
sensors

Article

Design, Implementation and Practical Evaluation of
an IoT Home Automation System for Fog Computing
Applications Based on MQTT and ZigBee-WiFi
Sensor Nodes

Iván Froiz-Míguez, Tiago M. Fernández-Caramés * , Paula Fraga-Lamas * and Luis Castedo

Department of Computer Engineering, Faculty of Computer Science, Universidade da Coruña,
15071 A Coruña, Spain; ivan.froiz@udc.es (I.F.-M.); luis@udc.es (L.C.)
* Correspondence: tiago.fernandez@udc.es (T.M.F.-C.); paula.fraga@udc.es (P.F.-L.);

Tel.: +34-981-167-000 (ext. 6088) (T.M.F.-C.)

Received: 6 July 2018; Accepted: 3 August 2018; Published: 13 August 2018
����������
�������

Abstract: In recent years, the improvement of wireless protocols, the development of cloud services
and the lower cost of hardware have started a new era for smart homes. One such enabling
technologies is fog computing, which extends cloud computing to the edge of a network allowing for
developing novel Internet of Things (IoT) applications and services. Under the IoT fog computing
paradigm, IoT gateways are usually utilized to exchange messages with IoT nodes and a cloud.
WiFi and ZigBee stand out as preferred communication technologies for smart homes. WiFi has
become very popular, but it has a limited application due to its high energy consumption and the
lack of standard mesh networking capabilities for low-power devices. For such reasons, ZigBee was
selected by many manufacturers for developing wireless home automation devices. As a consequence,
these technologies may coexist in the 2.4 GHz band, which leads to collisions, lower speed rates and
increased communications latencies. This article presents ZiWi, a distributed fog computing Home
Automation System (HAS) that allows for carrying out seamless communications among ZigBee and
WiFi devices. This approach diverges from traditional home automation systems, which often rely on
expensive central controllers. In addition, to ease the platform’s building process, whenever possible,
the system makes use of open-source software (all the code of the nodes is available on GitHub) and
Commercial Off-The-Shelf (COTS) hardware. The initial results, which were obtained in a number of
representative home scenarios, show that the developed fog services respond several times faster
than the evaluated cloud services, and that cross-interference has to be taken seriously to prevent
collisions. In addition, the current consumption of ZiWi’s nodes was measured, showing the impact
of encryption mechanisms.

Keywords: IoT; home automation; MQTT; WSN; wireless sensor networks; ZigBee; WiFi; HAS;
fog computing

1. Introduction

The Internet of Things (IoT) paradigm proposes the interconnection of physical devices through
networks that allow for sharing data and for controlling their capabilities in real time. It is easy to
observe that such a paradigm has a direct application to home automation, a field that integrates
automation, computer science and new communication technologies, all aimed at improving comfort,
safety and, ultimately, well-being within our homes. Such a field has progressed remarkably in the last
decade, introducing new technologies like Augmented Reality (AR) [1,2], and evolving from systems
composed by passive objects that react according to the user’s input, to systems based on autonomous

Sensors 2018, 18, 2660; doi:10.3390/s18082660 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2179-5917
https://orcid.org/0000-0002-4991-6808
http://www.mdpi.com/1424-8220/18/8/2660?type=check_update&version=1
http://dx.doi.org/10.3390/s18082660
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2660 2 of 42

sources of information that interact with the environment and anticipate and predict the actions of the
home residents.

One of the technologies that has contributed most to the progress of home automation is cloud
computing, which offloads home devices from computational-intensive tasks. Nonetheless, in certain
home automation scenarios where a fast response and low communications overhead are required,
other paradigms have been successful by moving the computing capabilities from the cloud towards the
edge of the network [3]. One such paradigm is fog computing, which moves the cloud computational
and communication capabilities close to the sensor nodes in order to minimize latency, to distribute
computational and storing resources, to enhance mobility and location awareness, and to ease network
scalability while providing connectivity among devices in different physical environments [4,5].

To provide such benefits for home automation, four elements have to interact: IoT nodes
that collect data (sensor nodes), IoT nodes that embed actuators (actuator nodes), the cloud, and
interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud.
Communications can be performed through different technologies that, in the case of home automation,
are aimed at improving energy efficiency, safety, comfort, and providing audio/video/control systems.
These technologies have been proposed for communicating the sensors and actuators installed in
a home, either by using independent wired infrastructure (e.g., KNX [6] or LonWorks [7]) or the
already existent infrastructure (e.g., X10 [8]). Among these technologies, some of the latest make
use of Wireless Sensor Networks (WSNs), which have been applied successfully to fields like train
monitoring [9], telemetry [10,11], Industry 4.0 [12–15] or public safety [16,17]. As of writing, ZigBee
is arguably the most popular technology for creating WSNs and it has been included in some of the
latest commercial [18] and academic home automation developments [19–25].

In addition, WiFi networks (i.e., networks based on the IEEE 802.11 family of standards) have
become widespread throughout the world and are one of the most popular ways for accessing the
Internet due to their flexibility and low deployment cost. However, although the use of commercial
WiFi home automation devices is not as popular as the use of ZigBee-based systems, the growing
popularity of the IoT paradigm has led to new applications that base their data communications on
WiFi networks [26–28].

This article presents ZiWi, a fog computing Home Automation System (HAS) that bridges the
gap between ZigBee and WiFi devices by connecting sensors and actuators seamlessly to make use
of such technologies in a home. ZiWi uses WiFi for actuator nodes since, in general, they have to
be continuously awake, listening for asynchronous commands, while ZigBee is implemented by the
sensor nodes because it is ideal for sending data at periodic intervals in order to save power (since many
nodes rely on batteries). Moreover, the system focuses on the growing IoT market and on easing
the connection of emerging sensor technologies. Furthermore, ZiWi makes use of the fog computing
paradigm to provide connectivity between the user and the different home appliances, not only
allowing the user to control them, but also offering automatisms to simplify tasks. This is achieved
thanks to ZiWi’s distributed nature: the home controller hardware is kept at the bare minimum for
executing real-time tasks, delegating the processing of the data and the decisions on non real-time
automated tasks to remote cloud servers.

It is important to note that ZiWi proposes a distributed approach instead of a decentralized
solution [29]. Both terms have been used as synonyms in some scenarios, so they can be confusing.
In the case of decentralized systems, they consist of a network of stars where every central element
of each star processes the collected information locally. In contrast, in a distributed system, the
different components are located on networked computers that communicate and coordinate to
achieve a common goal. This is what is proposed in fog computing: local gateways can communicate
with each other and with the cloud to achieve a common goal [4,30]. What can be confusing is that
many decentralized systems are also distributed, since they process some information locally but also
cooperate with other systems to perform certain actions (e.g., this is the case of some peer-to-peer or
blockchain-based systems [31]), so a distributed system can also be decentralized in some applications.

Sensors 2018, 18, 2660 3 of 42

In the case of ZiWi’s architecture, the term distributed implies that the computational and storage
resources are distributed throughout the network in strategic locations to allow the system to respond
faster and also to decrease the computational load of the cloud. This is performed by moving part of
the computational power towards the edge by means of fog gateways, which perform certain simple
tasks that require a fast response.

This architecture also allows ZiWi to remain inexpensive in comparison to many commercial
systems, which usually make use of complex and pricey home controllers. The designed architecture,
together with the use of an open messaging protocol like Message Queuing Telemetry Transport
(MQTT) to communicate nodes, make ZiWi more flexible than traditional home automation solutions,
whose manufacturers are often reluctant to offer connectivity with third-party systems. Thus, such
an openness and the use of widely known technologies provide robustness and ease of construction
and deployment, being straightforward for integrating new elements on the ZiWi IoT ecosystem and
allowing the user to make use of a wide range of resources to act on devices to obtain information on
them or to automate certain events.

This article includes three main contributions aimed at creating a cost-effective and duplicable
fog computing-based HAS. First, in order to establish the basics, it presents a detailed review
of the state-of-the-art of the main and the latest technologies and services for home automation
systems. Second, it thoroughly explains the design, implementation and practical evaluation of a fog
computing-based HAS that is accessible, easy to configure, low cost and scalable in terms of protocols
and technologies. Third, the article describes in detail an HAS that, thanks to the use of open-source
software and Commercial Off-The-Shelf (COTS) parts, is easy to build, so it is straightforward for other
researchers to replicate the system and the performance tests presented in Section 5.

The rest of this paper is structured as follows. Section 2 describes and analyzes the state-of-the-art
of home automation technologies and the latest commercial and academic HAS. Section 3 includes
an overview of ZiWi’s architecture and its main components. Section 4 details the hardware and
software used to implement the different system devices. Section 5 presents the results of different tests
that evaluate the performance of ZiWi in real scenarios. Finally, Section 6 is devoted to the conclusions.

2. Related Work

2.1. Home Automation Protocols and Technologies

There is a rich variety of protocols and technologies in the field of home automation. Some of
them are standard and have been designed by international institutions, while others are proprietary
and have been developed by companies. In certain cases, such protocols and technologies have been
designed for wired communications, while others are aimed at creating wireless systems. Each of them
presents different advantages and disadvantages depending on the deployed scenario.

Some of the most popular home automation technologies are KNX-EIB, LonWorks, X10, Insteon,
ModBus, BACnet, Z-Wave and EnOcean. In addition, other generic wireless technologies like Bluetooth
(IEEE 802.15.1) and WiFi (IEEE 802.11) have been used for controlling devices in home automation
installations, since they provide an easy way to communicate with smartphones, tablets and PCs.
Regarding WiFi, it is worth mentioning that the WiFi Alliance has recently approved a new standard
for wireless connections called IEEE 802.11ah or WiFi HaLow that extends WiFi into the 900-MHz
band, allowing for the connection of low-power sensor networks like the ones usually embedded into
battery-powered home automation devices.

As it was mentioned earlier, ZigBee has to be included in the comparison, since many
manufacturers have developed home automation platforms and devices that rely on it. As it can be
observed in Figure 1, ZigBee’s protocol stack differs from the one used by WiFi. Actually, ZigBee nodes
use Physical (PHY) and Medium Access Control (MAC) layers defined by the IEEE 802.15.4 standard,
while the network and application layers are covered by the specifications given by the ZigBee

Sensors 2018, 18, 2660 4 of 42

Alliance [32]. In contrast, the term WiFi usually refers to LAN (Local Area Network) technologies,
thus including all the layers of the stack.

Figure 1. Zigbee versus WiFi protocol stack.

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) is another emerging
technology and, like ZigBee, it provides general purpose, easy-to-use and self-organizing wireless
communications for low-cost and low-power embedded devices. Both ZigBee and 6LoWPAN
implement IEEE 802.15.4 MAC and PHY layers, but 6LoWPAN has been explicitly designed for
an easy interaction with IPv6-based networks, which are still far from being widely used (for instance,
as of writing, less than 18% of the users access Google over IPv6 [33]). In the same way, Bluetooth
Low Energy (BLE) also supports IPv6 through Internet Protocol Support Profile (IPSP), but it suffers
from the same use limitations as 6LoWPAN. The latest version of Bluetooth (Bluetooth 5.0) seems
to be a really good fit for low-power home automation devices [34]: with respect to the previous
version (4.2), it can reach four times its range, it can transmit twice as fast, it multiplies by eight
the previous broadcasting message capacity and it improves the coexistence with other cellular and
wireless technologies. However, currently, there are not as many commercial home automation systems
and home devices that support Bluetooth 5.0 in comparison to ZigBee and WiFi. In addition, there is
a lack of commercial BLE 5.0 SDKs (e.g., Nordic nRF52840 PDK), which is a limitation when developing
new hardware. Similarly, there are other good alternatives for providing low-power communications to
home devices that require mesh communications (e.g., nRF [35]), but its use, even in home automation
research platforms, it actually reduced [36].

Cellular communications technologies like the ones defined by 3GPP (3rd Generation Partnership
Project) [37], 4G machine-to-machine communications [38] or Machine-Type Communications
(MTC) [39] should also be mentioned. These technologies are still emerging and its use for home
automation is actually marginal, although they have been tested in some IoT scenarios [40].

Sensors 2018, 18, 2660 5 of 42

Table 1 summarizes the main features of the most relevant home automation technologies
previously mentioned. For every technology, the transmission medium, the data transfer rate and
whether its specification is open or proprietary are indicated. This latter parameter is essential,
since a proprietary protocol, like Z-Wave until 2016, usually suffers from fewer interoperability
problems than an open alternative like ZigBee, but developers are attached to the technology.

Table 1. Characteristics of the most common home automation technologies. RF: Radio Frequency, EG:
Electric Grid, OF: Optical Fiber, TP: Twisted Pair.

