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An understanding of the balance of interspecific competition and the physical

environment in structuring organismal communities is crucial because those

communities structured primarily by their physical environment typically

exhibit greater sensitivity to environmental change than those structured pre-

dominantly by competitive interactions. Here, using detailed phylogenetic

and functional information, we investigate this question in macrofaunal

assemblages from Northwest Atlantic Ocean continental slopes, a high seas

region projected to experience substantial environmental change through

the current century. We demonstrate assemblages to be both phylogenetically

and functionally under-dispersed, and thus conclude that the physical

environment, not competition, may dominate in structuring deep-ocean com-

munities. Further, we find temperature and bottom trawling intensity to be

among the environmental factors significantly related to assemblage diver-

sity. These results hint that deep-ocean communities are highly sensitive to

their physical environment and vulnerable to environmental perturbation,

including by direct disturbance through fishing, and indirectly through the

changes brought about by climate change.
1. Introduction
Competition between species has long been recognized as an important factor

determining the ecological diversity and structure of organismal communities

[1–4]. Intense interspecific competition for scarce resources can result in the

exclusion of certain taxa [2,4], shaping species’ realized niches and distributions,

and influencing ecosystem functioning [5,6]. Numerous studies have investi-

gated the role of competition in structuring terrestrial (such as plant [7]) and

shallow-water (such as coral reef [8]) assemblages, but the importance of inter-

specific competition in structuring the expansive and functionally important

communities of the deep ocean has been a matter of debate because the discov-

ery of high alpha diversity in deep-water sediments [9–11]. Some researchers

have emphasized an important role of biological interactions in structuring

deep-seafloor communities, theorizing a dynamic balance between competitive
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Figure 1. Box corer deployment locations (yellow dots, n ¼ 312) and bathy-
metry (darker areas ¼ greater water depth) of the sampling area in the
Northwest Atlantic Ocean (300 m depth contours; SRTM30 bathymetric data).
Red line shows the extent of the Canadian Exclusive Economic Zone. Green
boxes show locations of Northwest Atlantic Fisheries Organization subarea div-
isions. Inset map places the sampling area (white box) in a global context
(satellite imagery courtesy of ESRI World Imagery). (Online version in colour.)
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forces and predation [12,13]. Others have argued that exten-

sive niche differentiation, coupled with typically low

organismal densities and the availability of space, mean that

competitive interactions are unlikely to be significant in

structuring modern-day deep-ocean communities [9,10,14,15].

Empirical evidence in support of either of these viewpoints

is limited. Studies that have examined the morphological or

trophic characteristics of deep-sea assemblages present some

evidence for the displacement of ecologically similar taxa by

their competitive dominants [16–18]. Conversely, studies

that have investigated the taxonomic or phylogenetic structure

of assemblages provide some evidence that variation in

physical environmental conditions may be of greater influence

than competitive interactions in structuring deep-ocean

communities [19,20]. However, investigations to date have

been limited in their analytical scope by the challenges associ-

ated with sampling and/or conducting experiments in the

deep ocean.

Knowing whether interspecific competition or the

physical environment dominates in structuring natural

communities is important because it further enhances our

understanding of the sensitivity of ecosystems to environmen-

tal change. Communities that are structured predominantly

by interspecific competition are typically more stable under

environmental stress than those whose structure is governed

by the physical environment [21]. Understanding the sensi-

tivity of deep-sea ecosystems to environmental change is of

pressing concern because they are predicted to experience

increasing direct and indirect anthropogenic pressure over

this century [22–24]. For example, fishing fleets are operating

at ever-increasing depths [25], there is growing commercial

interest in the mining of seabed minerals [26], and greenhouse

gas emissions are increasing oceanic temperature, reducing

pH and dissolved oxygen concentrations, and altering food

supply to the deep ocean [23,24,27].

