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Abstract
Endoplasmic reticulum (ER), a dynamic organelle, plays an essential role in organizing the signaling pathways involved in
cellular adaptation, resilience, and survival. Impairment in the functions of ER occurs in a variety of nutritive disorders including
obesity and type 2 diabetes. Here, we hypothesize that (scopoletin) SPL, a coumarin, has the potential to alleviate ER stress
induced in vitro and in vivo models by lipotoxicity. To test this hypothesis, the ability of SPL to restore the levels of proteins of
ER stress was analyzed. Rat insulinoma 5f (RIN5f) cells and Sprague Dawley rats were the models used for this study. Groups of
control and high-fat, high-fructose diet (HFFD)-fed rats were treated with either SPL or 4-phenylbutyric acid. Status of ER stress
was enumerated by quantitative RT-PCR, Western blot, electron microscopic, and immunohistochemical studies. Proximal
proteins of ER stress inositol requiring enzyme 1 (IRE1), protein kinase like endoplasmic reticulum kinase (PERK), and
activating transcription factor 6 (ATF6) were reduced in the β-cells by SPL. The subsequent signaling proteins X-box binding
protein 1, eukaryotic initiation factor2α, activating transcription factor 4, and C/EBP homologous protein were also suppressed in
their expression levels when treated with SPL. IRE1, PERK signaling leads to c-Jun-N-terminal kinases phosphorylation, a
kinase that interrupts insulin signaling, which was also reverted upon scopoletin treatment. Finally, we confirm that SPL has the
ability to suppress the stress proteins and limit pancreatic ER stress which might help in delaying the progression of insulin
resistance.
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Introduction

Endoplasmic reticulum (ER) is the primary organelle for the
maturation of newly formed proteins (Gao et al. 2012).Mature
proteins that exit ER proceed through the secretory pathway
while the misfolded proteins are transported back to the cyto-
sol for degradation (Meusser et al. 2005). Modifications in ER
homeostasis caused by an increase in protein synthesis, hoard-
ing of misfolded proteins, or changes in oxidative stress bal-
ance lead to ER stress (Ron and Walter 2007). Cells undergo
activation of an adaptive signaling pathway called the unfold-
ed protein response (UPR) as a response to manage ER stress.
Inositol requiring enzyme-1 (IRE1), RNA-dependent protein

kinase like endoplasmic reticulum kinase (PERK), and acti-
vating transcription factor-6 (ATF6) are the three major trans-
membrane ER sensors of misfolded proteins that initiate UPR
signaling. They sense the unfolded proteins loaded in the ER
lumen and pass this information across the ER membrane to
the cytosol (Back andKaufman2012). The lumenof theERalso
containsmolecularchaperonesandfoldingenzymes likeglucose
regulatory protein (GRP), protein disulphide isomerase-
a3 (Pdia3), calnexin (Canx), and calreticulin (Calr) for protein
folding (Ron and Walter 2007). Initially, cells adapt them-
selves to the accumulated unfolded proteins by elevating the
concentration of chaperones present in the ER lumen, namely
the GRP78 and GRP94 (Adamopoulos et al. 2014). The dis-
sociation of GRP78 ameliorates the accumulation of unfolded
proteins in the ER (Lee 2005; Rutkowski and Kaufman 2007;
Kim et al. 2008) and upon separation of the three sensor pro-
teins from GRP78 initiates the UPR signaling cascades. IRE1
initiates X-box binding protein-1 (XBP1), a transcription fac-
tor regulating UPR-associated genes (Lee et al. 2003; Yoshida
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et al. 2001); PERK decreases translational initiation by
inactivating eukaryotic initiation factor-2α (eIF2α) and acti-
vates ATF4 (Kadowaki and Nishitoh 2013); ATF6 gets
cleaved in Golgi and transferred to the nucleus in its activated
form (Ye et al. 2000). These changes are linked with the acti-
vation of c-Jun-N-terminal kinases (JNK) that phosphorylates
insulin receptor substrate-1 (IRS1), which interferes in insulin
signaling. Previous studies evidenced that ER stress pro-
teins—GRP78, XBP1s, eIF2α—and inflammatory kinase
protein JNK are elevated in the liver and adipose tissues of
obese insulin resistant non-diabetic humans (Boden et al.
2008) but attained normalcy after gastric bypass-induced
weight loss (Gregor et al. 2009).

