
parameters (70% lower and 90% upper cutoff for identity and 
E value of 10), using the LK11 genome as the “alignment 
reference genome.” Pan-genome and core genome analy-
ses of LK11 against related species were carried out using 
EDGAR version 2.0 (Blom et al. 2009) and PGAP version 
1.12 (Zhao et al. 2012).
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Results and discussion

Plant growth‑promoting traits of Sphingomonas sp. 
LK11

The results showed that LK11 produces different quantities 
of GAs in its pure culture; these included GA1, GA3, GA8, 
GA9, GA24, GA53, GA12, GA20, GA19, GA34, GA4, and GA7 
(Fig. 1a). Among these, physiologically active GA3 and 
GA4 were produced in significantly high quantities while 
inactive GA53 and GA19 were abundant in the pure culture 
of Sphingomonas sp. LK11. Other GAs were present in 
very small quantities (Fig. 1a). This is in agreement with 
a previous report by Khan et al. (2014) on the produc-
tion of GA in pure culture; however, we found increased 
abundance of other GAs, such as GA1, GA3, GA8, GA24, 
GA53, GA12, GA20, GA19, and GA34, which is reported 
for the first time in the LK11 strain. Previous studies 
have shown that some bacterial strains also produce GAs, 
e.g., Rhizobium phaseoli (Atzorn et al. 1988), Acetobac-
ter diazotrophicus (Bastián et al. 1998), B. licheniformis 

(Gutiérrez-Mañero et al. 2001), B. cepacia SE4 (Kang 
et al. 2014), Leifsonia xyli SE134 (Kang et al. 2017), and 
Bacillus amyloliquefaciens RWL-1 (Shahzad et al. 2017).

Since Sphingomonas sp. LK11 produces GAs, we exam-
ined the plant growth-promoting potential by inoculating 
soybean plants with pure LK11 culture. The results showed 
that Sphingomonas sp. LK11 significantly increased shoot, 
root, and plant biomass compared with control plants 
(Fig. 1b). This was further validated by changes in endog-
enous GA content of soybean plants. GA3 (88.2%), GA7 
(8.2%), and GA4 (23.8%) were significantly higher in LK11-
inoculated soybean plants than in control plants (Fig. 1d). 
Nagel and Peters (2017) suggested that bacterial strains pos-
sess active GA biosynthesis pathways as well as GA4 and 
GA9. Furthermore, such plant growth-promoting effects have 
been previously suggested due to the potential of microbes 
in producing phytohormone-like compounds (Khan et al. 
2015). It has been reported that Sphingomonas sp. LK11 
improves tomato plant growth (Khan et al. 2014), which is 
consistent with studies by Xu et al. (1998), Cerny-Koenig 
et al. (2005), Kang et al. (2014), and Shahzad et al. (2017), 
which showed that GA-producing bacteria are beneficial for 

Fig. 1   Gibberellin (GA) production by Sphingomonas sp. LK11 (a). 
Bacterial culture was centrifuged and 100 mL of the culture filtrate 
was analyzed for the presence of GAs using a GA extraction proto-
col. The bar indicates standard deviation between replicates. Effect of 
Sphingomonas sp. LK11 culture on (b, c) different growth attributes 

and (d) endogenous GA of soybean plants. Same letters indicate non-
significant difference within treatment, while (*) and (**) indicate 
significant and very significant differences, respectively. (ns) repre-
sents non-significant difference among different types of GAs
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improving crop growth. In addition, utilization of bacteria 
isolated from arid land ecosystems is more compatible with 
improving plant growth during harsh environmental condi-
tions (Asaf et al. 2017b). Due to the ecological importance 
of such strains, we performed whole-genome sequencing of 
Sphingomonas sp. LK11.