Technology Medium Openness Data Rate

KNX EG, RF, TP Open 9.6 Kbps

LonWorks EG, RF, OF, Coaxial, TP Open 1.25 Mbps

X10 EG Open 60 bps

Insteon EG, RF Proprietary 38.4 Kbps

ModBus TP Open RTU: 19.2 Kbps-TCP: 10/100/1000 Mbps

BacNet TP Open 10/100/1000 Mbps

Z-Wave RF Partially open (open-source layer for integration) 9.6 Kbps

EnOcean RF Partially open (open OSI layers 1–3) 25 Kbps

ZigBee RF Open 256 Kbps

WiFi RF Open 600/54 Mbps

Bluetooth RF Open 1 Mbps

2.2. Academic Solutions

2.2.1. Home Automation Systems for Heterogeneous Networks

In the last few years, several academic researchers have presented a number of relevant home
automation systems based on the use of multi-technology devices. For example, some authors [19]
studied the problem of integrating varied wireless technologies (ZigBee, Wi-Fi, GSM/GPRS) in home
automation environments. Specifically, the researchers used a LabVIEW-based PC that acted as
a ZigBee coordinator for collecting data from different ambient sensors (temperature, humidity, light)
and that is able to control certain actuators (e.g., lighting or irrigation). Similarly, other authors made
use of a PC as ZigBee coordinator in order to create an HAS based on intelligent power outlets [41].

An example of a multi-transceiver (X10, Serial, EIB, ZigBee, Bluetooth, DTMF, CAN and
GSM/GPRS/UMTS) HAS is presented in [20]. In such a paper, the authors detail an indoor ambient
intelligence platform and an IP-based messaging protocol to communicate the home automation
controller with the rest of the equipment. Baraka et al. [21] presented a low-cost HAS based on the use
of a gateway consisting of an Arduino MEGA with Ethernet and ZigBee shields, and an Android tablet
that acted as home controller. The system uses ZigBee for connecting wireless sensor nodes and X10
for wired communications. An Arduino MEGA, an Ethernet shield and an Android phone are also
used in [42], but, in this case, the sensors and actuators were connected directly to pins of the Arduino.

CONDE [43] is another HAS whose objective is to improve energy efficiency in smart buildings.
CONDE is decentralized and thus allows for reducing response time and power consumption with
respect to traditional centralized systems. CONDE was tested by using MICAz motes, which were
able to lower decision delay times and increase energy savings when evaluating lighting and Heating,
Ventilation and Air-Conditioning (HVAC) systems.

Other researchers have also proposed home controllers and gateways for HAS that support only
WiFi [44–46], only ZigBee [22] or both technologies [23–25]. Most of them [22–25] do not use open
messaging systems but proprietary ad hoc protocols, while some of the latest use MQTT [45,46] or
Extensible Messaging and Presence Protocol (XMPP) [44]. For instance, in [45], it is proposed the use
of low-cost WiFi modules to transform a traditional house into a smart home. For such a purpose,
the authors make use of ESP8266 WiFi modules for the nodes, a Raspberry Pi 2 for the gateway, MQTT

Sensors 2018, 18, 2660 6 of 42

for data exchanges and OpenHAB as home automation server. Similarly, in [46], a simple HAS based
on MQTT is presented, but the home controller is implemented on a PC.

Regarding ZigBee-based home automation systems, they are not very popular when having to
interact directly with mobile devices, but some researchers have demonstrated that it is possible to
connect Android phones/tablets to a ZigBee dongle [47].

With respect to hybrid systems, it is worth mentioning the work of Vivek et al. [25], who presented
a WiFi-ZigBee gateway aimed at enabling IoT services in an HAS. The home system controller is
developed on a Cubietrack board connected to ZigBee and WiFi wireless interfaces that communicate
with sensor nodes that collect data on ambient parameters and that are able to actuate on relays that
control lights and fans. Another example of heterogeneous HAS is MPIGate [23], which is based
on a multi-protocol gateway that integrates sensors and actuators with different network protocols
(e.g., EIB/KNX, WiFi, Bluetooth, ZigBee). For the sake of clarity, Tables 2 and 3 show a comparison of
the most relevant characteristics of the previously cited academic systems together with the ones of
the system proposed in this article. As it can be observed in Table 2, ZiWi is the only academic solution
that, at the same time, makes use of MQTT and supports both WiFi and ZigBee nodes. In addition,
in contrast to ZiWi, most systems are not open source. Moreover, ZiWi is the only HAS conceived
from scratch to harness the benefits of fog computing. Regarding the cost, most academic papers do
not indicate the real cost of the presented solutions, although in some cases it is specified that it is
low cost (without further details). Just a couple of systems calculate explicitly the cost of the system,
but it is difficult to make a fair comparison, since not all the solutions provide the same amount of
hardware (i.e., nodes) and features. In the case of ZiWi, the cost was calculated for the hardware used
to build the demonstrator evaluated in Section 5, so it includes all the nodes and sensors described
later, as well as the cost of the selected WiFi router.

It is important to note that, although there are systems where ZigBee and WiFi coexist, they suffer
from cross-interference, since their radio channels overlap and, even in non-overlapping channels,
out-of-band emissions can cause interference. This issue has been studied in the past [48–50].
For instance, in [50], it is concluded that, in order to avoid cross-interference in the 2.4 GHz band,
a 20 MHz bandwidth should be left unoccupied between the operating channels.

It is also worth mentioning that there exist commercial solutions to connect WiFi and Ethernet
home automation devices with the ones that use ZigBee. For instance, Digi [51] provides Zigbee
to IP gateways, but they are relatively expensive (as of writing, a ZigBee-to-Ethernet gateway costs
around $100).

Sensors 2018, 18, 2660 7 of 42

Table 2. Comparison of the main features of the most relevant academic HAS and the proposed system (part 1).

System Main Objective Messaging Protocol Actuation Capabilities Open-Source
Code

Conceived for
Fog Computing Cost Relevant Features/Challenges

ZiWi MQTT-based HAS MQTT Yes

OpenHAB
(Node source
code available

on GitHub)

Yes e 180 (whole demonstrator) High flexibility, interoperability and scalability

[19] Intelligent building monitoring Ad hoc Yes No No Low cost Delays due to SMS-based commands

[20] Indoor ambient
intelligence monitoring Ad hoc Yes No No Cost-effective Alarm control center, several scenarios

[21] Energy efficiency Ad hoc Yes No No Low-cost Heuristic scheduling algorithm

[22] ZigBee-based HAS Ad hoc No No No Not specified Software designed of the coordinator and terminal node

[23] Gateway for assisted
living applications

Ad hoc, dependent on
the assisted living device Yes No No Not specified Biometrics and actimetry for assisted living

[24] HAS for
heterogeneous networking Ad hoc Open API No Cloud capabilities Not specified Integrated home appliances with prediction algorithms

[25] Enabling IoT services in HAS Ad hoc Yes No No Not specified Basic GUI with sensor readings

[41] Power outlet control
and monitoring Ad hoc Yes No No e 45 (one smart socket) Experimental analysis with theoretical and

empirical measurements

[43] Smart building energy
efficiency monitoring

Ad hoc messages routed
with CTP (Collection

Tree Protocol)
Yes No Decentralized

architecture Not specified Decision-making manager and integration of
different applications

[44] HAS XMPP Yes Openfire No Low-cost Android app for control units

[45] HAS MQTT Yes OpenHAB No
Cost-effective (less than $60 for a
Raspberry Pi 2, an SD card and

four ESP8266 modules)
Overall delay from UI to Node is less than 600 ms

[46] MQTT-based HAS MQTT Yes No No Not specified It makes use of ESP8266 WiFi modules

Sensors 2018, 18, 2660 8 of 42

Table 3. Comparison of the main features of the most relevant academic HAS and the proposed system (part 2).

Reference Home Controller Hardware Communication Transceivers Communication Topology Sensors and Actuators Node Hardware

ZiWi Raspberry Pi Model B WiFi, ZigBee Mesh Temperature (LM35, TMP36, DHT11), humidity
(HIH-5030, DHT11), luminosity (LDR), motion

(Parallax PIR rev. A) and current sensors (ACS712)

NodeMCU (ESP8266), Xbee Series 2

[19] PC ZigBee, WiFi and GSM/GPR Star Temperature (LM-35DZ) and relays WN-USB ZigBee module

[20] 32-bit ARM microcontroller X10, Serial, EIB, ZigBee, Bluetooth,
DTMF, CAN and

GSM/GPRS/UMTS

Star Multiple I/O pins for attaching sensors
and actuators

Proprietary board based on a 32-bit
ARM microcontroller

[21] Android tablet and Arduino MEGA
with an Ethernet shield

X10, ZigBee Tree Light and switch modules Arduino

[22] 32-bit ARM-Cortex
M3 microcontroller

ZigBee Tree The paper only suggests different sensors and
actuators for the HAS, but it is actually not

implemented

CC2530

[23] - EIB/KNX, WiFi, Bluetooth
and ZigBee

Star Environmental (door/window opening, light,
temperature), biometric (wrist pulse oximeter,

body scale, wrist blood pressure, ear thermometer)
and actimetry (movement detection, bed/chairs
presence, lighting control, water and electricity

meter) sensors and actuators

WaspMote platform

[24] Raspberry Pi 2 WiFi, ZigBee, IrDA, Ethernet Star Smart plugs, IP cameras Raspberry Pi 2 (the controller also
acts as sensor node)

[25] Cubietrack board (ARM-Cortex A7) WiFi, ZigBee Star Temperature, light and current sensors (ACS712).
Relays and dimmers

ESP8266, Xbee

[41] PC ZigBee Star Smart plugs ATmega328P microcontroller

[43] - IEEE 802.15.4 Tree - MICAz motes

[44] - WiFi, IR Star Dust sensor Commercial UART-WiFi module

[45] Raspberry Pi 2 model B WiFi Star - ESP8266

[46] PC WiFi Star Luminosity sensor (LDR), LED and buzzer ESP8266

Sensors 2018, 18, 2660 9 of 42

2.2.2. Fog Computing Architectures and Applications

Many recent user-centric IoT applications are latency sensitive or require real-time data analysis
and decision making. Cloud computing solutions usually cannot fulfill such requirements in many
context-aware applications, so, in the last few years, different researchers proposed alternative
approaches and optimizations in terms of scalability, economic and environmental effects [52,53].
One such approach is fog computing, originally coined by Cisco in 2012 [4], which was introduced to
alleviate some of the above-mentioned problems and to provide a solution to support geographically
distributed, end-device mobile, heterogeneous, latency sensitive, and Quality of Service (QoS) aware
IoT applications.

A comparison between cloud and fog computing together with a performance evaluation is
presented in [54]. This article also identifies some key research directions for fog computing such as
fog federation, mobile fog computing or semantic-aware fog computing. Regarding fog computing
based architectures, Mukherjee et al. [55] provide a comprehensive survey of recent implementations.
In the paper, it is distinguished among the following architectures:

• Generic three-tier architecture [56]: it is one of the most widely used in fog computing. It consists
of an IoT node layer, a fog layer and a cloud server.

• Layered approach [57]: it consists of six layers (physical/virtualization, monitoring, pre-processing,
temporary storage, security and transport layers).

• Combined fog-cloud architecture [58]: it is used when there is a different storage and computing
capacity in the fog nodes. It is detailed later, since it was the fog architecture selected for
implementing ZiWi.

• Virtualized fog data centers [59]: this architecture enables adding multiple virtualized edge data
centers to offload services from traditionally massive data centers.

• Fog Radio Access Networks (F-RANs) [60,61]: they use remote radio units with caching and
signal processing capabilities.

• Software-Defined Networking (SDN) fog architecture [62,63]: the main difference between the
traditional fog architecture and an SDN-based fog is the fog-SDN controller used to support
dynamic QoS.

A detailed description on the inner workings of the different fog computing architectures is
out of the scope of this paper, but the interested readers can find interesting overviews in [54,64].
Nonetheless, it is worth mentioning that such architectures have been used in multiple fields like smart
grids [65,66], smart cities [67,68] or smart health [69]. However, with respect to the application of fog
computing to home automation, just a few very recent papers describe practical implementations
explicitly conceived for fog computing [70,71]. Such developments make use of an architecture similar
to the generic fog computing architecture illustrated in Figure 2. In such a figure, three different IoT
networks (A, B and C) exchange data with a fog layer that allows for communicating them with the
services provided by the cloud. In the fog layer, there are two sub-layers. The bottom sub-layer is made
of gateways that respond quickly because of their proximity to the IoT nodes. However, the gateways
of the bottom sub-layer usually embed less powerful hardware than the gateways of the fog upper
sub-layer. In addition, in such an upper sub-layer, the gateway at the top is the point of entry to the
fog, while the other gateways provide different services or share among them certain data in order to
reduce the latency response from the cloud.

Sensors 2018, 18, 2660 10 of 42

Bottom Sub-Layer

IoT Network CIoT Network BIoT Network A

IoT Node IoT Node IoT Node IoT Node IoT Node

Gateway

Gateway

Gateway Gateway

Gateway

Gateway

Cloud

Remote Users Other IoT Networks

Third-Party
Services

Fog Layer

IoT Node Layer

Upper Sub-Layer

Figure 2. Generic fog computing architecture.

2.2.3. Protocol Compatibility Approaches

In order to create uniform, scalable and easily configurable systems, different researchers have
addressed the compatibility issues associated with the diversity of protocols, technologies and
standards that exist in the field of home automation. The solutions presented usually propose universal
and open standards. Some of them use a configuration system based on the eXtensible Markup
Language (XML) format that can be easily exchanged among standards [72]. Other researchers [73]
suggest the use of the Universal Plug and Play (UPnP) open standard as a communications protocol
for devices on a local network, since it offers technology independence and increases scalability.