Given the importance of ER stress signaling in metabolic
pathways, our current aim is to examine UPR-mediated pan-
creatic stress in high-fat, high-fructose diet (HFFD)-fed
Sprague Dawley rats, a physiologically relevant model for
obesity and type 2 diabetes (T2D). We have extensively used
this diet model to test the preventive and therapeutic potential
of a wide range of phytochemicals and medicinal plants in our
laboratory (Yogalakshmi et al. 2014; Kalivarathan et al. 2017).
We challenged rats with HFFD to create a nutrient excess
environment that in turn develops stress in ER. Scopoletin
(SPL) (6-methoxy-7-hydroxycoumarin) possesses various
pharmacological properties, such as anti-inflammatory, hy-
po-uricemic, and antioxidant activities (Moon et al. 2007;
Siatka and Kasparova 2008; Mogana et al. 2013; Panda and
Kar 2006). SPL has been show to improve the sensitivity of
liver cells to insulin and the cellular metabolism of glucose
and lipids in high fat diet-fed C57BL/6J mice, a model of fatty
liver (Ham et al. 2016). Therefore, we assessed the in vivo
effect of SPL on ER stress during nutrient excess. Further, cell
culture studies with rat insulinoma 5f (RIN5f) cell line were
designed to substantiate the role of SPL in suppressing the
stress developed in ER. The results demonstrate that the ther-
apeutic potential of SPL could be possibly mediated by its
modulatory effects on ER stress. Those findings derived for
SPL were matched with those for 4-phenylbutyric acid (4-
PBA), a well-known ER stress inhibitor.

Materials and methods

Reagents and antibodies Fructose and casein protein were
procured from SFA Food and Pharma Ingredients Pvt. Ltd.,
Thane, Maharashtra, and Clarion Casein Pvt. Ltd., Kadi,
Gujarat, respectively. Antibodies against β-actin (Catalog #
sc-47778), GRP 78 (H-129): (Catalog # sc-13968), ATF6α
(F-7): (Catalog # sc-166659), phospho-JNK (G-7) (Catalog
# sc-6254), and JNK (D-2) (Catalog # sc-7345) were procured
from Santa Cruz Biotechnology, CA, USA. Anti-IRE1
(phospho S724) antibody ab48187 was procured from
Abcam, Cambridge, USA. Antibodies PERK (D11A8)

Rabbit mAb (Catalog # 5683), phospho-PERK (Thr980)
(16F8) Rabbit mAb (Catalog # 3179), IRE1α (14C10)
Rabbit mAb (Catalog # 3294), eIF2α (D7D3) XP® Rabbit
mAb (Catalog # 5324), phospho-eIF2α (Ser51) (D9G8) XP™
Rabbit mAb (Catalog # 3398), ATF4 (D4B8) Rabbit mAb
(Catalog # 11815), CHOP (L63F7) Mouse mAb (Catalog #
2895), XBP1s (D2C1F) Rabbit mAb (Catalog # 12782), and
HRP-conjugated secondary antibodies (anti-mouse, anti-rat,
anti-rabbit, and anti-goat) were from Cell Signaling
Technology, Danvers, MA, USA.

Oligonucleotide primers and power SYBR® Green PCR
master mix were procured from Genei, Bengaluru, India, and
Kapa Biosystems, Wilmington, MA, USA, respectively.
Immobilon polyvinylidene fluoride (PVDF) membrane
(Millipore, Darmstadt, Germany)-enhanced chemilumines-
cence (ECL) kit (Thermo Scientific Super Signal West Pico
Chemiluminescent Substrate, Rockford, PA, USA) were used
for immunoblotting. SPL and 4-PBA were obtained from
Sigma-Aldrich Pvt. Ltd., (St Louis, MO, USA). All other re-
agents and solvents used were of analytical grade.

In vitro experimental paradigms

Cell culture Rat insulinoma 5f (RIN5f) cell line was obtained
from National Centre for Cell Science (NCCS, Pune, India).
RIN5f cells (passages 128-138) were grown in HiGlutaXL™
Roswell Park Memorial Institute (RPMI)-1640 medium sup-
plemented with L-alanyl-L-glutamine, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) buffer, 60 mg/L pen-
icillin, 100 mg/L streptomycin, 15% fetal bovine serum
(FBS), and sodium bicarbonate (HiMedia Laboratories Pvt.
Ltd., Mumbai, India) in a humidified incubator at 37 °C with
5% CO2. Cells were dislodged using trypsin (0.125%)–ethyl-
enediaminetetraacetic acid (EDTA) (0.02%) solution.

Palmitate preparation Palmitate/bovine serum albumin
(BSA) conjugate was prepared by soaping palmitate with so-
dium hydroxide and mixing with BSA. Palmitate (20 mM in
0.01 M NaOH) was incubated at 70 °C for 30 min. Fatty acid
soaps were then complexed with 5% fatty acid free BSA in
phosphate-buffered saline (PBS) at a 1:3 volume ratio. The
complexed fatty acids consisted of 5 mM palmitate and 3.75%
BSA. The palmitate/BSA conjugate was diluted in RPMI
1640 medium and administered to cultured cells (Jung et al.
2015).