Sphingomonas sp. LK11 genome in comparison 
with related species

The complete genome of Sphingomonas sp. LK11 was 
found to consist of a 3781,071 bp circular chromosome 
with a G+C content of 66.2% and two circular plasmids 
of 122,975 bp and 34,160 bp with G+C contents of 63 
and 65%, respectively (Fig. 2; Table 1). When combined, 
the chromosome and plasmids contained 3739 annotated 
genes, including 59 tRNAs, 4 complete rRNA, and 3656 
protein-coding sequences (CDSs; Table 1). Among these 
CDSs, 2388 (63.87%) genes were classified into clusters of 
orthologous group (COG) families comprised of 23 catego-
ries (Table S2). The genome size of LK11 falls within the 

Fig. 2   Circular representation of the Sphingomonas sp. LK11 
genome. From outer to inner circles, the two outer circles show the 
predicted protein-coding sequences on the plus (green) and minus 

(red) strand. The third circle shows the distribution of genes related to 
Clusters of Orthologous Groups (COGs) categories, while the fourth 
and fifth circles show G+C content and G+C skew, respectively

Table 1   Gene prediction and annotation summary

Annotation statistics

Genome size (bp) 3,938,206
GC 66.05
Total number of genes 3739
Number of CDSs 3656
Pseudogenes 114
rRNA genes 12
tRNA genes 59
Protein-coding genes with function prediction 2785
Protein-coding genes without function prediction 871
Protein-coding genes encoding enzymes 1001
Protein coding genes connected to KEGG pathways 1076
Protein coding genes connected to KEGG Orthology 

(KO)
1852

Protein coding genes connected to MetaCyc pathways 876
Protein coding genes with COGs 2388
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expected range (based on other genomic studies) and a vary-
ing number of plasmid has been observed in other strains 
(Gai et al. 2011a; Kera et al. 2016; Li et al. 2016; Miller 
et al. 2010; Pan et al. 2016a).

Based on the diverse functional roles of species belonging 
to genus Sphingomonas, 2785 (74.49%) LK11 genes were 
assigned specific biological roles; this was also based on 
results from BLASTn homology searches. The remaining 
CDSs were categorized as proteins with unknown functions. 
Proteins, rRNAs, and tRNAs are encoded by 88.59%, 0.52%, 
and 0.121% of the complete genome, respectively, while the 
remaining 10.76% of the genome is made up of noncoding 
regions.

Plant growth‑promoting potential of Sphingomonas 
sp. LK11

From the genomic sequence of Sphingomonas sp. LK11, 
we analyzed genes that are categorized by their ability to 
enhance nutrient availability, catabolize aromatic com-
pounds, and resist oxidative and other forms of abiotic stress 
(Table 2). Very few Sphingomonas species are reported 
to stimulate plant growth through the production of phy-
tohormones or enzymes (Dodd et al. 2010). On the other 
hand, LK11 was shown to enhance plant growth through 
the production of GAs (Fig. 1b, c) and IAA (Khan et al. 
2014). However, a complete IAA biosynthetic pathway was 
not found in LK11 during genome analysis, although some 
genes responsible for IAA production, such as the trypto-
phan biosynthesis gene cluster (trpA, trpB, and trpD) and 
indole pyruvate ferredoxin oxidoreductase (IOR; locus 
AV944_07715 and locus AV944_07710, respectively) were 
present. It has been well-established that the presence of 
tryptophan-related genes in bacterial genomes is linked to 
IAA biosynthesis and related biological functions (Gupta 
et al. 2014; Tadra-Sfeir et al. 2011).

The LK11 genome also encodes cystathionine γ-lyase 
(CSE; locus AV944_16960), 3-mercaptopyruvate 

sulfurtransferase (3MST; locus AV944_12370), cysta-
thionine β-synthase (CBS), and cysteine aminotransferase 
(CAT; locus AV944_01390), which are known for hydrogen 
sulfide (H2S) production. H2S production by plant growth-
promoting rhizobacteria (PGPR) has been reported to 
enhance plant growth, seed germination, and root coloniza-
tion (Dooley et al. 2013). The presence of an ATP-binding 
cassette (ABC) transporter that includes periplasmic bind-
ing proteins encoded by cysP, cysT, cysW, and cysA in the 
LK11 genome revealed that these genes may be involved 
in the transportation of thiosulfate or inorganic sulfate to 
cells as reported earlier in Pseudomonas sp. UW4 (Duan 
et al. 2013). The presence of these genes in bacterial strains 
has been linked to oxidation of sulfur and sulfur-conjugated 
metabolites (Kwak et al. 2014). Moreover, sulfur oxidation 
influences soil pH and sequentially improves solubility of 
micronutrients, such as N, P, K, Mg, and Zn (Vidyalakshmi 
et al. 2009). Therefore, the association of such endophytic 
microbes can provide improved mineral acquisition and allo-
cation to the host plants.