The most relevant initiative for adding plug-and-play capabilities to intelligent devices based
on transducers (i.e., on sensors and actuators) is the ISO/IEC/IEEE 21451 standard (previously
known as IEEE 1451). The standard is highly-flexible and generic, which implies a certain degree of
complexity that makes it difficult to implement in the resource-constrained devices usually found
in home automation installations. For such a reason, some authors proposed modified and simpler
versions aimed explicitly at home automation applications [74].

Besides standards, messaging protocols have arisen as a way for connecting heterogeneous IoT
nodes. Such protocols are really useful in applications where different components are designed and
implemented independently using diverse programming languages or hardware platforms, but they

Sensors 2018, 18, 2660 11 of 42

have to be able to communicate, collaborate in tasks, and share data among them. Traditionally, this
kind of communication was performed by exchanging files, sharing a common database or by using
calls to remote procedures (i.e., creating Remote Procedure Call (RPC) based systems), but, in the
last few years, it finally was derived in what is called a messaging system or Message-Oriented
Middleware (MOM).

A messaging system centralizes communications in order to minimize the coupling between the
components of a distributed system. This decoupling and the use of asynchronous communications
allow for carrying out more robust communications: the components to be communicated do not
have to be working at the same time, so they delegate the delivery of the data to a messaging system,
what enables them to stay focused on the information to be sent instead of on how to send it.

A messaging system is also in charge of establishing and managing the connection points and
channels created among the different clients. It is usually implemented as a software process called
a “messaging server” or “messaging broker”. Most messaging brokers can cooperate to provide
advanced features like load balancing, fault tolerance, or sophisticated routing systems, which are
really useful in IoT applications.

Messaging systems transmit data over channels that connect a transmitter and a receiver virtually.
There are basically two channel models: the peer-to-peer queue model and the publish/subscribe
model. The peer-to-peer queue model is currently the most used. It allows a transmitter to send
a message to a queue where it will be read by a particular receiver. Note that, although the transmitter
sends the message to a queue, it does not indicate who the receiver is: it only specifies the name of the
queue where the data are shared. Any receiver that knows the name of the queue can connect to it and
collect the message, which will be removed from the queue. Thus, the model does not guarantee that
a specific receiver will always collect the data, but it does guarantee that, if someone connects to the
queue and collects the message, it will only be collected once and by a single receiver.

In the publish/subscribe model, messages are transmitted to one or more recipients who have
previously expressed interest in them. When the transmitter publishes a message on the channel,
it sends a copy to each of the output channels. Each of these output channels has a single subscriber,
which is the only one that can consume the published message once. Therefore, each subscriber
receives the message only once and the various consumed copies disappear from their respective
channels. There are other variants of the peer-to-peer queue and publish/subscribe models, but the
ones previously described remain as the most commonly implemented in popular messaging systems
(which are briefly described in the following paragraphs).

One of the most widespread messaging systems is Java Messaging Service (JMS), which is actually
an Application Programming Interface (API) that is part of the Java Enterprise Edition (JEE) and it
is aimed at exchanging asynchronous messages among two or more components developed with
JEE. In practice, to make use of JMS, it is necessary to have a JMS provider that manages sessions
and message queues. Since JEE version 1.4, the JMS provider is included in all the implementations
of JEE servers, but there are other alternatives like Apache ActiveMQ, HornetQ, OpenJMS or IBM’s
WebSphereMQ.

Another messaging system is Advanced Message Queuing Protocol (AMQP), which is an open
standard for the development of MOMs. It is oriented towards scenarios where high performance,
flexibility, security and reliable routing/delivery of messages are required. One of the most relevant
features of AMQP is that it is a standard protocol and, therefore, the implemented components will be
compatible. This is important, since the previous attempts to standardize the MOM before AMQP were
limited to the API level (e.g., JMS) and, because of this, complete interoperability was not guaranteed.
Unlike JMS, which simply defines an API, AMQP defines a complete protocol and, therefore, it includes
a byte-level format description of the data sent over the network. Some of the most relevant AMQP
implementations are Apache Qpid, SwiftMQ and RabbitMQ.

XMPP is another popular messaging protocol that has been used, for instance, by Google Talk or
Facebook’s chat. XMPP is defined as an open standard based on XML. Originally, it was known as

Sensors 2018, 18, 2660 12 of 42

Jabber and it was aimed at creating a quasi-real time messaging system that allowed for transmitting
data to a list of contacts. Thanks to its flexibility, it has been used for implementing file transfer systems,
smart grids or social network services. Another key feature of XMPP is its decentralized architecture
(there is no central server, anyone can set up his/her own XMPP server) and its security (for instance,
it allows for using Transport-Layer Security (TLS) and for isolating the servers from public networks).
There are numerous implementations of XMPP servers and clients, like Ejabberd, Apache Vysper,
Citadel or CommuniGate Pro.

MQTT [75] is an open messaging protocol that enables the transfer of messages from ubiquitous
devices (e.g., sensors, actuators, mobile phones, embedded systems or laptops) and in networks with
resource constraints or high latency. MQTT’s main specification (v3.1) makes use of a publish/subscribe
model that consumes very few resources, what is useful in situations where resources are restricted
(i.e., when there are hardware constraints in terms of memory/capabilities or when the network speed
is low). Note that there is also a v2.1 specification oriented towards networks of sensors and embedded
systems operating over non-TCP/IP based networks such as ZigBee (in fact, this specification defines
the MQTT-SN messaging protocol that follows a publish/subscribe model adapted to sensor networks).
Some of the most relevant MQTT implementations are ActiveMQ and Mosquitto [76].

Finally, it is worth mentioning, Simple (or Streaming) Text Oriented Messaging Protocol (STOMP),
which is a text-based protocol characterized by being extremely simple. Its specification is very similar
to HTTP, but it is even simpler. Because of its simplicity, there are multiple STOMP implementations,
like the ones provided by Apache Apollo, RabbitMQ, Apache ActiveMQ, CoilMQ or Gozirra.

The previously mentioned messaging protocols are probably the most popular, but there are
also other relevant MOMs that have achieved a certain degree of popularity in specific scenarios,
like OpenWire, Amazon SQS, the traditional IRC (Internet Relay Chat), PSYC, Beanstalk, ZeroMQ,
Peafowl, Gearman, Sparrow, Kestrel or Apache Kafka.

Among all the different messaging systems, MQTT is arguably the most used by IoT and WSN
applications because of being so lightweight that it can be implemented in resource-constrained
devices like the ones usually found in HAS. Specifically, MQTT can be found in applications based
on low-power sensors for smartwatches [77], in robotics [78], healthcare [79] or optical camera
communications [80]. In the field of home automation, MQTT has been used in different applications to
control lights [81], to monitor ambient assisted living parameters [82], for home energy monitoring [83],
or for the general management of a smart home [46,84].

In academic research, the major rival of MQTT is XMPP, but most XMPP-based home automation
developments [44,85–88] were published before MQTT became an ISO standard [89]. Other messaging
protocols have not had relevant success in home automation, although, for instance, some researchers
optimized JMS performance [90] or proposed using AMQP through RabbitMQ [91].

2.3. Commercial Home Automation Solutions

Currently, there is a great variety of commercial home automation systems. Some of the most
popular solutions are provided by manufacturers like Qivicon [18], HomeSeer [92], Loxone [93] or
Domintell [94], whose characteristics are a good reference when evaluating the technological maturity
and functionality of most modern home automation systems. Such characteristics are compared in
Table 4, where it can be observed that all solutions offer different communications protocols for wired
and wireless transmissions. Regarding features, they support basically the same, but Loxone and
Domintell do not offer a video surveillance system (for the sake of fairness, it should be mentioned
that Loxone and Domintell can make use of a video intercom and that surveillance cameras could be
integrated in the system and then controlled through a Virtual Private Network (VPN)). Moreover,
the user experience in HomeSeer and Qivicon is considered acceptable since these systems allow for
the creation of complex configurations, but such operations are really difficult to carry out by a user
without certain knowledge or experience.

Sensors 2018, 18, 2660 13 of 42

As far as diversity of peripherals, Qivicon is probably the most advanced solution, since their
developers collaborate with numerous companies to be able to integrate a wide variety of wireless
devices. HomeSeer also includes a wide variety of peripherals, but the protocols they implement are
more restrictive than the ones used by Qivicon. In the same way, Loxone makes use of a proprietary
protocol for wireless communications (Loxone Air), which also reduces the range of compatible devices.

It is also worth noting that, in the case of Domintell, their home automation devices are connected
to analog inputs and they only have infrared transceivers, so they cannot communicate with wireless
devices based on other technologies.

Finally, regarding the prices included in Table 4, note that they represent an approximate cost for
a basic system. The final cost will depend on the number of devices to be installed, as well as on the
size of the house and on the user needs. Thus, the minimum cost will be usually more than twice the
amount indicated in Table 4.

Table 4. Comparison of the features of commercial home automation systems.

Solution HomeSeer Qivicon Loxone Domintell

Protocols Insteon, UPB, Wi-Fi, X10,
PLC-BUS, Modbus, Z-Wave Wi-Fi, ZigBee KNX, DMX, Modbus, RS232,

RS485, EnOcean, Loxone Air S-Bus

Transmission Wired and wireless Wireless Wired and wireless Wired

Locking system Yes Yes Yes Yes

Temperature Yes Yes Yes Yes

Media center Yes Yes Yes Yes

Lighting Yes Yes Yes Yes

Environmental control Yes Yes Yes Yes

Video surveillance Yes Yes No No

User experience Acceptable Acceptable Good Good

Variety of peripherals High Very high Medium Medium

Technical security Yes Yes Yes Yes

Anti-intrusion Yes Yes Yes Yes

System Requirements

800 MHz Quad-Core CPU,
1 GB RAM-1.5 GHz

Dual-Core CPU, 2 GB
RAM-1.8 GHz Dual-Core

CPU, 2 GB RAM

1-Core ARM v11, 600 MHz,
512 MB RAM 400 MHz, 64 MB RAM Not provided by the

manufacturer

Price (e) 1000–1200 1300 1250 900

2.4. Open-Source Home Automation Software

One of the objectives of ZiWi is to provide a low-cost and flexible HAS, thus open-source home
automation software is perfect for the task: in most cases, it offers a free version that can be easily
modified to adapt to the needs of a project.

Table 5 shows a comparison of the features of some of the most popular open-source home
automation platforms. It can be observed that, although most of them are promoted as home
automation systems, a minority has evolved towards IoT frameworks, which, in part, can be applied
to home automation applications. The compared systems are also very similar respect to their interface
(web-based), the amount of implemented protocols and their support for low-cost computer boards
like the Raspberry Pi. In addition, almost all include MQTT support, HTTP-based or RESTful APIs,
an extensive list of plugins and a good amount of documentation for both beginners and developers.

Sensors 2018, 18, 2660 14 of 42

Table 5. Feature comparison of the most relevant open-source home automation software.

Software/Feature Main Task License
Main Development Web

Protocols
Low-Cost Messaging

API Plugins Documentation
Language Interface Gateway Support Service

Ago Control [95] HAS GPL v3 C++ Yes Many Yes AMQP No A few Good

(e.g., Raspberry Pi or
PogoPlug)

(MQTT
supported)

(but JSON-RPC
interface)

Calaos [96] Control and monitor
homes

GPL v3 C++ Yes A few Yes - Yes Under
development

Limited

(under development) (e.g., Raspberry Pi,
Cubieboard)

(JSON-based) (partly in French)

Domticz [97] HAS GPL v3 C++ Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi or
FreeNAS)

(JSON-based)

Fhem [98] HAS GPL v2 Perl Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi, NAS) (ASCII commands) (partly in German)

FreeDomotic [99] IoT framework GPL v2 Java Yes A few Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi) (REST API, under
development)

(partly in Italian)

Home-Assistant [100] HAS Apache 2.0 Python 3 Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi 3) (REST/Python/
Websocket APIs)

Home Genie [101] HAS GPL v3 Javascript / C# /
Python / Ruby

Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi,
CubieTrack)

(REST API and SDK)

ioBroker [102] IoT platform MIT Javascript / Node.js Yes Many Yes MQTT Yes Many Extensive

(e.g., ARM-based boards) (REST API)

Jeedom [103] HAS GPL v2 PHP Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi 2 or 3,
Synology NAS)

(JSON RPC and
HTTP-based)

(partly in French)

LinuxMCE [104] Home automation
suite

GPL/Pluto C / C++ No Many Yes - No Many Extensive

(only for
administration)

(e.g., Raspberry Pi)

MajorDoMo [105] HAS MIT PHP Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi 2 or 3) (HTTP-based) (Addons
market)

(partly in Russian)

MyController [106] Sensor controller Apache 2.0 Java Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi) (REST)

Sensors 2018, 18, 2660 15 of 42

Table 5. Cont.

Software/Feature Main Task License
Main Development Web

Protocols
Low-Cost Messaging

API Plugins Documentation
Language Interface Gateway Support Service

OpenHAB [107] HAS EPL v1 Java Yes Many Yes MQTT Yes Many Extensive

(e.g., ARM-based boards) (REST)

OpenNetHome [108] HAS GPL v3 Java Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi) XMPP (REST)

Pimatic [109] Home automation
framework

GPL v2 Node.js Yes Many Yes MQTT Yes Many Extensive

(e.g., Raspberry Pi) XMPP (HTTP-based)

Sensors 2018, 18, 2660 16 of 42

2.5. Analysis of the State-of-the-Art

After reviewing the different aspects of the state-of-the-art, it is possible to highlight several
important shortcomings that motivated the creation of ZiWi. First of all, the lack of a common
standard in home automation and the wide range of existing technologies and protocols imply two
main problems: the difficulty of integrating all technologies in the same system and the existence of
restrictions when including proprietary technologies. In fact, the use of proprietary protocols can be
a relevant limitation, since they usually force the consumer to acquire only devices of certain brands.