In this study, we perform ‘community phylogenetic’

analyses to investigate the importance of interspecific compe-

tition versus the physical environment in shaping the

composition of deep-seafloor assemblages in the Northwest

Atlantic Ocean—a region predicted to experience particularly

rapid environmental change over this century [28]. Appli-

cation of a community phylogenetic approach avoids many

of the problems associated with conducting experiments

in deep-ocean environments, enabling an investigation of

previously unprecedented scale. Under this approach, the

dispersion of taxa within samples across a phylogeny or

functional trait dendrogram is compared with that which

would be expected by chance [29]. If taxa within samples

are found, on average, to be less similar to one another

than would be expected by random draw from the available

taxa pool, assemblages are described as ‘over-dispersed’;

this is typically considered evidence of a dominance of

competitive exclusion in shaping assemblage structure,

because phylogenetically/functionally similar taxa are assumed

to be ecologically similar [3,29,30]. Conversely, if taxa within

samples are found, on average, to be more similar to one

another than would be expected by chance, assemblages are

described as ‘under-dispersed’; this is typically considered

evidence of a dominance of the physical environment in

determining assemblage structure, because phylogenetically/

functionally similar taxa are assumed to share the particular

traits that are necessary for survival under the prevailing

environmental conditions [3,29,30] (although see [31]).
Our results provide evidence that deep-seafloor communi-

ties may typically be both phylogenetically and functionally

under-dispersed. We therefore also investigate and discuss a

number of physical environmental parameters which may be

of importance in structuring the enigmatic but widespread

communities of deep-ocean sediments.
2. Material and methods
(a) Sampling of deep-seafloor assemblages
We analysed 312 sediment samples, forming the largest macro-

faunal sample set yet collected from the deep ocean. Samples

were collected with a box corer (area 0.25 m2) from the continen-

tal slopes of the Northwest Atlantic Ocean (depth range:

582–2294 m) (figure 1) between May-August 2009 and June–

August 2010, and form part of the international ‘NEREIDA’

programme (https://www.nafo.int/About-us/International-

Cooperation), a project instigated by the Northwest Atlantic Fish-

eries Organisation (NAFO) in order to investigate the impacts of

high seas fisheries on Vulnerable Marine Ecosystems. Sediment

subsamples were taken for geochemical and particle size ana-

lyses and remaining sediment was washed over a 1 mm mesh

sieve for faunal analyses; 20 245 specimens of peracarid crus-

tacean were identified to the genus level (177 genera within

74 families, in total). Peracarid crustaceans were chosen for

analysis because of their low dispersal potential, extremely

high taxonomic diversity, superabundance in marine sediments

and ecological importance as prey, predators and ecosystem

engineers [32–34].
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Figure 2. (a) Supertree chronogram of Peracarida (Crustacea), including other malacostracan taxa as outgroups; 1487 terminal taxa; produced from 129 source trees
using MULTILEVELSUPERTREE 1.0 [36]. Root at 600 Ma, concentric circles representing 50 Ma steps to present day (tips). Examples of taxa—Amphipoda (blue branches):
Leucothoe rudicola (modified from [37]); Cumacea (yellow branches): Procampylaspis chathamensis (image & Sarah Gerken); Tanaidacea (red branches): Pseudo-
sphyrapus anomalus (image & Graham J. Bird); Isopoda (green branches): Atlantoserolis vemae (modified from [38]); Mysida ( pink branches): Heteromysis modlini
(modified from [39]). (b) Functional dendrogram of 77 peracarid taxa sampled by box corer from the NW Atlantic Ocean. Produced by the clustering (UPGMA,
Euclidean distance) of a database of 38 functional traits in 10 trait groupings. Branches coloured by higher taxonomic identity of terminal taxa using same palette
as the supertree. ‘Newick’ format files for both the supertree and functional dendrogram are available in the electronic supplementary material to enable detailed
examination of their topology.
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(b) Supertree phylogeny construction
To investigate the phylogenetic structure of the sampled pera-

carid assemblages, we constructed a ‘supertree’ [35] (figure 2a).

We used Google Scholar to identify 59 studies containing suit-

able evolutionary source trees. From each study, only unique

source trees were retained for analysis to ensure that there was

no duplication of source tree topology (an emergent character-

istic of evolutionary trees as phylogenetic hypotheses, and

the information directly used during supertree construction)

that would otherwise unfairly weight the analysis as a result of

pseudo-replication [35]. One hundred and twenty-seven

evolutionary trees were retained for analysis (electronic sup-

plementary material, table S2), and monophyletic taxonomic

groups were labelled following World Register of Marine Species

(WoRMS) systematic nomenclature.