Cell viability assay Cell viability was carried out using RIN5f
cells by MTT assays (3-(4,5-dimethylthiazole-2-yl)-2,5-di-
phenyltetrazolium bromide) (Sigma, USA) in order to fix the
dose and exposure time for palmitate, SPL, and 4-PBA. 20 ×
103 cells were grown in 96-well plates for 24 h to obtain 80%
confluency and then treated using fresh RPMI 1640 medium

858 K. Kalpana et al.



with serial concentrations of palmitate/BSA conjugate for 16 h.
Different serial concentrations of SPL and 4-PBAwere used to
treat the cells inducedwith palmitate grown in96-well plates. To
terminate the experiments, control and test samples were

incubatedwith 0.5mg/ml ofMTT in PBS for 4 h. The formazan
crystals formed were dissolved using 10% dimethyl sulfoxide
(DMSO) and absorbance was measured at 570–640 nm using
anELISAplate analyzer (ReadwellTouch,Robonik, India).The

Table 1 Primers designed for qRT-PCR reactions

S. No. Genes Tm <Forward primer sequence> <Reverse primer sequence>

1 Ire1 58.9 °C 5′CACAGCCCCTCTGTGGTAAC3′ 5′GCTTTCACCAGGCACACTTA3′

2 Atf6 60.1 °C 5′ATCTCAGGTCGGGGAGTTCT3′ 5′GGCGCAGGCTGTATACTGAT3′

3 Perk 60.0 °C 5′AGGAACATCGTAGGGGCTTT3′ 5′GAGTTGCAGACCCGAGCTAC3′

4 Calr 60.0 °C 5′CTCAGGTCAAGTCTGGCACA3′ 5′TGGCCTCTACAGCTCATCCT3′

5 Canx 59.9 °C 5′GGATCCCTTTGTGTGGCTAA3′ 5′GAGCCTCCATGGTTCAACAG3′

6 Pdia3 60.2 °C 5′GGGGCTGAGGTGGAATTTAT3′ 5′CTTTGGGGACACAGGACAAT3′

7 Chop 52.3 °C 5′GTATCTGAGAAGGGAGGAAT3′ 5′CTTAAACTCCATTCCCATCC3′

Internal control

8 Gapdh 60.0 °C 5′AAGGGGAACCCTTGATATGG3′ 5′CGGAGATGATGACCCTTTTG3′
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Fig. 1 Expression of ER stress canonical proteins and cytotoxicity assay
in palmitate-induced RIN5f cells. Cells were treated with different serial
concentrations of PA, SPL, and 4-PBA to evaluate the IC50 values. a
Cytotoxicity by PA treatment (16 h) and the PA-treated RIN5f cells upon
treatment with SPL and 4-PBA (24 h) was evaluated by MTT assay
(mean ± SEM; n = 3). b Representative blots showing the protein bands
detected by chemiluminescence signal. The top panel shows bands for
pIRE1 (MW 110 kDa) normalized with total IRE1α (MW 110 kDa). The
middle panel shows the bands for pPERK (MW 140 kDa) normalized

with total PERK (MW 140 kDa). The bottom panel shows the bands for
ATF6α (MW90 kDa) normalized withβ-actin (MW43 kDa). Activation
of the ER stress sensors was confirmed with anti-phospho-IRE1/IRE1α,
phospho-PERK/PERK, and ATF6α/β-actin antibodies. c Densitometric
analysis ofWestern blots as shown in b, normalized with their total forms
and β-actin (n = 3). Statistical analysis was done by one-way ANOVA
with Tukey’s post hoc test. (Mean ± SD; *p < 0.05, **p < 0.01,
***p < 0.001) (PA = palmitate, SPL = scopoletin, 4-PBA = 4-
phenylbutyric acid)
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percentage of viable cell count was calculated assuming control
viable cell count as 100% (Mosmann 1983).

Mean OD of untreated cells−Mean OD of treated cells

Mean OD of untreated cells

� 100

In vivo experimental paradigms

Experimental animals and diet composition Experiments
were carried out in male Sprague Dawley rats of age 8–
10weeks old weighing between 100 and 120 g, procured from
Biogen, Laboratory Animal Facility, Bengaluru, India. The
experimental diet was prepared freshly every day in the labo-
ratory with the following ingredients (g/100 g): fructose 45.0,
groundnut oil 10.0, beef tallow 10.0, casein 22.5, DL-
methionine 0.3, wheat bran 5.5, vitamin mixture 1.2, and min-
eral mixture 5.5. Standard rat pellets (Sai Enterprise, Chennai,
India) composed of 60% (w/w) starch, 22.08% (w/w) protein,
and 4.38% (w/w) fat provided energy of 382.61 cal/100 g,
whereas HFFD provided 471.25 cal/100 g.