Second, the cost associated with the deployment and maintenance of a commercial HAS is really
high, and the larger the number of technologies and devices that make up the system, the more
expensive and the more prone to failure it becomes. There are many factors that influence the price (i.e.,
house size, product versions, support) but, in any case, a basic package for a deployment in a small
house does not cost less than e1000.

Third, when deploying an HAS, it is essential to distinguish between new and already-built
houses. In the former, both wired and wireless devices usually can be used. In the latter, it is desirable
to use wireless technologies, since wired technologies generally involve cumbersome tasks for adding
infrastructure that, in some cases, might even be impossible to install. In this regard, ZigBee and WiFi
are the most popular wireless standards and, although a few developments have proposed the creation
of a ZigBee-WiFi HAS, none has been found that includes all the features of ZiWi and, at the same
time, proposes a fog-computing architecture whose performance and cross-interference are evaluated
in real-world scenarios.

Finally, the fourth shortcoming is related to the fact that, although different alternatives have
been proposed for adding new home automation devices while preserving compatibility among
them, most of them require complex and flexible hardware, which cannot be usually embedded
into home automation sensor nodes. Messaging systems provide a good alternative for simplifying
the communications between the home controller and the sensor/actuator nodes, but only a few are
simple enough to be implemented in the resource-constrained devices found in many home automation
systems. Among the different messaging systems, MQTT is arguably the best choice, since it has
been explicitly designed for sensor nodes with limited computing power and memory. Moreover,
MQTT allows for adding devices that do not implement a TCP/IP stack.

Therefore, ZiWi has been devised taking the previous shortcomings into consideration,
while, at the same time, it offers the basic functionality required by a regular HAS.

3. System Design

3.1. HAS Architecture

Figure 3 depicts the proposed architecture for ZiWi, which is a single-home version of the generic
home automation architecture shown in Figure 2. As it can be observed, there is a group of gateways
that are installed locally on embedded devices, although the system has been designed so that the
functionality provided could also be offered through external cloud services. Specifically, such a group
of gateways is responsible for the HAS user interface and the communications with the different home
automation devices, also providing persistent storage for the data collected from the sensors.

ZiWi’s node communications are exclusively wireless through WiFi and ZigBee transceivers.
Nodes are connected either directly to a gateway or to other nodes that forward their data. Every node
consists of several sensors and/or different actuators, whose number and type depends on the room
where the node is deployed, existing certain common sensors/actuators to all rooms, like the ones
related to temperature, humidity, luminosity or the light dimmers.

It is important to note the different nature of both types of home automation devices present in the
architecture: in most home automation systems, sensors tend to be more numerous than actuators and
send frequent data updates, while actuators only operate on specific occasions. For this reason, ZigBee
is usually preferred for sensors (especially for the ones that depend on batteries), while actuators,

Sensors 2018, 18, 2660 17 of 42

which usually have to be kept listening continuously for remote commands, are equipped with WiFi
transceivers that allow for receiving direct IP packets from the home controller.

Node

Node

NodeNode

Node

Gateway

Internet

Remote Users

Cloud Services

Gateway

Node

Gateway

Figure 3. General view of ZiWi’s communications architecture.

The WiFi modules and the home controller communicate through the home network using a WiFi
router, adding APs (Access Points) as repeaters when necessary. If the WiFi infrastructure is limited
and coverage needs to be increased, the architecture would enable using ZigBee routers, which would
only require connecting an XBee module to one of the General-Purpose Input/Output (GPIO) ports of
the node’s embedded microcontroller.

3.2. IoT Nodes

There are two basic types of IoT nodes available in the system, the ones equipped with WiFi,
and the ones with ZigBee. Regarding the ones with ZigBee, the choice of hardware is limited, mainly
because of it is dependency on the ZigBee Alliance, which only allows the free use of the technology
in non-commercial projects. Although there are different manufacturers of IEEE 802.15.4-compliant
modules (e.g., Atmel’s ATZB-24-A2 or Embit’s EMB-Z2530PA) and some open-source ZigBee stacks
(e.g., ZBoss [110]), the most straightforward way of making use of ZigBee is by using Digi’s Xbee
modules [51], which enable using the ZigBee stack right out of the box.

The are different Xbee versions, which differ in certain characteristics (detailed below). Note that
some versions are not compatible with each other, so a developer is restricted to use hardware from
a specific XBee series. The different versions of XBee and their main features are as follows [51]:

• XBee Series 1. They are mainly used for point-to-point communications. They are the simplest to
use and, in fact, they can be used without almost any prior configuration.

• XBee Series 2. This series has evolved through the last few years as its features have been
improved, both at a hardware and at a firmware level. They allow for configuring the modules to
create a mesh network, where three different roles are assigned to nodes, existing coordinators,
routers and end-devices. End-devices collect data from sensors or receive remote information
from other nodes. Routers mainly act as information relays for other nodes, but they can also

Sensors 2018, 18, 2660 18 of 42

collect sensor data or manage actuators. The coordinator acts as a gateway of the mesh network
and gathers all the information from the sensor nodes.

Apart from belonging to one of these two types, each device may have the
following characteristics:

• Standard or PRO version. There are few differences between a regular XBee and an XBee PRO.
The main difference in hardware is that the XBee PRO is a little more complex and enables
programming the module. With respect to communications, the PRO version has a longer range
(according to the manufacturer, up to 1.6 km in Line of Sight (LoS) scenarios) at the expense of
higher power consumption. Despite these differences, the two models can be mixed within the
same network.

• Operation frequency: 868/915 MHz or 2.4 GHz. Most XBee modules operate at 2.4 GHz, but there
are a few that operate in the 900 MHz Industrial, Scientific and Medical (ISM) band. The advantage
of working in this latter band is that signals can go further, especially with a high gain antenna,
and have greater penetration, being able to reach in some scenarios up to 24 km. However, note
that, unlike most of the 2.4 GHz band, the 900 MHz band is not universal, so transmissions in
such a band are not allowed in some countries. Obviously, these two models cannot be mixed on
the same network.

Regarding the WiFi transceiver, there is a wide range of embedded devices in the market that
allow for communicating with the various HAS devices. Until recently, WiFi-based communications
were relatively expensive, but the release of transceivers like ESP8266 System on Chip (SoC) [111]
(Espressif Systems, Shanghai, China) have supposed a revolution in the IoT ecosystem. The ESP8266
is really cheap (as of writing, it costs less than $2 per unit) and provides both a WiFi transceiver as
well as a microcontroller that can be programmed using the Arduino coding environment. While it is
true that new alternatives to these WiFi modules are rising recently, such as Realtek RTL8710 or ESP32
(Espressif Systems, Shanghai, China), they do not have the same community support and are not as
widespread as the ESP8266.

It must be also noted that there are already ESP8266-based IoT home automation devices on the
market like the Sonoff (Itead Intelligent Systems Co. LTD, Shenzhen, China) family of products [112],
which are inexpensive and really easy to use. However, they present several limitations that also exist
in other commercial IoT proprietary devices:

• The manufacturer approach for the Sonoff control application (eWeLink) relies on a cloud AWS
(Amazon Web Services) server, so every request goes through the cloud. Therefore, Sonoff devices
cannot perform complex actions or interact with each other without an Internet connection.
In addition, all the private information on the use of home devices might be collected by
a third-party.

• In the last few years, several security problems were found in Sonoff devices:

– The original Over-The-Air (OTA) updating mechanism can be used to update remotely the
official firmware [113].

– Although Sonoff devices make use of HTTPS, they do not verify SSL certificates [114],
so it is straightforward to perform man-in-the-middle attacks to sniff and to alter the
exchanged information.

• The firmware of the Sonoff devices is not open-source, so the user has to stick with the
manufacturer features and the previously mentioned security problems. Nonetheless, some
users were able to reverse-engineer certain Sonoff devices and have developed their own ESP8266
firmware [115]. Thus, such alternative firmware would allow for using Sonoff ESP8266-based
devices as regular ZiWi nodes.

Sensors 2018, 18, 2660 19 of 42

• Although the manufacturer provides schematics, the potential sensors to be used are limited to
the ones embedded, so the devices lack flexibility when having to add new sensors or actuators.

• As of writing, there are not Sonoff products that implement the ZigBee protocol (only WiFi,
GSM/GPRS and 433 MHz RF products), so their hardware would have to be adapted to be used
with external ZigBee modules.

Therefore, although there are commercial products that can be used in conjunction with ZiWi’s
gateway, it can be stated, from the research point of view, that it is more flexible in terms of hardware
and software to design IoT nodes from scratch by using ESP8266-based boards or by connecting
external ESP8266 modules to other boards. The latter has certain drawbacks. First, the ESP8266 module
itself does not integrate components such as voltage regulators or USB ports, so the communications
with the development environment have to be carried out through a serial-to-USB adapter. Second,
the USB adapter does not provide enough current to power the module and possible peripherals,
so an external power supply is usually required. Third, the input voltage is limited to 3.3 V. Fourth,
many ESP8266-based boards do not include a standard pinout so, for instance, the number of GPIO
inputs varies and in some development boards is very small.

Nonetheless, most of these issues are solved by different boards that integrate ESP8266 modules,
such as NodeMCU v1.0 [116], Sparkfun Thing [117], Adafruit Huzzah [118] or WeMos D1 Mini [119].
A comparison of their characteristics is shown in Table 6. Among these alternatives, the NodeMCU
board was selected due to its low price (around $4 as of writing), its ability to control 5 V sensors and
actuators, and the fact that it can be programmed in Lua or C through the Arduino IDE.

Table 6. Main characteristics of ESP8266-based boards.

Model ESP-01 ESP-12 ESP-201 NodeMCU
v1.0

Sparkfun
Thing

Adafruit
Huzzah

WeMos D1
Mini

ESP Version ESP-01 ESP-12 ESP-201 ESP-12E ESP-12E ESP-12E ESP-12E
Number of GPIO

pins 2 11 11 11 11 11 11

Memory 512 KB 512 KB 512 KB 4 MB 4 MB 4 MB 4 MB
Ease of

integration in
prototypes

Medium No High High High High High

Power voltage 3.3 V 3.3 V 3.3 V 3.3 V–6 V 3.3 V–6 V 3.3 V–6 V 3.3 V–6 V
Form factor Small Medium Large Large Large Medium Small

Price $3 $3 $3 $6.5 $16 $10 $4
Compatible with

Arduino IDE Yes Yes Yes Yes Yes Yes Yes

Serial comms. It needs a USB
adapter

It needs a USB
adapter

It needs a USB
adapter

It needs a USB
adapter micro-USB It needs a USB

adapter micro-USB

As it was previously indicated in Section 2.5, the communications protocol between the nodes
and the home controller is implemented through MQTT, which is also supported by numerous
home automation platforms. Although ZigBee does not provide a direct connection to TCP/IP
networks and cannot be used directly with MQTT, there are mechanisms for its integration into the
system. As explained in Section 2.2.3, there is also an MQTT variant called MQTT-SN that allows for
implementing MQTT in non-TCP/IP devices, but this requires the ability to implement the protocol
in the ZigBee microcontroller, which is not possible in non-PRO Xbee Series 2 modules (therefore,
it would require the use of an external microcontroller). To avoid the mentioned problems, ZiWi makes
use of a Master node that connects ZigBee devices to the WiFi network. The hardware of the Master
node is simple, but its software is not, since it has to act like a network bridge, mapping the multiple
communications between the ZigBee and the WiFi network.

Sensors 2018, 18, 2660 20 of 42

4. Implementation

4.1. IoT Nodes

ZiWi’s architecture, which is depicted in Figure 4, distinguishes among three types of nodes:
sensor, actuator and Master nodes. Sensor nodes only use ZigBee to communicate, while actuator nodes
make use of WiFi. Master nodes can communicate both with ZigBee nodes and WiFi TCP/IP-based
devices, acting as ZigBee coordinators. In the following subsections, the most relevant aspects of
the development of such three nodes are described, while all of the code of the nodes is available in
GitHub [120].

Cloud

Remote Users
Other IoT Networks

Fog Layer

Home Controller + Gateway

Raspberry Pi Model B

WiFi Dongle

Master Node

NodeMCU

ZigBee
Coordinator

IoT Node Layer

WiFi Actuator Nodes
NodeMCU

…

WiFi AP

ZigBee Mesh Sensor Network

ZigBee Router

End-Device ZigBee Router

End-Device

ZigBee Router
ZigBee Router

End-Device

Other Gateways
Raspberry Pi Model B Raspberry Pi Model B

…
Raspberry Pi Model B

Main Gateway

Third-Party Services

NodeMCU NodeMCU

Figure 4. Implemented communications architecture.