Supertrees were constructed using MULTILEVELSUPERTREE

(MLS) v. 1.0 [36] run on the Oxford University Advanced

Research Computing supercomputer ARCUS (Phase B) (http://

www.arc.ox.ac.uk/content/home). Because of prohibitive run

times, the program was run individually for the peracarid

orders Amphipoda, Isopoda, Tanaidacea and Cumacea. For

each run, a taxonomy tree was used to guide the program.

To provide reference branch length information for the super-

tree, we constructed two further phylogenetic trees based on 18S

SSU rDNA, 16S rDNA, cytochrome c oxidase 1 (COI) and histone

H3 gene sequences downloaded from GenBank (electronic sup-

plementary material, appendix S1; the topologies of these trees

are available upon request). Genes were aligned individually

using MAFFT v. 7.273 [40] running on the MAFFT online

server (http://mafft.cbrc.jp/alignment/server/). Alignments

were scrutinized using TRIMAl v. 1.2 [41]. The final alignment

was concatenated using SEQUENCEMATRIX v. 1.8 [42] and consisted

of 285 taxa and 2586 bp. PARTITIONFINDER v. 1.1.1 [43] was used to

select the most appropriate model of evolution and partitioning

scheme. ML and Bayesian topologies were estimated using

RAXML v. 8.2.8 and MRBAYES v. 3.2.6, respectively, on the

CIPRES Science Gateway v. 3.3 online server [44].
During a fifth round of supertree construction, we used MLS

1.0 to combine the output trees from the four previous MLS runs

and the ML and Bayesian analyses with all source trees focusing

on order-level relationships within Peracarida and Malacostraca

to produce a final supertree with 1487 terminal taxa. This super-

tree topology was then trimmed to include only those taxa

present in the GenBank sequence concatenated alignment. We

estimated maximum-likelihood branch lengths for this topology

using RAXML v. 8.2.8. Common nodes between the supertree

and ML branch length tree were labelled using PHYLOCOM

v. 4.2 [45] and the labelled ML branch length tree was used as

an input for the program R8S v. 1.8 [46] in order to obtain a

dated phylogeny. Twenty-two nodes were constrained with

age estimates based on fossil data (electronic supplementary

material, table S1). Non-parametric rate smoothing (NPRS)

with Powell optimization was selected as the analysis method.

The BLADJ function of PHYLOCOM [45] was then used to obtain

a fully dated supertree (figure 2a; see electronic supplementary

material for a ‘Newick’ format representation of the supertree

to enable detailed examination of its topology).
(c) Functional dendrogram construction
To characterize the functional structure of the sampled peracarid

assemblages, we constructed a dendrogram (figure 2b) describ-

ing the functional similarity of sampled families based on their

scoring for a selection of traits (electronic supplementary

material, table S3). Trait groupings and traits were chosen

based on ecological relevance and data availability. We used a

fuzzy coding [47] approach to enable the coding of variability

in trait scores within a family/individual. Based on available lit-

erature and the expert opinion of the authors T.H., A.B., G.J.B.,

S.G. and O.S.A., 77 taxa were scored for 38 traits in 10 trait

groupings. The trait database was converted into a dendrogram

via hierarchical clustering (figure 2b; see electronic supplementary

material for a ‘Newick’ format representation of the functional

dendrogram). We used cophenetic correlation coefficient values

http://www.arc.ox.ac.uk/content/home
http://www.arc.ox.ac.uk/content/home
http://www.arc.ox.ac.uk/content/home
http://mafft.cbrc.jp/alignment/server/
http://mafft.cbrc.jp/alignment/server/
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[48] to select the most appropriate distance metric and clustering

method as Euclidean distance and unweighted pair group

method using arithmetic averages (UPGMA) clustering. Analyses

were conducted in R v. 3.0.2 [49].