We also identified glucose-1-dehydrogenase (gcd; locus 
AV944_13915) in the LK11 genome, suggesting that LK11 
can solubilize inorganic mineral phosphates, making it a 
potential inoculant candidate for increasing phosphorous 
uptake in plants. Some bacteria were reported to solubilize 
insoluble mineral phosphates by producing organic acids 
(mainly gluconic acid) and acid phosphatases (Achal et al. 
2007), where the production of gluconic acid is assisted by 
gcd (de Werra et al. 2009). Inorganic phosphates are impor-
tant for plant growth and thus microbes can assist plants by 
mobilizing complex phosphates into more solubilized forms 
(Gupta et al. 2012). Several bacteria such as Gluconobac-
ter oxydans, Pseudomonas fluorescens, Azospirillum spp., 
and Mesorhizobium mediterraneum have shown phosphate-
solubilizing abilities (de Werra et al. 2009; Peix et al. 2001; 
Rodriguez et al. 2004).

In addition to gcd, the phosphate-specific transport (pst) 
system is used for free inorganic phosphate transport in 

Table 2   Genes attributed to 
plant growth promoting traits in 
the LK11 genome

Plant growth promotion traits Genes with potential for PGP traits

Phosphate metabolism pstC, pstA, phoU, phoQ, nad(P), phoR (sphS), phoB, pstB, oprO, pstS
IAA production Tryptophan synthase α chain (trpA), Anthranilate phosphoribosyltrans-

ferase (trpD), Tryptophan synthase β chain (trpB), Phosphoribosylan-
thranilate isomerase (PAI)

Trehalose metabolism trehalose synthase gene homolog
Chitinase Chitinase gene homolog
H2S Production cysP, cysW, cysT, cysA
Heat shock proteins dnaK, hrcA, dnaJ, rpoH, lepA, rdqB, smpB, grpE
Cold shock proteins cspA, cspB
Superoxide dismutase Superoxide dismutase gene homologs
Sulfur assimilation cysT, cysW, cysP, cysA, cysQ, cysX, sat1, sat 2
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Bacillus subtilis and Escherichia coli. The pst operon of 
E. coli and B. subtilis is composed of pstS, pstC, pstA, and 
pstB as well as a two-component signal transduction system 
consisting of phoP/phoR for phosphate uptake (Xie et al. 
2016). In the present study, genomic analyses of LK11 
revealed that it also carries the pst operon (pstA, pstB, pstC, 
and pstS genes; locus AV944_10605, locus AV944_10610, 
locus AV944_10600, and locus AV944_10615, respec-
tively), as well as phoB (locus AV944_10590), phoP (locus 
AV944_05370), and phoR (locus AV944_10620) genes for 
phosphate transport.

Sphingomonas sp. LK11 in osmotic stress

Plants are often exposed to abiotic stresses such as heat, 
drought, metal contamination, and high salinity. In such cir-
cumstances, inoculating plants with symbiotic, stress-regu-
lating microbes can provide them with additional means of 
combating stress conditions (Khan et al. 2015; Yang et al. 
2009). Abiotic stresses can create osmotic deficiencies in 
plant cells, while microorganisms in the phyllosphere can 
produce extracellular polysaccharides to protect not only 
themselves but their plant hosts from adverse effects (Beat-
tie and Lindow 1999). Recently, Sphingomonas sp. LK11 
was reported to significantly increase plant height, biomass, 
and glutathione, amino acid, and primary sugar levels com-
pared with control under varying drought stresses (Asaf 
et al. 2017a). These findings were further validated by the 
presence of trehalose biosynthesis pathways (otsA/otsB and 
treY/treZ) in the genome of LK11. Trehalose can act as an 
osmoprotectant and the otsA/otsB pathway is considered 
the most widely occurring biochemical pathway in many 
organisms that are under environmental stressors, such as 
high salinity, drought, low temperature, and osmotic stress 
(Duan et al. 2013; Garg et al. 2002). Moreover, trehalose 
production protects microbes from oxidative stress, includ-
ing exposure to hydrogen peroxide (Pilonieta et al. 2012). 
This is supported by a recent study where exogenous treha-
lose and Sphingomonas sp. LK11 inoculation of soybean 
plants significantly mitigated polyethylene glycol-induced 
drought stress through activating endogenous primary sugars 
(Asaf et al. 2017a). The presence of these trehalose pathways 
in the LK11 genome suggests that this strain can aromatic 
hydrocarbons. It has also been demonstrated that trehalose 
accumulation may act as a biosurfactant that enhances bio-
degradation of hexachlorocyclohexane, which was previ-
ously reported for Sphingomonas sp. NM05 (Garg et al. 
2002; Manickam et al. 2012).