4.1.1. Actuator Nodes

Although in the proposed HAS architecture it is possible to use any kind of actuator, in the
implementation presented in this article, only LEDs and relays are included. Relays are important in
an HAS, since they are able to switch off and on electrical appliances on demand (or automatically)
through messages received from the corresponding MQTT topic. Thus, during the implementation,
it was necessary to determine the number of relays required by each actuator node, taking into
account that each code could manage up to 11 relays (i.e., the maximum number of GPIOs available in
a NodeMCU), although an external multiplexer could be added to include more.

In addition to relays, two sensors were embedded into every actuator node in order to monitor
appliances. On the one hand, a current sensor (ACS712) that tolerates up to 5 A was used, which is
enough to monitor appliances that require up to 1200 W. On the other hand, a temperature sensor was
added to detect overheating and then prevent the current from flowing. The selected temperature

Sensors 2018, 18, 2660 21 of 42

sensor was an LM35, whose main characteristics are shown in Table 7 together with the ones related to
the ACS712.

Table 7. Sensors used by ZiWi’s nodes.

Sensor Identifier Output Operation Range Precision Input Voltage
Range Consumption Price

Temperature LM35 Analog −55, +150 ◦C ±0.5 ◦C 4–30 V 114µA $3

Temperature TMP36 Analog −40, +125 ◦C ±1–2 ◦C 2.7–5.5 V 40µA $1.50

Humidity HIH-5030 Analog 0–100% ±3% 2.7–5.5 V 200µA $10

Luminosity LDR Analog 1–1000 lx - max. 100 V max. 75 mA $0.5

Temperature
and Humidity DHT11 PWM 0–50 ◦C / 20–80% ± 2 ◦C / ± 5% 3–5 V 200µA $5

Motion Parallax PIR sensor rev. A Digital 0–6 m - 3–5 V 100µA $10

Current ACS712 Analog Up to 30 A ±1.5% 4.5–5.5 V 10 mA $3–$5

Note that both the ACS712 and the LM35 are analog and a NodeMCU only has a single
Analog-to-Digital Converter (ADC) pin, so it is necessary to select each signal independently through
a multiplexer to obtain its value. In addition, note that, when using an ACS712, the ADC actually
returns an integer value between 0 and 1023 that represents a voltage that has to be processed to obtain
the consumed power. For such a conversion, the value collected form the ADC is first transformed
into a decimal voltage by multiplying it by 3.22 (this specific value was determined by calibrating the
sensor manually with the help of a high-precision voltmeter). The value obtained represents the peak
voltage. To calculate the effective current, the following formula has to be applied:

Ie f = 0.707 ∗ VADC − α

sensitivity
,

where VADC is the voltage read by the ADC, α represents the voltage read when there is no current
flowing, and sensitivity is the sensitivity of the sensor according to the manufacturer. After multiple
measurements, it was determined that α was 2.49 V, while sensitivity was 185 mV/A according to the
manufacturer datasheet.

Once the effective current is calculated, it is only necessary to multiply its value by the contracted
power (for instance, in Europe, 230 V) to obtain the consumed power.

Figure 5 shows the schematic of an actuator node, which contains:

• An external AC-DC converter.
• A NodeMCU.
• Two relays.
• An analog multiplexer (HCF4066BE) for choosing between the sensors that measure current

(ACS172) and temperature (LM35). Note that, for the sake of clarity, instead of representing the
whole integrated circuit, three of its four internal multiplexers are depicted in the schematic.

• External devices connected to the relays and to the current sensors.

Sensors 2018, 18, 2660 22 of 42

Figure 5. Electronic schematic of the actuator node.

Figure 6 shows the final prototype of an actuator node. The node is powered with a 5 V 700 mA
AC-DC converter that provides enough current to power all the components and the relay module.
Moreover, an aluminum separator was introduced as noise insulation screen to avoid the possible
noise generated by the switched power supply, which is connected to ground to derive any possible
interference. This modification was made because it was observed that the selected low-cost AC-DC
converter introduced electrical noise and, since the WiFi module is close to the converter, the separator
prevented potential interference in the communications.

Regarding the relays, they are on a separate board and consist of eight relays that are powered
through the external switched supply, since the NodeMCU is not able to provide enough current
to power them. It is also worth mentioning that current sensors use three-wire connectors that are
soldered directly to the corresponding pins of the CMOS analog selector, as well as to the temperature
sensor. Such a sensor cannot be seen in Figure 6, since it is actually glued to the back of a power outlet,
as it can be seen in Figure 7.

Aluminum
Separator

AC/DC
Converter

NodeMCU
Relay

Module

Current
Sensors

To LM35

Figure 6. Final prototype of the actuator node.

Sensors 2018, 18, 2660 23 of 42

Figure 7. Temperature sensor glued on the back of a power outlet.

4.1.2. Sensor Nodes

Among the different parameters to be monitored in an HAS, the most commonly measured are
temperature, humidity, luminosity, electric current consumption and movement.

One of the most relevant aspects when selecting sensors and actuators for ZiWi was their operating
voltage range, since they had to be adapted to those supported by the XBee and the NodeMCU. In the
case of the XBee modules, they operate at a voltage between 2.8 V and 3.4 V, so the sensors’ outputs
that are connected to an Xbee must operate within this range. NodeMCU modules are less problematic
in this aspect, since their maximum operating voltage is 6 V, which gives more flexibility when adding
sensors. Besides voltage range, another restriction when connecting sensors to an Xbee module is that
they have to offer an analog output or a digital pulse to guarantee its correct operation.

Therefore, taking into account the two previous restrictions, Table 7 shows the sensors selected
for implementing ZiWi, which in the case of a sensor node are:

• Relative humidity sensor: HIH-5030. This is an analog sensor that operates at a low voltage.
• Temperature sensor: TMP36. It provides an analog output, low consumption and enough accuracy

for most home automation systems.
• Luminosity sensor: an LDR was selected due to the impossibility of using digital sensors like

BH1750 or TSL2561. Note that an LDR is not as accurate as such digital sensors and that its output
depends on the temperature at which it works. Nonetheless, the accuracy of the LDR is enough to
distinguish between dark and bright scenarios.

• Motion sensor: a Parallax (Rocklin, CA, United States) Passive Infrared (PIR) sensor was chosen.
This sensor outputs a high pulse when it detects movement and a low pulse in the opposite
case. It is powered at 5 V and the logical output, which is the one that is connected to the XBee,
reaches 3.3 V.

Besides the hardware previously mentioned, a sensor node needs additional hardware to operate.
The most relevant is the power subsystem. In the case of the sensor nodes, it was decided to power the
nodes with two AA 1.5 V batteries, so the input voltage is within an acceptable range for operating
the XBee. Actually, the whole node is powered by three AA batteries: two of them power the Xbee
and the analog sensor, while the third one is added to help to power the PIR sensor to reach 4.5 V.
Note that, although the manufacturer recommends using 5 V for the PIR sensor, 4.5 V are also valid
for its correct operation (however, 3 V would not be enough to let the current flow through the 3.3 V
voltage regulator that the sensor requires its digital output). In this case, it would be possible to bypass
the voltage regulator output to operate at 3 V (which is the minimum operating voltage), but this
increases the complexity of the assembly. The only drawback of using three AA batteries is the fact

Sensors 2018, 18, 2660 24 of 42

that two of the batteries discharge faster since more load draws current from them. Nonetheless, the
current required by the XBee, which spends most of the time sleeping, and the other sensors is really
small, so, in practice, there are actually not relevant differences between the batteries discharge curves.

The hardware needed by the motion sensor is also important: it requires an inverter in order to
wake up the XBee module to which it is connected, since, when motion is detected, a low signal must
be sent to the Xbee module to wake it up.

Finally, it is worth pointing out that the XBee Series 2 has its reference voltage set at 1.2 V for the
ADC inputs, which means that values higher than 1.2 V would always be read as 1024 (0xFFFF) and,
therefore, measurement information can be lost. This is a relevant problem for the analog sensors of
the node, which are powered at 3 V, since more than twice the voltage range is lost. However, note that,
in most cases, the full voltage range is not used. For instance, in the case of the TMP36, when powering
it at 3 V, 1.2 V are encoded approximately as 70 ◦C, which is a temperature that will not be reached in
practice by most HAS. Nevertheless, other sensors like the ones for measuring the relative humidity
and luminosity, cannot neglect the voltage range limitation, since they require a much wider range.
For such cases, a voltage divider could be included at the output of the sensors, which moves the
0 V to 3 V range to an output between 0 V and 1.2 V. If sensors actually need more precision, external
hardware would have to be added to the node and, therefore, current consumption and economic
cost would be increased. The most straightforward solution would consist of adding an external
microcontroller and/or an ADC (if the microcontroller’s internal ADC has not enough precision),
and then feeding the collected data into the Xbee module through the serial interface. In addition,
it should be pointed out that battery load may influence both the measurements and the calibration
of the sensors. The impact of the battery load also depends on other factors like the specific sensor
model or the existing environmental conditions, so further proper, well-designed experiments would
be needed in order to evaluate the accuracy of the sensors through time.

Figure 8 shows the schematic of a sensor node, which basically includes the previously mentioned
components and a couple of LEDs (one for determining the status of the Xbee module and another
one for debugging the operation of the PIR sensor). An actual prototype of a sensor node is shown in
Figure 9.

Figure 8. Schematic of the sensor node.

Sensors 2018, 18, 2660 25 of 42

Battery Pack

Xbee

TMP36
& LDR

PIR
Sensor

HIH-5030

4049

Figure 9. Prototype of the sensor node.

4.1.3. Master Node

The communications subsystem of a Master node is composed of a ZigBee and a WiFi module.
Regarding the ZigBee module, the PRO version was not used in the HAS, since it is more expensive,
consumes more power and, in ZiWi’s design, the necessity for developing more features than the ones
included in the default Xbee firmware was not planned (it is enough to configure properly the network
and the analog inputs). As for the operating frequency, 2.4 GHz was chosen, although it would be
straightforward to replace the Xbee modules with others working in the 900 MHz frequency band if
the environment presents propagation problems. In relation to the WiFi modules, a NodeMCU module
was used.

Figure 10 shows the Master node’s electronic schematic, which details how all hardware
components are connected: the NodeMCU and the XBee module exchange data through a serial
connection, a piezoelectric buzzer is used as an alarm, and a power connector provides current through
the micro-USB port of the NodeMCU. Figure 11 shows an actual prototype of the node.

Figure 10. Electronic schematic of the Master node.

Sensors 2018, 18, 2660 26 of 42

Xbee

NodeMCU

Piezoelectric
Buzzer

Figure 11. Prototype of the Master node.

Regarding the software developed for the NodeMCU, it is aimed at performing two tasks as
Master node:

• To establish a serial communication with the Xbee module that acts as ZigBee coordinator. Note
that in Figure 10 the pins RXD2 and TXD2 of the NodeMCU are used because RXD0 and TXD0 are
dedicated to the serial connection of the NodeMCU with the USB. The frames received from the
ZigBee network consist of several bytes that include information regarding different ZigBee fields.
For example, a ZigBee frame generated by a node that collects data from a sensor connected to
a single ADC input would be:

7E 00 12 92 00 13 A2 00 40 3A 8A B5 12 84 41 01 00 00 01 02 57 CD

where 7E is the start delimiter, {00, 12} indicate the length of the payload (that is 18 in decimal
and it does not include the checksum), 92 is the frame type (in this case, IO Data Sample RX
Indicator), {00, 13, A2, 00, 40, 3A, 8A, B5} is the 64-bit source address, {12, 84} is the 16-bit source
address, 41 indicates the receive options, 01 is the number of samples collected from the ADC,
{00, 00} is the digital channel mask, 01 is the analog channel mask, {02, 57} is the actual value
read from the ADC, and CD is the checksum.

• Once the ZigBee frame is processed and the sensor data are extracted, it is necessary to convert
them into the appropriate magnitude, a process that is specific for every kind of sensor.

In relation to the communication mechanism with MQTT, it consists of publishing periodically
the values of the sensors using a timer.

4.2. Home Controller (Main Local Gateway)

The home controller is responsible for establishing communications with all the modules and
the user. Its hardware requirements are actually reduced, since it only has to be able to host and run
the necessary software for the server and offer a communications interface with the home network.
Considering these restrictions, almost any modern computer connected to the network could be used
as home controller. Nevertheless, there is a wide range of embedded devices called Single Board

Sensors 2018, 18, 2660 27 of 42

Computers (SBCs) that usually include a processor with the necessary processing power, storage
capacity, small size, low-cost and reduced power consumption. Thus, there are devices like the
Raspberry Pi Zero, the Orange Pi One or the CHIP that can be connected to the home network
both through an Ethernet port or a WiFi adapter. There are also more powerful and less restricted
devices like Raspberry Pi, Beagle Bone, Banana Pi or Intel Galileo. Among all these alternatives, the
Raspberry Pi 1 model B+ was selected. While it is true that there are more recent hardware versions,
this model has enough resources to respond quickly to events and requests that occur in a regular
HAS. As an inconvenience, it is worth noting that it presents larger boot times than other SBCs when
loading certain services, although, in practice, such services are not restarted frequently.