Animal maintenance Animals procured from Rajah Muthiah
Medical College and Hospital (RMMC&H) were maintained
under standard temperature (25 °C) and humidity with an
alternating 12 h light/dark cycle. All the experimental proce-
dures were approved by the Institutional Animal Ethics
Committee (IAEC), Annamalai University, and conducted ac-
cording to the guidelines by the Committee for the Purpose of
Control and Supervision on Experiments on Animals
(CPCSEA) (Proposal No. 1091). After acclimatization for a
period of 1 week, the animals were randomly divided into five
groups consisting of six rats (n = 6) each and were maintained
for a period of 90 days.

Treatment procedure The rats were randomized into experi-
mental and control groups and divided into five groups of six
animals each. Animals in group 1were the untreated rats fedwith
standard pellet (CON). Another set of six rats fed with HFFD

served as group 2. Animals in groups 3 and 4 were fed with
HFFD and treated with SPL (1 mg/kg bw/day, p.o.) (Verma
et al. 2013) from day 46 till the end of experimental period and
4-PBA (1 μg/kg bw/day, i.p.) Castro et al. 2013) from day 76 till
the end of experimental period, respectively. Animals in group 5
received standard pellet fed with SPL (1 mg/kg bw/day, p.o.)
from day 46 till the end of experimental period.

Animal sacrifice Duration of the study period was terminated
after 90 days and the rats were sacrificed by cervical disloca-
tion after an overnight fast. Blood and pancreas tissue samples
were collected and processed for analyses. A portion of the
pancreas tissue was immediately frozen in liquid nitrogen for
subsequent RNA extraction, while another portion was proc-
essed using lysis buffer for Western blot analysis.

RNA preparation and qRT-PCR analysis RNA was extracted
from rat pancreas using TRIzol reagent (Genei, Bengaluru,
India). The concentration of detected RNA was determined
spectrophotometrically at 260 nm (Biophotometer plus,
Eppendorf, Hamburg, Germany) and the purity of RNA prepa-
ration was checked by calculating the absorbance ratio at 260/
280 nm. Quantitative real-time polymerase chain reaction (qRT-
PCR) was conducted in a two-step PCR procedure. The extract-
ed RNA (2.0 μg) was reverse transcribed by standardized pro-
cedure and the obtained cDNAwas quantified (Biophotometer
Plus, Eppendorf, Hamburg, Germany). After quantification,
qRT-PCR amplification was performed in a 20-μL reaction
mixture containing cDNA (100 ng), 1 μL each of 0.3 μM of
reverse and forward primers, 10 μL Maxima SYBR Green
qPCR Master Mix, and sterile water. The nucleotide sequences
of primers used are given in Table 1. The PCR program was
conducted using real-time PCR systemMastercycler ep realplex
(Eppendorf, Hamburg, Germany) in universal cycling condi-
tions (10 min at 95 °C, 40 cycles of 2 min at 95 °C, 30 s at
60 °C (or the optimal Tm), and 20 s at 72 °C). The target gene
were normalized with an endogenous control glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) by using 2−ΔΔCT (Livak
and Schmittgen 2001) and the relative quantity was expressed in
bar graphs as fold change with respect to control.

Protein extraction and Western blotting For protein isolation,
the pancreas tissuewas homogenized in ice-cold homogenization
buffer (20 mM Tris–HCl, pH 7.4, 0.25% SDS, 150 mM NaCl,
1% Nonidet P-40, 0.5% Triton X-100, 1 mM phenyl methyl
sulfonyl fluoride (PMSF), 1 mM EDTA, and protease inhibitor
cocktail) and centrifuged at 12,000×g, for 15 min at 4 °C. The
supernatant was used as the whole cell extract. The concentra-
tions of the extracted proteins were measured using spectropho-
tometer by Lowry et al. (1951). Pancreas homogenates contain-
ing equal amount of protein were resolved by 8–12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS
PAGE). The separated proteins were electro-transferred onto