In addition, the LK11 genome was found to contain a 
number of salt tolerance genes that can synthesize the 
osmolyte glycine betaine from choline by encoding the 
betT choline transporter (Lamark et al. 1996), the betA 
choline dehydrogenase, and the betB betaine aldehyde 

dehydrogenase. The presence of these genes further vali-
dates our recent findings related to the role of LK11 in resist-
ing salinity stress and promoting plant growth (Halo et al. 
2015). LK11 also contains Na+/H+ antiporters (nha) that 
have also been shown to alleviate salinity stress (Epstein 
2003).

PGPR fitness against oxidative stress 
in Sphingomonas sp. LK11

Plants use various strategies to protect themselves from 
numerous viral, bacterial, and other threats. These strate-
gies include the formation of reactive oxygen species (ROS; 
superoxide, hydroxyl radical, and hydrogen peroxide), phy-
toalexins, and nitric oxide (HammondKosack and Jones 
1996; Zeidler et al. 2004). Aerobic organisms utilize various 
enzymes and antioxidants to manage oxidative stress result-
ing from the detrimental byproducts of aerobic respiration 
(Cabiscol et al. 2000; Lushchak 2001).

The LK11 genome encodes genes to protect itself dur-
ing the activation of plant defense mechanisms; such genes 
encode glutathione S-transferase (locus AV944_12110, 
locus AV944_13280, and locus AV944_05350), glutathione 
peroxidases (locus AV944_12175), superoxide dismutases 
(SODs; locus AV944_13570 and locus AV944_06030) and 
glutathione-disulfide reductase (locus AV944_15970). Fur-
thermore, the LK11 genome contains five genes encoding 
different catalases (locus AV944_17575) and eight genes 
encoding peroxidases. Genes encoding three peroxiredoxins 
and two glutaredoxins were also identified. As endophytic 
bacteria can mitigate oxidative stress, they could strengthen 
plant defenses against abiotic stress-induced ROS generation 
(Khan et al. 2017). This is also in agreement with a previous 
study where LK11 counteracted sodium chloride-induced 
ROS generation by increasing the activity of catalase, super-
oxide dismutase, and reduced glutathione (Halo et al. 2015).

Cold shock and heat shock proteins 
in Sphingomonas sp. LK11

Under different environmental conditions, some bacteria 
can regulate cold shock and heat shock protein levels. The 
cold shock protein family comprises small, structurally 
related, and highly conserved nucleic acid-binding proteins 
that appear to contribute significantly to the management 
of numerous microbial physiological processes (Ermolenko 
and Makhatadze 2002). These proteins are extensively dis-
tributed among prokaryotes and are frequently encoded 
through differentially regulated, multiple gene families 
(Graumann and Marahiel 1998; Phadtare 2004). The LK11 
genome contains the cold shock protein genes cspA and cspB 
(locus AV944_00095 and locus AV944_14525, respectively) 
and the heat shock protein genes dnaJ and dnaK (locus 
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AV944_15200 and locus AV944_15205, respectively), grpE 
(locus AV944_15230), hrcA (locus AV944_15235), and 
rpoH (locus AV944_13700). These genes have been linked 
to the modulation of cold and heat adaptive functions. The 
presence of these genes further confirms our previous results 
where chaperone and L10 family of ribosomal proteins were 
significantly upregulated in response to cadmium-induced 
toxicity (Khan et al. 2014).

Heavy metal resistance and improving 
phytoremediation strategies

Many bacterial species possess mechanisms that make them 
resistant or tolerant to heavy metals (Diels et al. 1995; Ji and 
Silver 1995; Kunito et al. 1996). Our analysis of the LK11 
genome revealed the presence of a czc operon in the chromo-
some and plasmids. The czc operon was found comprised of 

three structural genes, czcA, czcB, and czcC, as well as two 
regulatory genes, czcD and czcR (Table 3). This operon was 
previously found to confer resistance to three heavy metals, 
namely cobalt, zinc, and cadmium (Kunito et al. 1996; Nies 
1995; Silver and Phung 1996). Various models of the czc 
efflux system have been proposed for different bacteria (Nies 
1992). The most commonly occurring model was found in 
the LK11 genome where the efflux system exists as a dim-
mer (Fig. 3); this model was suggested by Diels et al. (1995) 
and was adopted by Silver (1996). Furthermore, the arsenic 
resistance genes arsB and arsC were found on the LK11 
chromosome. Previous studies have shown that arsB and 
arsC encode arsenate reductase and aid in arsenite efflux 
transport (Duan et al. 2013).