It is important to note that ZiWi was designed to minimize the computational load on the
IoT nodes, so the main software components are executed on the home controller. Among the
open-source home controller software analyzed in Section 2.4, OpenHAB [107] was selected due to the
following reasons:

• It can run on any device capable of using a Java Virtual Machine (JVM).
• It supports a really large number of technologies, so the number of potential devices to be

integrated and combined to carry out home tasks is huge.
• A growing community provides support to many ARM-based SBCs (e.g., Banana Pi, ODROID,

Cubieboard...), while other platforms are focused almost exclusively on the different versions of
the popular Raspberry Pi.

However, note that OpenHAB was not conceived for providing fog computing applications,
but its main features make it ideal for providing home automation fog services through local gateways:

• It is designed to be completely vendor- and platform-neutral, without the need for using specific
hardware or protocols.

• It has a powerful rule engine.
• It offers a flexible web-based user interface for PCs and mobile devices with different types of

interfaces for managing dashboards, reports, configurations and performance benchmarks.
• It provides APIs for the integration of systems that are easily extensible, enabling the addition of

new systems and devices.

Thus, OpenHAB, together with OpenJDK 8 and an MQTT broker (Mosquitto [76]) are deployed
in the home controller in a Raspberry Pi that runs Raspbian, a Linux distribution based on Debian that
has been adapted to run on such an SBC. For the experiments performed for this article, the last stable
version of OpenHAB 2 was used.

Among the wide range of extensions that OpenHAB offers, it was decided to use Astro binding
(it obtains information about the position of the sun), Exec binding (it allows for executing commands),
MQTT binding (it offers support for the MQTT protocol and for the integration of the broker),
Network binding (it displays information on the various devices connected to the IP network),
NTP binding (it uses an Network Time Protocol (NTP) server to obtain the system date), Yahoo
Weather binding (it allows for accessing weather information), MQTT persistence (it enables storing
persistently the events registered by the broker), RRD4j persistence (it stores persistently the various
states of the devices), Telegram action (it allows for sending notifications through a Telegram bot),
Exec transformation (it is used to execute external programs), Map transformation (it obtains locations
from coordinates), Regex transformation (it allows for working with regular expressions), Basic User
Interface (UI) (it is a basic interface for the visualization and interaction with the devices), Paper UI
(a configuration interface for the different elements of the platform), Habpanel (an interface for the
creation and visualization of dashboards), Habmin (it is an advanced interface that allows for the
creation of rules, graphs, groups and is also able to configure the different system elements), Google
Calendar Scheduler (it allows for sending events to the nodes of the HAS through Google Calendar),

Sensors 2018, 18, 2660 28 of 42

my.OpenHAB (OpenHAB remote service that displays the status information of the devices of the
HAS, and their events and notifications) and Rest Documentation (it provides information about the
OpenHAB API).

Regarding the remote service my.OpenHAB, it is especially interesting, since it allows for storing
information about different devices persistently in a cloud, as well as their status and notifications.
This remote service also enables making use of the IF-This-Then-That (IFTTT) dynamic rule creation
platform [121], which is really useful for integrating the behavior of multiple objects through rules.
A practical example of an IFTTT rule could consist of automatic activation of a security alarm when
someone leaves his/her home and its automatic deactivation before the user’s arrival. To build this
rule, it is possible to use the Android location service, which provides the location of the user and
defines an approximate area on a map that represents the location of the house. When an Android
phone carried by the user leaves the house, a command is sent to OpenHAB, which activates the
security alarm. The deactivation of the alarm would be performed in a similar way, disabling the alarm
as soon as the mobile phone enters the user’s home. The process for creating the rule is illustrated in
Figure 12.

The following are just a few examples of IFTTT rules that were tested in the proposed HAS:

• Lighting was configured intelligently by making use of the luminosity sensors.
• Heating was switched on or off depending on indoor ambient temperature.
• Telegram notifications were sent when certain actuators changed their state.

Finally, it is worth noting that, although the fog gateway was designed to be deployed as easily
and fast as possible, certain OpenHAB plugins require to create scripts in different pseudo-languages.
For example, the smart lighting system detects light levels and decides whether the lights should be
turned on or off with the script shown in Listing 1. Figure 13 shows a flow diagram that illustrates
step by step the different tasks performed by the code. Note that, for the sake of clarity, the script and
the flow diagram have been simplified, so it is only included the logic required to turn on the lights.
Similar scripts are used for the definition of the events triggered by the Google Calendar Scheduler or
the rules that control the Telegram’s bot.

.

Figure 12. Example of the creation of a rule using IFTTT

Sensors 2018, 18, 2660 29 of 42

Listing 1. Script for the smart lighting control rule.

rule ‘‘Luminosity system’’

when

Item SmartL changed from OFF ton ON

then

logInfo(‘‘FILE’’, ‘‘Smart system activate’’)

if (LuxDbg.state <= 20) {

logInfo(‘‘FILE’’, ‘‘Turn on lights’’)

logDebug(‘‘demo.rules’’, ‘‘Turn on lights’’)

gLights.members.forEach [light |

sendCommand(light, ON)

try {Thread::sleep(110)}

catch(InterruptedException e) {}

]

sendCommand(Light, ON)

}

end

Start after a
periodic time

period

Is the luminosity
value <= 20?

NO

YES

Is the smart lighting
functionality enabled?

NO

YES

Register the activation
of the smart lighting

system in the
internal log

Obtain luminosity level
from the sensor

Register in the
internal log that lights

are going to be
turned on

Turn on all lights

Figure 13. Flow diagram of the simplified IFTTT smart lighting rule.

Sensors 2018, 18, 2660 30 of 42

5. Experiments

5.1. Initial Configuration

There are different parameters that have to be configured before the ZiWi HAS starts operating.
First, NodeMCU WiFi nodes need to be connected to the local network. To perform such a task,
the network parameters of each NodeMCU need to be configured manually through a web menu in
order to connect to the MQTT broker. For such purpose, the node is set to Access Point (AP) mode, so
that it can be accessed with a regular web browser through the static address 192.168.4.1. The web
interface allows for defining the WiFi AP (or APs) that the NodeMCU can connect to and the IP address
of the MQTT broker. For simplicity, the router that acts as AP is configured to assign static IPs to each
node outside the Dynamic Host Configuration Protocol (DHCP) range. In addition, a topic can be
indicated through the NodeMCU web menu in order to report the status of the connection. Once such
parameters are configured, the node will switch to Station (STA) mode and will start to communicate
with the network.

ZigBee nodes also have to be configured. Specifically, XBee modules need to be configured in
such a way that all devices in the defined mesh can communicate. This means that at least one of the
nodes has to be the coordinator, while the rest will be end-devices that will send information from the
sensors to the coordinator. In order to process the packets received from end-devices, the coordinator
has been programmed with an API-based firmware. Such a firmware allows for using Digi’s XCTU
application (6.3, Minnetonka, MN, United States) to analyze the information inside each frame easily
and then verifies that the transmitted information arrives correctly.

Finally, it is worth mentioning that sensors should be calibrated before operation (and every now
and then) in order to preserve the accuracy of the data:

• Temperature sensors. Ideally, they should be calibrated with an industrial temperature
thermometer. It is not necessary to calibrate the whole operating range, but the temperature curve
between 10 ◦C and 30 ◦C should be obtained and corrected for the installed temperature sensors,
since the most common values in an HAS occur in such a range.

• Relative humidity sensors. They are calibrated like temperature sensors, by using a calibrated
industrial instrument. In this case, the values between 50% and 80% should be as accurate as
possible, since they are the most common in comfortable homes.

• Luminosity sensor (LDR). The accuracy of this sensor is conditioned by the operating temperature
(manufacturers usually only include in the datasheet curves for a temperature of roughly 25 ◦C).
However, since the objective of this sensor is to obtain a coarse estimation of the level of clarity
or darkness, a fine calibration is not necessary. Therefore, to verify the correct operation of the
sensor it suffices to check the sensor under a very low light and observe that the voltage decreases
clearly. In addition, the sensors should be verified when exposed to direct light, when voltage
should increase.

• Movement sensor (PIR sensor). This sensor is digital and its measurement procedure is
straightforward: it outputs a high pulse when movement is detected and a low pulse when
it is not. Nevertheless, it is possible to calibrate its two potentiometers: one of them adjusts the
distance and the detection angle, while the other one indicates the triggering time when it detects
movement (i.e., the time during which the sensor outputs a high pulse after detecting a movement,
which in many scenarios should be low enough to detect two consecutive movements in a short
period of time).

• Current sensor. To calibrate this sensor, it is necessary to determine the value of the voltage
read when there is no current flowing. This is determined by using a high precision voltmeter.
In addition, the actual consumed power was calibrated with commercial appliances (a 75 W light
bulb and a 900 W hair dryer) when operating them at maximum power and then determining any
possible offset.

Sensors 2018, 18, 2660 31 of 42

5.2. Demo Prototype

After calibrating the sensors, they were embedded into a demo prototype located in a real
environment in order to perform different experiments. Thus, a demo HAS that included the following
elements (most of them are shown in Figure 14) was built, which were connected according to the
architecture shown in Figure 15:

• Sensor, actuator and Master nodes.
• A home controller (it is not shown in Figure 14).
• A WiFi router.
• A security switch to turn on and off all the elements of the system together.
• Several power outlets.
• A 75 W light bulb and a large red LED.
• Multiple LED lights to simulate the activation and deactivation of different elements.

Note that, although the implemented architecture is the one shown previously in Figure 4, during
the experiments, in order to isolate the impact of the interference between ZigBee and WiFi nodes,
mesh communications are not performed, and, as it can be observed in Figure 15, only a ZigBee
Coordinator and an End-node communicate with each other.

Master Node

Sensor Node WiFi Router Light Bulb

Red Led

Security Switch

Power outlets

Actuator Node

Figure 14. HAS prototype for showing purposes.

Sensors 2018, 18, 2660 32 of 42

Cloud

Remote Users
Other IoT Networks

Sensor Node

Xbee Series 2

HIH-5030 TMP36LDR
Parallax PIR

Sensor

Actuator Node

NodeMCU

LM35 ACS712

Master Node
NodeMCU

Xbee Series 2

Home Controller + Gateway
Raspberry Pi Model B

Third-Party Services

Fo
g

La
ye

r

IoT Node Layer

Figure 15. Communications architecture for the demo tests.

5.3. Response Time for Actuators and Events

One of the advantages of a fog computing system is the reduction of the response latency.
With ZiWi, it is straightforward to compare the difference in response time between OpenHab
(the home automation service in ZiWi’s fog) and remote cloud services like Telegram and IFTTT.

Regarding the fog response, the time to turn a light on was measured when the LDR detected
low luminosity, and an average of 0.02 s were measured. The average time to activate a relay was very
similar: 0.018 s for switching it on and 0.016 s for switching it off.

With respect to the use of third-party services running in a remote cloud, the time required by
Telegram to send messages with every relay commutation was first measured. The results showed
that the average time to receive the messages in a smartphone making use of push notifications was
2.735 s. In the case of IFTTT, a rule that checked ZiWi’s luminosity every 30 min was configured and, if
the values received were too low, it turned a light bulb on. In such a scenario, it was determined that
an average of 51.388 s went by since the rule was checked until the light was turned on.

Sensors 2018, 18, 2660 33 of 42

The obtained results allow for concluding that fog services react clearly faster than cloud
services. In the case of Telegram notifications, they are roughly 160 times slower than fog event
detections, while such events are 2569 times faster than IFTTT when turning a light on when detecting
low-luminosity. Nonetheless, note that the experiments were performed in very specific circumstances,
so, although these first measurements are promising, a detailed analysis should be performed. In
addition, note that cloud services offer many complex and compute-intensive applications that would
be difficult to run smoothly in a simple fog layer so, for every service conceived, the IoT designer has
to look for a good trade-off between response time and functionality.

ZiWi response times can be compared to the ones obtained by other state-of-the-art systems,
but it is important to note that it is difficult to compare them in a fair way due to their differences
in architecture, topology, hardware, protocol compatibility or communication transceivers (as it is
was previously described in Section 2.2.1). Thus, the system presented in [19] requires a 2 s delay for
executing commands on an actuator in an indoor scenario (using the ZigBee network), while 25 s are
required outdoors (using a GSM interface). In [25], it is indicated that 0.5 s are needed both for reading
sensor values and for executing commands on actuators. In addition, other authors measured response
times for actions performed by the sensor nodes (without relying on upper layers), which clearly
reduces response time, but usually increases the computational requirements of the nodes. Examples
of such a kind of response time are measured in [41,43], where 1, 233.19µs and 32.9 ms were needed
to detect events and react to them. As a summary, Table 8 compares all the previously mentioned
response times.

Table 8. Response time comparison of ZiWi with other state-of-the-art systems.

System Scenario Response Time

ZiWi-Fog Turn on a light when low luminosity is detected 20 ms

ZiWi-Fog Switch on a relay 18 ms

ZiWi-Fog Switch off a relay 16 ms

ZiWi-Cloud Detect and notify alert through Telegram 2.735 s

ZiWi-Cloud Turn on a light when low luminosity is detected through IFTTT 51.388 s

[19]-ZigBee Switch on/off relay 2 s

[19]-GSM Switch on/off relay 25 s

[25] Read sensor value 0.5 s

[25] Act on actuator 0.5 s

[41] Detect and react to a shortcut 1233.19µs

[43] Collect sensor values and react depending on them 32.9 ms

5.4. Cross-Interference Evaluation

In a system where two different technologies share a common radio spectrum but that are not
synchronized to avoid collisions, it is interesting to determine how well the system performs in real
scenarios with and without cross-interference. However, please note that, for the sake of brevity,
this article is not aimed at presenting a deep analysis of all the possible cross-interference scenarios,
but at showing several relevant cases in order to determine the major factors that influence such
a cross-interference in the proposed HAS. Specifically, it has been measured ZigBee’s success delivery
rate for 100 packets with and without WiFi transmissions on channel 1 (centered at 2412 MHz, which
overlaps with IEEE 802.15.4 channels 11 to 14).