�Fig. 2 Quantitative real-time PCR analysis of mRNA transcripts of rat
pancreas. Total pancreas mRNA fromCON,HFFD, HFFD + SPL, HFFD
+ 4-PBA, and CON + SPL-treated Sprague Dawley rats were isolated for
the PCR analysis. Expression values were normalized to GAPDHmRNA
levels (a–g). Fold change of the gene expression was calculated by
2−ΔΔCt. (Mean ± SD; n = 3, *p ˂ 0.05, **p ˂ 0.01, ***p < 0.001) (Ire1
= inositol requiring enzyme 1, Perk = PKR-like ER kinase, Atf6 = acti-
vating transcription factor, Pdia3 = protein disulphide isomerase a3,Caln
= calnexin, Calr = calreticulin, Chop = C/EBP homologous protein).
Abbreviations mentioned in the figures throughout denotes: CON =
group of rats fed with standard pellet, HFFD = rats fed with HFFD
diet alone, HFFD + SPL = HFFD-fed rats treated with SPL, HFFD + 4-
PBA = HFFD-fed rats treated with 4-PBA, CON + SPL = control rats fed
with standard pellet and treated with SPL
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PVDF membrane followed by blocking in the Tris-buffered sa-
line Tween 20 (TBST) solution (pH 7.4) containing 3%BSA for
2 h at room temperature and then incubated overnight at 4 °C
with primary antibodies. After incubation, blots were washed
with TBSTand incubated with the respective secondary antibod-
ies for 2 h at room temperature. Proteins were detected by chemi-
luminescence with an ECL kit and the images were captured
using GELSTAN 1312 Chemi, a chemiluminescence and fluo-
rescence imaging system (Medicare, Chennai, Tamil Nadu,
India) followed by quantification using the Image J software
(National Institute of Health Bethesda, MD, USA).

Immunohistochemical analysis For immunohistochemical
analysis, the paraffin sections (4 μm) were initially baked
for 1 h at 60 °C followed by dewaxing with xylene.
Sections were then rehydrated with graded concentrations
of isopropyl alcohol and subjected to antigen retrieval for
3 min using citrate buffer. Incubation of antigen retrieved
sections in peroxide blocking reagent for 10 min and rinsing
with phosphate buffer were performed. It was then followed
by incubation with power block solution for 10 min. Non-
specific binding was minimized by washing the sections with
3% BSA in phosphate-buffered saline for 30 min. Sections
were incubated overnight with the primary antibodies. The
sections rinsed with phosphate buffer and incubated with
super enhancer reagent for 30 min were again rinsed with
phosphate buffer. Incubation with super sensitive polymer-
HRP immunohistochemistry detection system (Biogenex lab-
oratories) was done and was trailed by washing thoroughly
with phosphate buffer. The washed sections were incubated
with 3,3′-diaminobenizidine (DAB) substrate solution for
5 min and counterstained with hematoxylin. The sections
were photographed under the Olympus CX 41 microscope
attached with digital camera Olympus micro.

CON HFFD

HFFD + SPL

CON + SPL

a) b)

c)

e)

d)
HFFD + 4-PBA

10 um 10 um

10 um

10 um

10 um

Fig. 4 Immunohistochemical
localization in HFFD-fed rats.
Representative photomicro-
graphs (a-e) of immunohisto-
chemical staining of phospho-
IRE1 in control and experimental
rats. Brown color indicates DAB
staining and the occurrence of
antigen–antibody reaction.
Blue color indicates hematoxylin
staining and the absence of anti-
gen–antibody reaction.
Black arrows represent immuno-
reactivity. Scale bars = 10 μm

�Fig. 3 Immunoblotting of proteins belonging to ER stress signaling in
Sprague Dawley rats. a Representative immunoblot analysis of ER stress
proteins. In pancreas tissues of 90 days HFFD-fed rats, immunoblotting
was performed using antibodies against phospho-IRE1 and IRE1α (a);
phospho-PERK and PERK (b); GRP78, ATF6α, XBP1s, CHOP, and β-
actin (c); and phospho-eIF2α and eIF2α (d) along with their quantifica-
tion analysis performed based upon the indicated loading control (β-actin
for GRP78, ATF6α, XBP1s, ATF4, CHOP, and IRE1α for phospho-
IRE1, PERK for phospho-PERK, eIF2α for phospho-eIF2α). Statistical
analysis in b was done by one-way ANOVAwith Tukey’s post hoc test.
(Mean ± SD; n = 3, *p < 0.05, **p < 0.01, ***p < 0.001)
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Transmission electron microscopic studies Pancreatic tissue
removed from the animals were cut into small bits of size
1 mm2 and fixed in 2% ice-cold glutaraldehyde for 4–8 h at
8 °C. Then it was post fixed in 0.1% osmium tetroxide for 2 h
at 8 °C, dehydrated through a graded series of acetone con-
centrations, and embedded in Epon 812 resin with catalyst in
easy molds for 48 h at 60 °C. The tissue was then sectioned
using Leica Ultramicrotome with diamond or glass knives.
Ultrathin sections (~ 50 nm) were mounted on copper grids,
stained with 2% uranyl acetate and 0.2% lead citrate. The
sections were screened in a JEOL JEM 1400 transmission
electron microscope at an accelerating voltage of 80 kV
equipped with an Olympus Keen view CCD camera.

Statistical analysis The values are given as means ± SD with
n = 3 for immunoblot, qRT-PCR analysis, and histological
studies. Statistical significance was examined by one-way
analysis of variance (ANOVA) followed by Tukey’s post
hoc test using the Prism version 5.0 software (Graph Pad
Software, La Jolla, CA, USA). A probability value less than
0.05 (p < 0.05) was considered to be significant.