(d) Testing for phylogenetic and functional assemblage
structure

We investigated phylogenetic assemblage structure using the

phylostruct function of the R package ‘picante 1.6–2’ [50] based

on the constructed supertree (figure 2a) and complete genus-

level peracarid assemblage matrix. To investigate assemblage

structure at smaller spatial scales, we used ESRI ARCGIS v. 10.1

to produce seven data subsets, each consisting of 30 box cores

chosen at random from within a set radius (50, 100, 200, 300,

400, 500 and 600 km) of the central-most sampling point. To

quantify the phylogenetic dispersion (diversity) of peracarid

genera within each sample, we calculated the metric ‘phyloge-

netic species variability’ (PSV) [51]. We employed permutation

tests (100 000 permutations) to determine whether the average

PSV of all samples, and sample subsets, was significantly differ-

ent from that expected under two null hypotheses—‘Null 1’ and

‘Null 2’ [51]. Under Null 1, phylogenetic structure was removed

from both taxon prevalence and sample composition by the ran-

domization of taxon presence within samples. Under Null 2,

phylogenetic structure was removed from sample composition,

but not from taxon prevalence, by the randomization of taxon

occurrence between samples.

Since functional dendrograms are analogous to phylogenies

in form, we employed the same methods as outlined above to

quantify the functional dispersion (referred to herein as ‘func-

tional species variability’ (FSV)) of peracarids contained within

each sample based on the constructed functional dendrogram

(figure 2b) and compared this to the expected outcome under

the two null hypotheses stated above.

(e) Testing for phylogenetic signal
As the interpretation of community phylogenetic patterns

relies on knowledge of the evolution of taxon traits [29], we

tested for phylogenetic signal across the peracarid trait matrix

by applying a Mantel test [52]. Based on the constructed supertree

(figure 2a), we calculated the square root of patristic distance as a

measure of phylogenetic distance between taxa using the R pack-

age ‘ape 4.1’ [53]. Euclidean distance was calculated as a measure

of trait similarity between taxa based on the peracarid trait matrix.

The Mantel test was performed using the R package ‘vegan 2.0-9’

[54] (100 000 permutations). To assess the strength of phylogenetic

signal in individual traits, based on the supertree of Peracarida

(figure 2a), we calculated Pagel’s l [55] for each trait in the pera-

carid functional trait table using the R package ‘phylosignal 1.2’

[56] (100 000 permutations).

( f ) Characterization of the deep-sea physical
environment

To investigate relationships between the PSV/FSV of sampled

peracarid assemblages and the prevailing environmental con-

ditions, we examined the following environmental parameters:

bathymetry (depth, slope, aspect, seafloor rugosity, bathymetric

position index (BPI)); fishing intensity (vessel monitoring

system (VMS) signal density and total trawl length per km2);

geological context; seafloor sediment particle size (percentage

clay/silt/sand); carbon availability (percentage inorganic, organic

and total carbon, surface chlorophyll a and particulate organic

carbon (POC) concentrations, modelled transport of POC to

depth); physical oceanographic variables (temperature, salinity

and current speed); and month and year of sample collection.
Water depth at each sampling location was extracted using

ARCGIS 10.1 based on multibeam bathymetric surveys (5625 m2

cell size). Slope, eastness and northness, roughness (225 �
225 m analysis window) and standard deviation of multibeam

bathymetry values (225 � 225 m analysis window) were calcu-

lated using the Spatial Analyst extension of ARCGIS 10.1.

Benthic Terrain Modeler [57] was used to calculate BPI over a

range of radii as well as seafloor rugosity (375 � 375 m and

1875 � 1875 m analysis windows).

We quantified bottom trawling intensity using VMS signal

locations. Individual trawl paths were identified based on boat

identity, speed, location, date and time using ARCGIS 10.1, and

the Line Density Tool (Spatial Analyst extension) was used to

measure the total length of trawls per km2 within a set radius

(1, 3 or 5 km) from each box core.

The sediments of the study area were classified into 12 discreet

geological categories based on their acoustic characteristics, depth

and slope [58]. We extracted the relevant geological category for

each sampling location using ARCGIS 10.1.

Sediment per cent clay/silt/sand was calculated for each

core subsample based the following particle size categories con-

sistent with the ‘Phi’ (F) scale. We calculated particle size

diversity following the methodology of Etter & Grassle [59]

and Leduc et al. [60].