In addition, the LK11 genome also carries genes involved 
in copper resistance on its chromosome and plasmids 
(Table 3). Most of the bacterial genes that confer copper 

Table 3   Genes potentially 
involved in metal resistance in 
the LK11 genome

Gene Locus Product

czcA AV944_17755 Cobalt/zinc/cadmium resistance protein CzcA
czsB/cusB AV944_17760 Cobalt/zinc/cadmium efflux RND transporter, membrane 

fusion protein, CzcB family
czcC AV944_17765 Heavy metal RND efflux outer membrane protein, CzcC family
czcD AV944_17715 Cobalt/zinc/cadmium resistance protein CzcD
czcR AV944_17775 Cobalt/zinc/cadmium resistance protein CzcD
hmrR AV944_17780 Transcriptional regulator, MerR family
cueA AV944_17735 Copper-translocating P-type ATPase (EC 3.6.3.4)
catalase hpII AV944_17575 Catalase related to oxidative stress
copA AV944_17735 Multi-copper oxidase
copB AV944_00295 Copper resistance protein
copC AV944_14760 Copper homeostasis
arsB AV944_04475 Arsenic efflux membrane protein
arsC AV944_07460 Arsenate reductase

Fig. 3   Proposed model for the 
czc efflux system in LK11 as 
suggested by Ludo Diels and 
adopted by Simon Silver (1996). 
It has been reported that CzcC 
is a cell wall “outer” membrane 
protein, CzcA is an “inner” 
plasma membrane transport pro-
tein, while CzcB is a membrane 
fusion protein that extends 
through both membranes
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resistance are carried on plasmids and are organized in 
operons (Dupont et al. 2011; Magnani and Solioz 2007; 
Wei et al. 2009). It has been shown that copper resistance 
is encoded by the copA, copB, copC, and copD genes in 
various bacteria (Mellano and Cooksey 1988; Voloudakis 
et al. 2005). During genome analysis, we found that LK11 
possess copA, a gene that encodes multi-copper oxidase; 
this gene is one of the main genetic elements involved in 
copper resistance in Gram-negative bacteria (Lejon et al. 
2007; Nies 1999; Rensing and Grass 2003). Multi-copper 
oxidase is considered a marker gene for copper-resistant bac-
teria (Voloudakis et al. 2005). Moreover, plasmid 1 of LK11 
contains the cueA gene (Table 3), which encodes a copper-
transporting P-type ATPase for copper homeostasis. This 
gene is found in other bacteria especially in copper-resist-
ance bacteria (Magnani and Solioz 2007). Previously, the 
plasmid pMOL28 of Cupriavidus metallidurans strain CH34 
was found to confer resistance to nickel and cobalt toxicity 
(Liesegang et al. 1993; Tibazarwa et al. 2000) while plas-
mid pMOL30 conferred resistance against zinc, cadmium, 
cobalt (Nies and Silver 1989), and copper (Monchy et al. 
2006). The presence of such genes in the Sphingomonas sp. 
LK11 plasmid coding for transport of metal ion supports its 
potential in microbe-assisted phytoremediation as previously 
reported (Khan et al. 2016b).

Pan‑genomic analysis of LK11

The pan-genome defines the complete complement of genes 
existing in a clade. In the present study, the full genomic 
sequences of LK11 and four other Sphingomonas species 
were used to investigate the core and pan-genome of sphin-
gomonas genus. The core and pan-genome sizes were plotted 
against the number of genomes analyzed in this study. When 
additional genomes were added, the number of analogous 

gene clusters comprising the core genome dropped slightly, 
while the number of unique gene clusters in the pan-genome 
steadily increased. Extrapolation of the curve showed that 
the core genome contains a minimum of 1356 genes (95% 
confidence interval = 1209.4–1295.155) with the addition of 
Sphingomonas taxi, Sphingomonas hengshuiensis, Sphingo-
monas sp. MM1, and Sphingomonas sp. NIC1 genomes. The 
definitive number of shared genes in each genome deviates 
due to paralogs and duplicated genes (Fig. 4).