Results

SPL protects RIN5f cells against palmitate-induced ER stress
To elucidate the mechanism of action of SPL, we first planned
for a set of in vitro experiments in RIN5f cells. Cell viability
upon treatment with palmitate, SPL, and 4-PBAwas assessed
by MTT assay. After 16 h exposure of RIN5f cells to palmi-
tate, 50% of cell viability was noted at a concentration of
600μM. Palmitate-induced RIN5f cells were then treated with
different serial concentrations of SPL or 4-PBA for 24 h to
measure their IC50 values. One hundred micromolar SPL and
10 μM 4-PBAwere observed to be sufficient to maintain 50%
of cells as viable (Fig. 1a).

To confirm the development of ER stress in RIN5f cells,
the expression of ER stress sensors IRE1α, PERK and ATF6α
were measured quantitatively by Western blot. We identified
that palmitate treatment decreased the expression while treat-
ment with SPL or 4-PBA upregulated the expression of
phospho-IRE1 and phospho-PERK and ATF6α levels sug-
gesting that the treatment effectively suppressed ER stress in
RIN5f cells developed by palmitate (Fig. 1b, c).

HFFD

ERMt

b)
CON

ER

a)

HFFD + SPL

ER

N

c)

Fig. 6 Ultrastructural view of
endoplasmic reticulum under
transmission electronmicroscopic
magnification. a Control rat
pancreas shows normal ER
pattern in its structure. b HFFD-
fed rat pancreas shows high dila-
tion in ER. c SPL-treated HFFD-
fed rat exhibits ER architecture
along with nucleus similar to
control rats with little dilation.
Scale bars = 200 nm

a) HFFD – + + + –
SPL – – + – +

4-PBA – – – + –

pJNKThr183/Tyr185
54 kDa
46 kDa

54 kDa
46 kDaJNK

b)

Fig. 5 Phosphorylation status of JNK. aRepresentative immunoblots of phospho- and total form of JNK. bDensitometric analysis was done by one-way
ANOVAwith Tukey’s post hoc test. (Mean ± SD; n = 3, *p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 7 Physiopathological condition of ER in rat pancreas during lipotoxicity
and SPL treatment. UPR signaling that takes place in ER involves the sensor
proteins IRE1α, PERK, and ATF6α associated with GRP78, a molecular
chaperone that protects the cell from the accumulation of misfolded
proteins. UPR signaling mechanism in basal condition: (1) IRE1α signal-
ing—IRE1α phosphorylation cleaves XBP1 unspliced to spliced mRNA
and the mRNA transcript then induces the UPR target gene GRP78. (2)
PERK signaling—autophosphorylation of PERK generates phospho-eIF2α
which blocks its translation initiation and induces the phosphorylation of
ATF4 leading to the stimulation of gene expressions of GRP78, CHOP, and
XBPu. (3) ATF6 signaling—includes its translocation to Golgi for proteolytic

cleavage by site-1 protease (S1P) and site-2 protease (S2P). Its subsequent
release into the nucleus enables to induce expression of GRP78 and XBP1u.
aLipotoxicity: In lipotoxic cells, accumulatedmisfolded proteins have higher
affinity for GRP78 and gets dissociated enabling the initiation of the UPR
signaling cascades. Increased ER chaperones blocks the phosphorylation of
eIF2α and the splicing of XBP1, and the signaling proteins involved in the
UPR signaling balances the cells towards stress. Spliced XBP1 then initiates
the phosphorylation of JNK at threonine 183/tyrosine 185. b Scopoletin
treatment: Upon treatment with scopoletin, the transducers are found to re-
bound with GRP78 and maintain the ER homeostasis, thereby deactivating
JNK
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SPL alleviates mRNA of ER stress molecular chaperones To
further explore the mechanism for the protective effect of
SPL, we then moved on to in vivo experiments. Stress was
developed in rodents by feeding with high-fat along with
high-fructose diet. Gene expression of Ire1, Perk, Atf6, and
molecular chaperones like Pdia3, Calr, Canx, C/EBP
(CCAAT/enhancer-binding protein) homologous protein
(Chop) were estimated by qRT-PCR. To substantiate with
the misfolded proteins in ER, the chaperones first refold them-
selves. The mRNA transcripts of Ire1, Perk, Atf6, Pdia3,
Canx, Calr, and Chop of HFFD-fed rats showed an increase
of 3.6-, 4.1-, 4.0-, 3.5-, 3.0-, 2.9-, and 3.8-fold, respectively, as
compared to control rats. SPL supplementation resulted in a
3.2-, 3.3-, 3.3-, 2.9-, 2.3-, 2.4-, and 2.6-fold increase among
the genes analyzed for ER stress whereas 4-PBA showed 2.0-,
1.9-, 1.7-, 1.8-, 1.7-, 1.7-, and 2.1-fold change as compared to
the rats fed with standard pellet. Taken together, these obser-
vations provide evidence that lipid accumulation initiates ER
stress in pancreatic islets (Fig. 2a–g).