Sediment total carbon and organic carbon content were

determined using a Leco TruSpec CHN analyser. Inorganic

carbon was determined by the difference between the total

carbon and organic carbon measurements for each sample [61].

We obtained surface chlorophyll a and POC concentrations

from the Giovanni ocean colour radiometry online data system

(https://giovanni.gsfc.nasa.gov/giovanni/). MODIS AQUA

4 km resolution data were downloaded for the years 2008–

2010. These data were interpolated to 2500 � 2500 pixels

(525 m resolution) in QGIS 2.2. We estimated POC delivery

to the seafloor from surface POC concentrations following

region-specific equations [62].

Seafloor temperature, salinity, and meridional and zonal cur-

rent speed values were extracted from a modelled monthly

average data layer for the study area [63] and averaged both

across the year prior to sample collection and across the year of

sample collection. These values were interpolated to 3000 �
3000 pixels (578 m resolution) in QGIS 2.2. Absolute current

speed was calculated using Pythagoras’s theorem; 10-year mini-

mum/maximum values for temperature and current speed,

respectively, and 10-year average values for both variables

were calculated to capture longer term variability.
(g) Statistical analyses
We removed highly correlated environmental variables follow-

ing consideration of variance inflation factors (VIFs). Variables

were removed from the analysis in a stepwise manner (those

with highest VIF first). The resulting dataset contained 19 vari-

ables (electronic supplementary material, table S4). VIF

calculations were undertaken in R 3.0.2 [49] using the package

‘HH 3.1-32’ [64].

We constructed generalized additive models (GAMs) using

the R package ‘mgcv 1.7-26’ [65] to determine which combination

of environmental variables most effectively explained variability

in PSV and FSV between samples. Initial GAMs consisted of all

variables contained within electronic supplementary material,

table S4, with smoothers (penalized thin-plate regression

spline) added to all continuous variables. Appropriate error dis-

tributions and link functions were selected based on model

diagnostics and the Akaike information criterion (AIC). Accepta-

ble satisfaction of model assumptions was confirmed using the

gam.check function. Smoothing parameters were optimized auto-

matically on the basis of the generalized cross-validation

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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criterion [65]. Explanatory terms included in each GAM were

refined by backwards stepwise selection considering variable

p-values and model AIC until a minimum AIC value was reached

(see the electronic supplementary materials for additional detail

relating to the methodology employed by this study).
3. Results
(a) Phylogenetic and functional structure of deep-

seafloor assemblages
We found the average PSV value of the deep-sea assemblages

analysed to be significantly smaller than that which would be

expected under both null hypotheses (mean PSVobserved ¼

0.8728; mean PSVNull 1 ¼ 0.8817, mean PSVNull 2 ¼ 0.8830;

probability mean PSVobserved taken from Null 1

distribution , 0.001; figure 3a; probability mean PSVobserved

taken from the Null 2 distribution , 0.0001; figure 3b). Simi-

lar results were obtained for all data subsets analysed. Based

on these results, we conclude that the deep-sea assemblages

analysed are phylogenetically ‘under-dispersed’ (i.e. that

the peracarid taxa within a sample are on average more closely

related to one another than would be expected by chance).
Further, we found the average FSV value of the assem-

blages analysed also to be significantly smaller than that

which would be expected under both null hypotheses

(mean FSVobserved ¼ 0.8220; mean FSVNull 1 ¼ 0.8354, mean

FSVNull 2 ¼ 0.8259; probability mean FSVobserved taken from

Null 1 distribution , 0.0001; figure 3c; probability mean

FSVobserved taken from the Null 2 distribution , 0.0001;

figure 3d ). Similar results were obtained for all data subsets

analysed. We therefore conclude that the deep-sea assem-

blages analysed are functionally ‘under-dispersed’ (i.e. that

the peracarid taxa within a sample share, on average, more

functional traits with each other than would be expected

by chance).
(b) Phylogenetic signal
Significant phylogenetic signal was identified in the pera-

carid trait matrix (Mantel test: r ¼ 0.3583, p , 0.001; Pagel’s

l: 34 of 38 traits exhibit significant phylogenetic signal; elec-

tronic supplementary material, table S5). We thus conclude

that, on average, phylogenetically similar taxa tend also to

be functionally similar.
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(c) Environmental drivers of phylogenetic and
functional structure