Furthermore, pan-genome analysis revealed that for 
every Sphingomonas species genome sequenced, an aver-
age of 1000 new genes were added to the pan-genome 
(Fig. 4). Likewise, the pan-genome curve showed that the 
representative species from genus Sphingomonas displayed 
an open pan-genome. The number of genomes examined 
were not enough to explain the complete gene sets and 
thus genomic sequencing of more Sphingomonas species 
is required to describe all genes of this genus. Furthermore, 
conserved genes are present across bacterial genomes within 
the same genus or species. A conserved fraction of these 
genes—specifically, those that are similar and found in all 
(or most) of the genomes within a given bacterial taxonomic 
group—is called the “core genome” of that group. The core 
genome can be identified on both the species and genus level 
(Leekitcharoenphon et al. 2012) and can be used to identify 
variable genes in a given genome (Adekambi et al. 2011). 
In general, conserved genes appear to evolve more slowly 
and can be used for establishing associations among various 
bacterial isolates (Urwin and Maiden 2003).

Additionally, the Venn diagram shows that 1356 genes 
are shared by all five Sphingomonas species analyzed. 
LK11 shares 53, 77, 133, and 87 genes exclusively with 
Sphingomonas sp. MM1, Sphingomonas sp. NIC1, Sphin-
gomonas taxi, and Sphingomonas hengshuiensis, respec-
tively (Fig. 5). The number of unique genes possessed 

Fig. 4   The number of gene clusters in the core and pan-genomes is plotted against the number of Sphingomonas spp. genomes sequenced
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by LK11, Sphingomonas sp. MM1, Sphingomonas sp. 
NIC1, Sphingomonas taxi, and Sphingomonas hengshu-
iensis were 740, 1553, 473, 542, and 1653, respectively 
(Fig. 5). Finally, the unique genes possessed by LK11 
mostly encode hypothetical proteins and their GC con-
tent ranges from 48.6 to 75.1% with an average of 65% 
(Table S3). These unique genes include glutaredoxin-
related (locus AV944_14990 and AV944_14990) and 
thioredoxin-related (locus AV944_10100) genes, which 
may be responsible for maintaining a cellular redox envi-
ronment and may control oxidative stress responses in 
LK11 as previously reported (Zeller and Klug 2006). In 
addition, the genome of LK22 also includes the arsR gene 
family, which is a transcriptional regulatory protein class 
known to counter stress generated by heavy metal tox-
icity. Furthermore, TonB-dependent transporter-related 
genes were also found in LK11. TonB-dependent trans-
porters are bacterial outer membrane proteins that bind 
and transport nickel chelates, vitamin B12, and carbohy-
drates (Noinaj et al. 2010).

Conclusions

The current study elucidates the growth-promoting char-
acteristics and complete genetic makeup of Sphingo-
monas sp. LK11. LK11 produced different types of GAs 
in pure culture and significantly improved soybean plant 
growth by altering endogenous hormone levels. Similarly, 
sequencing and analysis of the LK11 genome support its 
role as a plant growth-promoting bacterium, prompting 
further research. Complete genome sequencing confirmed 
the presence of genes that are involved in plant growth-
promoting traits; these include phosphate solubilization 
and H2S synthesis, which can improve the growth of asso-
ciated plants. Moreover, biosynthesis pathways of treha-
lose and glycine betaine were found in the LK11 genome. 
A total of 8507 genes were identified in the Sphingomonas 
spp. pan-genome and 1356 orthologous genes were found 
to comprise the core genome. Utilization of this remark-
ably versatile PGPB may be an important eco-friendly 
alternative in improving phytoremediation strategies and 
crop growth under extreme environmental conditions.

Nucleotide sequence accession numbers

The assembled and annotated sequences of LK11 (one 
chromosome and two plasmids) were deposited in Gen-
Bank with accession numbers CP013916–CP013918. The 
information was also submitted to the Genomes Online 
Database (Gs0118031). The strain was deposited in the 
International Collection of Microorganisms from Plants 
(ICMP) under the accession number ICMP 21288.
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