SPL inhibits ER stress sensors and its downstream target pro-
teinsHaving observed the effect of SPL on the ER chaperones
mRNA transcripts, we then determined the canonical proteins of
ER stress and the downstream targets throughWestern blot anal-
ysis. Elevated ER stress unbound GRP78 with the three sensor
proteins and its upregulation phosphorylated and activated their
downstream signaling proteins. Autophosphorylation of PERK
led to the phosphorylation of eIF2α and activated ATF4 and
CHOP expression in ER stressed rats. Phosphorylation of IRE1
increased the splicing of XBP1leading to the activation of
GRP78 in HFFD-fed rats. The third ER sensor protein ATF6α
gets dissociated from GRP78, cleaved at Golgi, and translocated
to the nucleus after its activation by HFFD feeding. SPL or 4-
PBA treatment brought back the protein expression levels nearer
to the normal. Taken together, the results suggest that SPL mod-
ulates the expression of ER stress sensors and their downstream
signaling target inHFFD-fed rats confirming the potential of SPL
in alleviating the ER stress (Fig. 3a–d). Immunohistochemical
studies also supported that SPL supplementation resulted in a
significant decrease in the expression of phospho-IRE1 when
SPL was supplemented to HFFD-fed rats (Fig. 4).

Phosphorylation status of JNK Next, we examined whether
SPL rescues HFFD-induced over expression of JNK by
assessing the phosphorylation status of JNK in HFFD-fed rats.
Treatment with SPL or 4-PBA suppresses the expression of
phospho-JNKThr183/Tyr185, an insulin signaling kinase (Fig. 5a,
b). Increased expression of IRE1α leads to the activation of
JNK thereby negatively regulates insulin signaling.

Ultrastructural imaging of the rat pancreas The ultrathin
stained sections of β-cells of the control rats exhibit normal
pattern of nuclei, endoplasmic reticulum, and mitochondria.

While β-cell sections from HFFD-fed rat exhibit distended
ER and rearranged pattern of cisternae. Upon treatment with
SPL, the structure of organelles is rearranged as in normal rats
(Fig. 6a–c). Twofold and 1.5-fold expansion in ER is observed
among HFFD-fed rats and SPL-treated HFFD rats, respective-
ly, through the Image J software.

Discussion

The current study expressed the effects of SPL on the excess
nutrient-induced ER stress through in vitro and in vivo ap-
proaches. Both the results were consistent with each other show-
ing an important role of SPL in controlling ER stress. Recent
studies hint the involvement of obesity-induced ER stress as an
important pathogenic factor for pancreatic β-cell failure (Back
andKaufman 2012; Laybutt et al. 2007). SPL has been proven to
protect against methylglyoxal-induced hyperglycemia and insu-
lin resistance in male Wistar rats (Lee et al. 2014). However, the
mechanism of SPL action on ER stress remains unknown.

Amelioration of ER stress in vitro Palmitate is used extensively
in in vitro studies to induce insulin resistance and its effects are
attributed to its metabolites. β-cell dysfunction developed by
ER stress in the pancreas was shown to be induced by satu-
rated free fatty acids (Laybutt et al. 2007; Karaskov et al.
2006; Kharroubi et al. 2004). Phosphorylation and activation
of PERK pathway is regulated differentially by extracellular
glucose and palmitate treatment in β-cells. Earlier β-cells
treated with palmitate induce the PERK pathway that involves
the phosphorylation of eIF2α resulting in over expression of
ATF4 and CHOP (Ozcan et al. 2004; Cnop et al. 2010).

IRE1α, a canonical ER stress sensor results in the alter-
ations of its signaling genes due to prolonged ER stress
(Okuda-Shimizu and Hendershot 2007). Chronic activation
of IRE1α in β-cells by exposure to high-glucose cleaves
unspliced Xbp1 mRNA and insulin mRNA suggesting that
IRE1α–Xbp1 signaling is essential for β-cell function (Back
and Kaufman 2012). Prolonged activation of IRE1α in ER of
adipocytes might interrupt insulin signaling (Kawasaki et al.
2012). In addition to PERK and IRE1α, a study byWang et al.
(2009) has proved that acute ER stress induced phosphoryla-
tion of CREB-regulated transcription coactivator 2 (CRTC2)
and enhanced gluconeogenesis by ATF6 overexpression.