We found assemblage PSV to relate negatively with average

seafloor temperature for the year of sample collection ( p ¼
0.0349; figure 4a), and maximal current speed values for 10

years prior to sample collection ( p ¼ 0.0214; figure 4b). How-

ever, we found PSV to vary unimodally with average surface
chlorophyll a concentration for the year of sample collection

( p ¼ 0.0011; figure 4c), and in a complex but weakly positive

manner with sediment organic carbon content ( p ¼ 0.0001;

figure 4d ). We also found assemblage PSV to be significan-

tly related to the month ( p , 0.0001; figure 4e) and year

( p , 0.0001; figure 4f ) of sample collection.

We found assemblage FSV to be negatively related to

bottom trawling intensity ( p¼ 0.0452; figure 4g), but positively
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related to BPI ( p¼ 0.0037; figure 4h), while FSV varied unimod-

ally with seafloor roughness ( p¼ 0.0472; figure 4i). Sediment

total carbon content was found to relate in a complex but

weakly positive manner with FSV ( p¼ 0.0185; figure 4j). We

also found assemblage FSV to be significantly related to the

month of sample collection ( p , 0.0001; figure 4k).

4. Discussion
The complementary phylogenetic and functional analyses per-

formed here provide evidence for a compositional under-

dispersion of the focal deep-sea assemblages at the spatial

scales investigated. This under-dispersion may reflect the selec-

tion of favourable phenotypic traits that are shared between

similar taxa [29]. Typically, the selecting agent in question is

the physical environment, and, as a result, this process is

known as ‘environmental filtering’ [29]. Although not global

in extent, and focusing only on continental slope depths, the

results of our study provide evidence that the physical environ-

ment may be more important than interspecific competition in

shaping the composition of deep-water communities, empha-

sizing a potentially high sensitivity of deep-sea ecosystems to

environmental perturbation [21].

Our findings challenge those studies that hypothesize an

importance of competition and character displacement as a

significant ecological structuring agent in the deep sea

[12,13], and conflict with investigations that have examined

the morphological or trophic characteristics of deep-sea

assemblages [16–18]. Instead, they substantiate the hypoth-

esis that competitive interactions between species in the

deep ocean are weak and unlikely to be significant in struc-

turing communities at the spatial scales investigated [14,15].

Further, they support the results of previous analyses of

lesser spatial scope that have investigated the taxonomic

and phylogenetic structure of deep-sea assemblages [19,20].

Comparison of our results with those of other studies

employing the PSV metric suggests that the phylogenetic

signal observed here is comparably strong or stronger than that

reported for many non-marine assemblages, including temper-

ate lake fish assemblages [30,51], tropical plant assemblages

[66], archaea assemblages [67] and tropical bird assemblages [68].

Although significant phylogenetic signal was apparent in

the functional trait matrix, our results provide some evidence

for the convergence of functional traits between relatively dis-

tantly related crustacean taxa. For example, in figure 3, mean

FSVNull 2 is closer to mean FSVobserved than mean FSVNull 1 is

(figure 3c,d ), suggesting that a portion of the observed under-

dispersion reflects elevated functional similarity of the most

prevalent taxa (Null 2 removes phylogenetic/functional struc-

ture only from assemblage composition, maintaining any

structure in relative taxon prevalence, while Null 1 removes

phylogenetic/functional structure from both assemblage

composition and taxon prevalence). However, while the

more prevalent taxa are more functionally similar to each

other than would be expected by chance, they are not corre-

spondingly phylogenetically similar; mean PSVNull 2 is not

closer to mean PSVobserved than mean PSVNull 1 is

(figure 3a,b), suggesting that their functional similarity is con-

vergent to an extent. Examples of apparent functional

convergence can be identified in figure 2b—the amphipod

family Lysianassidae, and the isopod family Cirolanidae, for

example. Our results suggest that traits related to fecundity

and armament exhibit greatest propensity for convergent
evolution among the peracarid taxa analysed (electronic

supplementary material, table S5).