Induction of ER stress by palmitate in RIN5f cells was found
to be associated with elevated IRE1α, PERK, and ATF6α sig-
naling transduction and its downstream signaling targets includ-
ing the molecular chaperones. Importantly, all of these genes
have been shown to be induced by ER stress caused by
prolonged palmitate exposure in cultured mouse MIN6 cells
(Laybutt et al. 2007). We examined the effect of SPL treatment
on ER stress in RIN5f cells with palmitate-induced ER stress.
The levels of phospho-forms of PERK and IRE1α and the
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activation of ATF6α protein expression induced by palmitate
were reversed by SPL to normal levels. These results indicate
that SPL reduces palmitate-induced ER stress in vitro.

Attenuation of ER stress in Sprague Dawley rats Diets rich in
high calories are the known inducers of UPR and pathological
ER stress (Cnop et al. 2012). In pancreatic β-cells, ER stress
has been induced by excess nutrients, amyloid deposits, and
inflammatory cytokines (Eizirik et al. 2008) which are
counteracted by the activation of UPR pathways particularly
in high secretory cells like β-cells (Oyadomari and Mori
2004). In animal models, pancreatic β-cell death was evi-
denced by the perturbation of the UPR signaling (Harding
et al. 2001; Scheuner et al. 2005; Zhang et al. 2002).

Proinsulin mRNA and protein synthesis is stimulated by
prolonged high-glucose concentrations which resulted in the
activation of PERK leading to protein entry into the ER (Hou
et al. 2008). Alterations in the splicing of Xbp1which leads to
β-cell failure in the β-cell-specific XBP1 mutant mice model
were proved earlier by Lee et al. (2011). And also Seo et al.
(2008) reported that under ER stress the ectopic over expres-
sion of ATF6α creates β-cells apoptosis. Multiple studies that
use mice fed with high-fat diet report the involvement of
eIF2α signaling (Birkenfeld et al. 2011) or IRE1α in induc-
tion of hepatic lipid accumulation and insulin resistance
(Bailly-Maitre et al. 2010). Previous studies, in this context,
have beenwell documented with the increased levels of eIF2α
phosphorylation, splicing of XBP1 mRNA, and CHOP and
GRP78 protein levels in the islets of mice with models of
insulin resistance and beta cell failure (Laybutt et al. 2007).
Furthermore, recent studies on ER stress accounted the signif-
icant increase in ER stress marker proteins, namely GRP78
and CHOP in islets of T2D individuals (Laybutt et al. 2007).

In our laboratory, earlier, we have reported that HFFD ele-
vated the ER stress proteins IRE1α, PERK, ATF6α, XBP1s,
and eIF2α in liver tissues (Bhuvaneswari et al. 2014). In the
current observation, we confirmed that SPL inhibits ER stress
signaling by downregulating IRE1α, PERK, and ATF6α by
comparing themechanismwith 4-PBA,which has been already
proved to downregulate IRE1α and PERK phosphorylation
(Gregor andHotamisligil 2007) and decrease ER stress markers
GRP78, CHOP, ATF4, and XBP1s (Fonseca et al. 2012).

Role of JNK in pancreatic ER stress JNK activation and ER
stress have been suggested as the major participants in the
commencement of insulin resistance (Jaeschke and Davis
2007). In fact, in adipose tissue and liver of HFD-fed and
ob/ob mice, increased phosphorylation of PERK and IRE1α
and JNK activation are shown (Ozcan et al. 2004, 2009).
Similarly we have obtained the results of JNK phosphoryla-
tion influenced by IRE1α in our present study. Recent reports
clearly depict that SPL inhibits the phosphorylation of extra-
cellular regulated kinase 1/2 (ERK1/2) and JNK but not the

non-phosphorylated mitogen-activated protein kinases
(MAPKs) (Yao et al. 2012). Previous studies show that SPL
induces autophagy through activation of Akt by promoting
transcription of forkhead homeobox type O (FoxO) in the
nucleus (Nam and Kim 2015). Herein, we suggest that SPL
inhibits JNK, a negative modulator of insulin signaling.

Conclusion

From the current observations, we conclude that how SPL
controls ER proteostasis and the suppression of JNK is clearly
depicted in Fig. 7. The levels of key markers of ER stress
elevated by lipotoxic environment are lowered by SPL.
Although, alleviating IRE1α, PERK, and ATF6α could be
the possible mechanisms underlying the protective effects of
SPL against palmitate/HFFD-induced ER stress. SPL also de-
creased JNK phosphorylation, caused by increase in splicing
of Xbp1 mRNA induced by the phosphorylation of IRE1α.
The findings obtained in this study opens up several avenues
for further research. Further, SPL bioavailability and pharma-
cokinetics still remains to be established. SPL should be ex-
amined for its anti-diabetic effect after it is analyzed for its
dosage with respect to protection against ER stress. Further
studies that characterize the functional changes treated with
SPL are needed, if ER stress is to be targeted by SPL.
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