Our investigation into the possible environmental drivers

of assemblage variability demonstrates that both natural and

anthropogenic factors may influence the structure of the

deep-sea assemblages (figure 4). The negative relationship

between bottom trawling intensity and assemblage FSV

(figure 4g) suggests that physical disturbance by bottom

trawling reduces soft-sediment functional diversity, with

the resulting assemblages exhibiting a reduced subset of the

functional traits that would otherwise be present in an undis-

turbed assemblage. While generally concordant with the

small number of studies that have investigated trawling

impacts on deep-sea macrofauna and meiofauna [69–73],

this finding adds a new facet to our understanding of the

impacts of bottom trawling in the deep ocean.

Our analyses demonstrate a negative relationship between

seafloor temperature and the phylogenetic diversity of the

sampled peracarid assemblages (figure 4a), indicating that

the physiological tolerances of peracarid taxa to temperature

change are preserved within evolutionary lineages. That this

relationship is apparent across a temperature range of only

approximately 1.28C (figure 4a) suggests that even the superfi-

cially small increases in deep-ocean temperature that are

predicted to occur over this century as a result of climate

change [74,75], particularly in the high seas of the North

Atlantic [28], will significantly reduce the phylogenetic diver-

sity of the communities found there, potentially impacting

deep-ocean ecosystem functioning [76]. An altered phylo-

genetic profile of deep-sea ecosystems may eventually lead

to a change in the cycling, storage and sequestration pathways

of nutrients and chemicals, such as carbon.

Under current climate change scenarios, global patterns of

the export of surface production to the deep ocean are

expected to change in a complex manner [23,24,27,77]. Food

supply to the deep ocean may dwindle in some regions,

such as the North and South Atlantic Oceans [24], while

being enhanced in others, such as the Arctic and Southern

Oceans [24]. Our analyses suggest that changes in food

availability in the deep ocean may affect both the phylogenetic

and functional variability of communities, but in a complex

manner (figure 4c,d,j ). This, in turn, may affect the availability

and variety of food for demersal and pelagic organisms

that feed on sediment-dwelling prey. This multifaceted

relationship is complex and still poorly understood.

Overall, the results of our analyses suggest that deep-water

soft-sediment ecosystems, which constitute the majority of global

seafloor area, may be particularly sensitive to environmental

change. Such ecosystems are central to a number of important

ecosystem services, including carbon sequestration [78], and

are predicted to come under increasing direct and indirect

anthropogenic pressures [22–24,27]. Even superficially small

changes in natural and anthropogenic disturbance regimes,

temperature, food availability and bathymetry may significantly

alter the phylogenetic and functional variability of deep-seafloor

communities (figure 4), and this may alter ecosystem functioning

and the provision of ecosystem services by the deep ocean [76].

Our findings are therefore relevant to the understanding of

anthropogenic pressures on deep-sea ecosystems, including,

for example, the prediction of possible mining impacts on

deep-sea fauna. We advocate that the precautionary principle

be exercised in all circumstances where anthropogenic actions

may disrupt the natural ecology of deep-water ecosystems.
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68. Gómez JP, Bravo GA, Brumfield RT, Tello JG, Cadena
CD. 2010 A phylogenetic approach to disentangling
the role of competition and habitat filtering in
community assembly of Neotropical forest birds.
J. Anim. Ecol. 79, 1181 – 1192. (doi:10.1111/j.1365-
2656.2010.01725.x)

69. Koslow JA, Gowlett-Holmes K, Lowry JK,
O’Hara T, Poore GCB, Williams A. 2001 Seamount
benthic macrofauna off southern Tasmania:
community structure and impacts of trawling. Mar.
Ecol. Prog. Ser. 213, 111 – 125. (doi:10.3354/
meps213111)

70. Clark MR, Rowden AA. 2009 Effect of deepwater
trawling on the macro-invertebrate assemblages of
seamounts on the Chatham Rise, New Zealand.
Deep Sea Res. I 56, 1540 – 1554. (doi:10.1016/j.dsr.
2009.04.015)

71. Pusceddu A, Bianchelli S, Martı́n J, Puig P,
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