Table 9 shows ZigBee’s packet delivery success rates for several scenarios where WiFi cross-
interference existed at different degrees. Two main scenarios where distinguished: one at a relatively
short distance (less than 2 m) and another one at a medium distance (approximately 10 m). In such

Sensors 2018, 18, 2660 34 of 42

scenarios, the WiFi network was first disabled physically to isolate the ZigBee network (there were
also no other WiFi networks on channel 1), and then it was enabled. Two situations were distinguished
after enabling WiFi transmissions: one where the WiFi network operated in a non-overlapping channel,
and another one where it made use of the IEEE 802.11 channel 1.

Table 9. ZigBee success delivery rate in the presence of WiFi cross-interference.

Node WiFi Channel Average Local Average Remote Packets Packets TX Packets Packet Delivery
Distance Enabled Overlapping RSSI (dBm) RSSI (dBm) Sent Received Errors Lost Success Rate (%)

Short No No −36 −36 100 100 0 0 100%
Short Yes No −42 −44 100 96 3 1 96%
Short Yes Yes −49 −44 100 86 14 0 86%

Medium No No −59 −54 100 100 0 0 100%
Medium Yes No −55 −50 100 96 4 0 96%
Medium Yes Yes −56 −51 101 78 20 3 77.23%

The values shown in Table 9 indicate first that the collisions associated with cross-interference
influence the number of received packets, the number the transmission errors, and the number of
packets lost during the tests. Thus, as it could be predicted, the higher the cross-interference, the
lower the packet delivery success rate. Moreover, it is interesting to point out that the mere enabling
of the WiFi, although working in a non-overlapping channel, influences ZigBee communications
performance due to the transmission power that is leaked to neighboring channels.

In addition, it is worth mentioning that the results presented in Table 9 were obtained with the
typical traffic in a WiFi home automation network, which is light in comparison to, for instance, a WiFi
network where P2P communications are carried out. In fact, during the experiments it was clearly
observed that ZigBee’s packet delivery success rate plummeted as the amount of WiFi traffic rose,
until reaching a point when ZigBee communications became completely jammed. Nevertheless, note
that such a scenario is not usual, but the results indicate that the operating frequency has to be carefully
planned in order to maximize the packet delivery success rate. For such a purpose, fog computing
can be extremely helpful, since the fog layer can coordinate home gateways with the objective of
synchronizing the transmission frequencies of the different neighboring devices to reduce collisions.

5.5. Current Consumption with Encryption

Security is often neglected, even in commercial systems [122,123], mostly because resource-
constrained device are usually not powerful enough to handle secure communications protocols
[124]. In the experiments performed with ZiWi’s nodes, the effect on the current consumption
was analyzed when making use of encryption while communicating a node with a local
gateway. Specifically, in the case of the NodeMCU-based modules, TLSv1/SSLv3 was used with
ECDHE-RSA-AES128-GCM-SHA256 as cipher suite, while in ZigBee-based nodes, Application Support
Sublayer (APS) encryption was enabled. The code differs slightly for the NodeMCU nodes that use
SSL, so it has been also uploaded to a different folder in Ziwi’s GitHub repository [120].

Current measurements were obtained by using an Arduino and an Adafruit INA219, which
allows for measuring up to 26 V and that provides enough precision (it can work in high-precision
mode to measure 0.1 mA steps with a maximum of ±400 mA or, in low-precision mode, can make use
of 0.8 mA steps with a maximum of up to ±3.2 A).

Table 10 shows the average current consumption obtained with and without making use of
encryption in sensor and actuator nodes. In the case of sensor nodes, it can be observed that the
use of Secure Sockets Layer (SSL) generates an additional computational and communications load
that increases the average consumption through time, deriving into the clear differences shown in
Table 10. However, the use of a lighter (and less robust) encryption mechanism like ZigBee’s APS
barely increases the average consumption, but increases privacy and security with respect to not using
any encryption at the nodes. Therefore, developers have no excuse for not securing ZigBee nodes

Sensors 2018, 18, 2660 35 of 42

using APS, but alternative energy efficient security mechanisms have to be further studied in order to
improve or replace traditional cipher suites for SSL communications.

Table 10. Node consumption with and without encryption.

Mode
Sensor Node Consumption (mA) Actuator Node Consumption (mA)

Without Encryption With APS Encryption Difference Without Encryption With SSL Encryption Difference

Average 23.494 24.006 +2.13% 39.369 87.800 +55.16%

In Transmission 55.200 56.400 +2.13% 96.950 117.74 +17.66%

Idle 12.925 13.208 +2.14% 20.175 21.940 +8.04%

5.6. Key Findings

The design, implementation and practical evaluation of ZiWi allowed for obtaining diverse
relevant findings that are worth being summarized for future HAS developers:

• The use of open-source software and COTS parts is essential to guarantee that the HAS can be
replicated by third-parties. This is a key advantage over other academic and commercial systems,
which are based on proprietary hardware or software, thus making it difficult to corroborate the
obtained experimental results.

• Since ZiWi was conceived from scratch to be implemented on a fog computing architecture,
it is really easy to scale it by only adding gateways. This usually occurs in two situations:
when the number of home devices is too large to be handled by a single gateway, or when the
wireless range provided by the fog gateways is not enough to cover the whole home or building.
In such situations, fog gateways provide service redundancy and are able to communicate among
them to route the data to the cloud.

• The use of OpenHAB resulted in an HAS that is really easy to manage through an attractive GUI
and that is able to use a great deal of plugins to automatize many home automation tasks.

• The use of IFTTT makes it easy to connect the multiple devices deployed throughout a home,
thus being able to automate the detection the relevant events and making it ideal for
context-aware applications.

• The proposed system is able to decouple the hardware and software from the cloud, which reduces
latencies remarkably, especially for real or quasi-real time applications (e.g., when opening doors
or turning on certain appliances).

• The use of fog gateways offloads a relevant number of tasks from the cloud and also increases
security. Such a security is essential for preserving the privacy of the user data, which do not have
to be sent to the cloud and that do not have to be stored in servers maintained (and secured) by
third-parties. In addition, device access and data availability depend mostly on fog gateways,
so the communication blackouts that occur in the cloud have a limited impact on the HAS.

• The use of MQTT enables addressing most of the compatibility issues associated with the
diversity of protocols, technologies and standards that exist in the field of home automation.
In addition, MQTT consumes very few computational resources, so it can be implemented on
resource-constrained devices.

• ZigBee-WiFi cross-interference can be problematic in environments where a lot of data are
exchanged, but, in most home networks, under regular use of the communication resources,
although packets can become corrupted, most of them should arrive correctly. Nonetheless,
a careful frequency planning is recommended to minimize interference.

• The cost of the whole demonstrator (indicated in Table 2) is less than 20% of the cost of
a basic commercial system (around e1000). Therefore, ZiWi not only is able to add numerous
features, but also opens the field of home automation to many people that cannot afford costly
commercial solutions.

Sensors 2018, 18, 2660 36 of 42

6. Conclusions

This article presented ZiWi, a low-cost IoT fog computing HAS that allows for carrying out
seamless communications among ZigBee and WiFi nodes. Since ZiWi makes use of open-source
software and COTS hardware, it allows other researchers to replicate the fog computing architecture
and then validate it. The diverse elements of such an architecture were described, showing its high
scalability. Moreover, the use of protocols like MQTT allows for including resource-constrained devices
in the system that act as sensors or actuators. Furthermore, the design and implementation of the
Master nodes, which communicate ZigBee and WiFi devices, were detailed.

Although a more in-depth analysis should be carried out, the latency measurements obtained in
several significant scenarios show that the fog computing approach can be harnessed for providing
real-time or quasi-real time responses. In addition, the results indicate that cross-interference has to be
taken seriously into account in environments where WiFi and ZigBee devices coexist. Regarding the
performed power consumption measurements, they allow for concluding that the addition of robust
security, which is essential in modern communications, derive into a remarkable increase in current
consumption that should be addressed by hardware manufacturers and software developers in the
next generation of IoT fog computing applications.

Author Contributions: I.F.-M., T.M.F.-C. and P.F.-L. conceived and designed the experiments; I.F.-M. and T.M.F.-C.
performed the experiments; P.F.-L. and T.M.F.-C. analyzed the data; I.F.-M., P.F.-L., T.M.F.-C. and L.C. wrote
the paper.

Funding: This work has been funded by the Xunta de Galicia (ED431C 2016-045, ED341D R2016/012, ED431G/01),
the Agencia Estatal de Investigación of Spain (TEC2015-69648-REDC, TEC2016-75067-C4-1-R) and ERDF funds of
the EU (AEI/FEDER, UE).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
AMQP Advanced Message Queuing Protocol
AP Access Point
API Application Programming Interface
APS Application Support Sublayer
BLE Bluetooth Low Energy
HAS Home Automation System
HVAC Heating, Ventilation and Air-Conditioning
IoT Internet of Things
IPSP Internet Protocol Support Profile
ISM Industrial, Scientific and Medical
JMS Java Messaging Service
JVM Java Virtual Machine
MOM Message-Oriented Middleware
MQTT Message Queuing Telemetry Transport
MOM Message-Oriented Middleware
MTC Machine-Type Communications
NTP Network Time Protocol
RPC Remote Procedure Call
SoC System on Chip
SMD Surface-Mount Device
SSL Secure Sockets Layer

Sensors 2018, 18, 2660 37 of 42

STOMP Simple (or Streaming) Text Oriented Messaging Protocol
XMPP Extensible Messaging and Presence Protocol
VPN Virtual Private Network
6LowPAN IPv6 over Low-Power Wireless Personal Area Networks

References

1. Blanco-Novoa, Ó.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Vilar-Montesinos, M.A. A Practical Evaluation
of Commercial Industrial Augmented Reality Systems in an Industry 4.0 Shipyard. IEEE Access 2018, 6,
8201–8218. [CrossRef]

2. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Blanco-Novoa, Ó.; Vilar-Montesinos, M.A. A Review on
Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access 2018, 6, 13358–13375.
[CrossRef]

3. Markakis, E.K.; Karras, K.; Zotos, N.; Sideris, A.; Moysiadis, T.; Corsaro, A.; Alexiou, G.; Skianis, C.;
Mastorakis, G.; Mavromoustakis, C.X.; et al. EXEGESIS: Extreme Edge Resource Harvesting for a Virtualized
Fog Environment. IEEE Commun. Mag. 2017, 55, 173–179. [CrossRef]

4. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; pp. 13–16.

5. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Díaz-Bouza, M.A. A Fog Computing Based
Cyber-Physical System for the Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard. Sensors 2018,
18, 1961. [CrossRef] [PubMed]

6. KNX Association. Available online: http://www.knx.org (accessed on 5 July 2018).
7. ISO/IEC 14908-1:2012. Information Technology Control Network Protocol, Part 1: Protocol Stack; International

Organization for Standardization: Geneva, Switzerland, 2016.
8. X10. Available online: https://www.x10.com/x10-home-automation.html (accessed on 5 July 2018).
9. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Castedo, L. Towards the Internet of Smart Trains: A Review on

Industrial IoT-Connected Railways. Sensors 2017, 17, 1457. [CrossRef] [PubMed]
10. Hernández-Rojas, D.L.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Escudero, C.J. Design and Practical

Evaluation of a Family of Lightweight Protocols for Heterogeneous Sensing through BLE Beacons in IoT
Telemetry Applications. Sensors 2018, 18, 57. [CrossRef] [PubMed]

11. Hernández-Rojas, D.L.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Escudero, C.J. A Plug-and-Play
Human-Centered Virtual TEDS Architecture for the Web of Things. Sensors 2018, 18, 2052. [CrossRef]
[PubMed]

12. Fraga-Lamas, P.; Noceda-Davila, D.; Fernández-Caramés, T.M.; Díaz-Bouza, M.; Vilar-Montesinos, M.
Smart Pipe System for a Shipyard 4.0. Sensors 2016, 16, 2186. [CrossRef] [PubMed]

13. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Noceda-Davila, D.; Vilar-Montesinos, M. RSS Stabilization
Techniques for a Real-Time Passive UHF RFID Pipe Monitoring System for Smart Shipyards. In Proceedings
of the 2017 IEEE International Conference on RFID (IEEE RFID 2017), Phoenix, AZ, USA, 9–11 May 2017;
pp. 161–166.

14. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Noceda-Davila, D.; Díaz-Bouza, M.; Vilar-Montesinos, M.;
Pena-Agras J.D.; Castedo, L. Enabling automatic event detection for the pipe workshop of the shipyard 4.0.
In Proceedings of the 2017 56th FITCE Congress, Madrid, Spain, 14–16 September 2017; pp. 20–27.

15. Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on Human-Centered IoT-Connected Smart Labels for
the Industry 4.0. IEEE Access 2018, 6, 25939–25957. [CrossRef]

16. Fraga-Lamas, P. Enabling Technologies and Cyber-Physical Systems for Mission-Critical Scenarios.
Ph.D. Thesis, University of A Coruña, A Coruña, Spain, 2017.

17. Fraga-Lamas, P.; Suárez-Albela, M.; Fernández-Caramés, T.M.; Castedo, L.; González-López, M. A Review
on Internet of Things for Defense and Public Safety. Sensors 2016, 16, 1644. [CrossRef] [PubMed]

18. Qivicon Smart Home Alliance. Available online: https://www.qivicon.com (accessed on 5 July 2018).
19. Nedelcu, A.; Sandu, F.; Machedon-Pisu M.; Aalexandru, M.; Ogrutan, P. Wireless-based Remote Monitoring

and Control of Intelligent Buildings. In Proceedings of the IEEE International Workshop on Robotic and
Sensors Environments, Lecco, Italy, 6–7 November 2009; pp. 47–52.

http://dx.doi.org/10.1109/ACCESS.2018.2802699
http://dx.doi.org/10.1109/ACCESS.2018.2808326
http://dx.doi.org/10.1109/MCOM.2017.1600730
http://dx.doi.org/10.3390/s18061961
http://www.ncbi.nlm.nih.gov/pubmed/29914207
http://www.knx.org
https://www.x10.com/x10-home-automation.html
http://dx.doi.org/10.3390/s17061457
http://www.ncbi.nlm.nih.gov/pubmed/28635672
http://dx.doi.org/10.3390/s18010057
http://www.ncbi.nlm.nih.gov/pubmed/29280975
http://dx.doi.org/10.3390/s18072052
http://www.ncbi.nlm.nih.gov/pubmed/29954108
http://dx.doi.org/10.3390/s16122186
http://www.ncbi.nlm.nih.gov/pubmed/27999392
http://dx.doi.org/10.1109/ACCESS.2018.2833501
http://dx.doi.org/10.3390/s16101644
http://www.ncbi.nlm.nih.gov/pubmed/27782052
https://www.qivicon.com

Sensors 2018, 18, 2660 38 of 42

20. Zamora-Izquierdo, M.A.; Santa J.; Gómez-Skarmeta, A. An Integral and Networked Home Automation
Solution for Indoor Ambient Intelligence. Pervasive Comput. 2010, 9, 67–75. [CrossRef]

21. Baraka, K.; Ghobril, M.; Malek, S.; Kanj, R. Low Cost Arduino/Android-Based Energy-Efficient Home
Automation System with Smart Task Scheduling. In Proceedings of the Fifth International Conference
on Computational Intelligence, Communication Systems and Networks (CICSyN), Madrid, Spain,
5–7 June 2013; pp. 296–301.

22. Li, Z.; Song, M.; Gao, L. Design of Smart Home System Based on ZigBee. Appl. Mech. Mater. 2014, 635–637,
1086–1089. [CrossRef]

23. Cruz-Sánchez, H.; Havet, L.; Chehaider, M.; Song, Y.Q. MPIGate: A Solution to Use Heterogeneous Networks
for Assisted Living Applications. In Proceedings of the 9th International Conference on Ubiquitous
Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing,
Fukuoka, Japan, 4–7 September 2012; pp. 104–111.

24. Huang, F.L.; Tseng, S.Y. Predictable smart home system integrated with heterogeneous network and cloud
computing. In Proceeding of the International Conference on Machine Learning and Cybernetics (ICMLC),
Jeju, Korea, 10–13 July 2016; pp. 649–653.

25. Vivek, G.V.; Sunil, M.P. Enabling IoT services using WIFI-ZigBee gateway for a home automation system.
In Proceedings of the IEEE International Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN), Kolkata, India, 20–22 November 2015; pp. 77–80.

26. Pérez-Expósito, J.M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. VineSens: An Eco-Smart
Decision Support Viticulture System. Sensors 2017, 17, 465. [CrossRef] [PubMed]

27. Blanco-Novoa, O.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Cost-Effective IoT System for
Monitoring Indoor Radon Gas Concentration. Sensors 2018, 18, 2198. [CrossRef] [PubMed]

28. Blanco-Novoa, O.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. An Electricity-Price Aware
Open-Source Smart Socket for the Internet of Energy. Sensors 2017, 17, 643. [CrossRef] [PubMed]

29. Baran, P. On Distributed Communications Networks. IEEE Trans. Commun. Syst. 1964, 12, 1–9. [CrossRef]
30. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A Fog Computing and

Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard. Sensors 2018, 18, 1798. [CrossRef]
[PubMed]

31. Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Use of Blockchain for the Internet of Things.
IEEE Access 2018, 6, 32979–33001. [CrossRef]

32. ZigBee Alliance. Available online: http://www.zigbee.org (accessed on 5 July 2018).
33. Google Statistics on IPv6 Usage. Available online: https://www.google.com/intl/en/ipv6/statistics.html

(accessed on 5 July 2018).
34. Yaakop, M.B.; Malik, I.A.A.; Bin Suboh, Z.; Ramli, A.F.; Abu, M.A. Bluetooth 5.0 throughput comparison

for internet of thing usability a survey. In Proceedings of the International Conference on Engineering
Technology and Technopreneurship (ICE2T), Kuala Lumpur, Malaysia, 18–20 September 2017.

35. Nordic Semiconductor nRF Mesh Official Web Page. Available online: https://www.nordicsemi.com/eng/
Products/Nordic-mobile-Apps/nRF-Mesh (accessed on 20 July 2018).

36. Joshi, J.; Rajapriya, V.; Rahul, S.R.; Kumar, P.; Polepally, S.; Samineni, R.; Kamal Tej, D.G.
Performance enhancement and IoT based monitoring for smart home. In Proceedings of the International
Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017.

37. 3rd Generation Partnership Project (3GPP). Available online: http://www.3gpp.org (accessed on 5 July 2018).
38. Soltanmohammadi, E.; Ghavami, K.; Naraghi-Pour, M. A Survey of Traffic Issues in Machine-to-Machine

Communications over LTE. IEEE Internet Things J. 2016 , 6, 865–884. [CrossRef]
39. Taleb, T.; Kunz, A. Machine type communications in 3GPP networks: Potential, challenges, and solutions.

IEEE Commun. Mag. 2012, 50, 178–184. [CrossRef]
40. Fraga-Lamas, P.; Castedo-Ribas, L.; Morales-Méndez, A.; Camas-Albar, J.M. Evolving military broadband

wireless communication systems: WiMAX, LTE and WLAN. In Proceedings of the International Conference
on Military Communications and Information Systems (ICMCIS), Brussels, Belgium, 23–24 May 2016;
pp. 1–8.

41. Fernández-Caramés, T.M. An Intelligent Power Outlet System for the Smart Home of the Internet of Things.
Int. J. Distrib. Sens. Netw. 2015, 2015, 1–11. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/MPRV.2010.20
http://dx.doi.org/10.4028/www.scientific.net/AMM.635-637.1086
http://dx.doi.org/10.3390/s17030465
http://www.ncbi.nlm.nih.gov/pubmed/28245619
http://dx.doi.org/10.3390/s18072198
http://www.ncbi.nlm.nih.gov/pubmed/29986540
http://dx.doi.org/10.3390/s17030643
http://www.ncbi.nlm.nih.gov/pubmed/28335568
http://dx.doi.org/10.1109/TCOM.1964.1088883
http://dx.doi.org/10.3390/s18061798
http://www.ncbi.nlm.nih.gov/pubmed/29865266
http://dx.doi.org/10.1109/ACCESS.2018.2842685
http://www.zigbee.org
https://www.google.com/intl/en/ipv6/statistics.html
https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-Mesh
https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-Mesh
http://www.3gpp.org
http://dx.doi.org/10.1109/JIOT.2016.2533541
http://dx.doi.org/10.1109/MCOM.2012.6163599
http://dx.doi.org/10.1155/2015/214805
http://www.ncbi.nlm.nih.gov/pubmed/26676896

Sensors 2018, 18, 2660 39 of 42

42. Kumar, S. Ubiquitous Smart Home System Using Android Application. Int. J. Comput. Netw. Commun. 2014,
6, 33–42. [CrossRef]

43. Farias, C.; Pirmez, L.; Delicato, F.C.; Soares, H.; Santos, I.L.D.; Carmo, L.F.R.C. A control and decision system
for smart buildings. In Proceedings of the IEEE 10th International Conference on Ubiquitous Intelligence,
Sorrento Peninsula, Italy, 18–21 December 2013; pp. 256–261.

44. Wenbo, Y.; Quanyu, W.; Zhenwei, G. Smart home implementation based on Internet and WiFi technology.
In Proceedings of the 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015;
pp. 9072–9077.

45. Bhatt, A.; Patoliya, J. Cost effective digitization of home appliances for home automation with low-power
WiFi devices. In Proceedings of the 2nd International Conference on Advances in Electrical, Electronics,
Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2016;
pp. 643–648.

46. Kodali, R.K.; Soratkal, S. MQTT based home automation system using ESP8266. In Proceedings of the IEEE
Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–5.

47. Olteanu, A.C.; Oprina, G.D.; Tapus, N.; Zeisberg, S. Enabling Mobile Devices for Home Automation Using
ZigBee. In Proceedings of the 19th International Conference on Control Systems and Computer Science,
Bucharest, Romania, 30 July 2013; pp. 189–195.

48. Sikora, A.; Groza, V.F. Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-ISM-Band.
In Proceedings of the Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada,
16–19 May 2005.

49. Hauer, J.-H.; Handziski, V.; Wolisz, A. Experimental study of the impact of WLAN interference on IEEE
802.15.4 body area networks. In Wireless Sensor Networks; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5432, pp. 17–32.

50. Domínguez, F.; Touhafi, A.; Tiete, J.; Steenhaut, K. Coexistence with WiFi for a Home Automation ZigBee
product. In Proceedings of the 19th IEEE Symposium on Communications and Vehicular Technology in the
Benelux (SCVT), Eindhoven, The Netherlands, 16 November 2012; pp. 1–6.

51. Digi: XBee Ecosystem. Available online: https://www.digi.com/lp/xbee (accessed on 5 July 2018).
52. Shojafar, M.; Cordeschi, N.; Baccarelli, E. Resource Scheduling for Energy-Aware Reconfigurable Internet

Data Centers. In Innovative Research and Applications in Next-Generation High Performance Computing;
Hassan, Q.F., Ed.; IGI Global: Hershey, PA, USA, 2016; pp. 21–46.

53. Chiaraviglio, L.; D’Andreagiovanni, F.; Lancellotti, R.; Shojafar, M.; Blefari Melazzi, N.; Canali, C.
An Approach to Balance Maintenance Costs and Electricity Consumption in Cloud Data Centers. IEEE Trans.
Sustain. Comput. (Early Access) 2018. [CrossRef]

54. Aazam, M.; Zeadally, S.; Harras, K.A. Fog Computing Architecture, Evaluation, and Future Research
Directions. IEEE Commun. Mag. 2018, 56, 46–52. [CrossRef]

55. Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and
Research Challenges. IEEE Commun. Surv. Tutor. 2018. [CrossRef]

56. Sarkar, S.; Chatterjee, S.; Misra, S. Assessment of the suitability of fog computing in the context of Internet of
things. IEEE Trans. Cloud Comput. 2015, 6, 46–59. [CrossRef]

57. Aazam, M.; Huh, E.N. Fog Computing: The Cloud-IoT/IoE middleware paradigm. IEEE Potentials 2016, 35,
40–44. [CrossRef]

58. Souza, V.B.C.; Ramirez, W.; Masip-Bruin, X.; Marin-Tordera, E.; Ren, G.; Tashakor, G. Handling service
allocation in combined fog-cloud scenarios. In Proceedings of the IEEE ICC, Kuala Lumpur, Malaysia,
22–27 May 2016; pp. 1–5.

59. Xia, W.; Zhao, P.; Wen, Y.; Xie, H. A survey on data center networking (DCN): Infrastructure and operations.
IEEE Commun. Surv. Tutor. 2016, 19, 640–656. [CrossRef]

60. Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges
IEEE Netw. 2016, 30, 46–53. [CrossRef]

61. Hung, S.-C.; Hsu, H.; Lien, S.Y.; Chen, K.-C. Architecture harmonization between cloud radio access
networks and fog networks IEEE Access 2015, 3, 3019–3034. [CrossRef]

62. Huang, L.; Li, G.; Wu, J.; Li, L.; Li, J.; Morello, R. Software defined QoS provisioning for fog
computing advanced wireless sensor networks. In Proceedings of the IEEE SENSORS, Orlando, FL, USA,
30 October–3 November 2016; pp. 1–3.

http://dx.doi.org/10.5121/ijcnc.2014.6103
https://www.digi.com/lp/xbee
http://dx.doi.org/10.1109/TSUSC.2018.2838338
http://dx.doi.org/10.1109/MCOM.2018.1700707
http://dx.doi.org/10.1109/COMST.2018.2814571
http://dx.doi.org/10.1109/TCC.2015.2485206
http://dx.doi.org/10.1109/MPOT.2015.2456213
http://dx.doi.org/10.1109/COMST.2016.2626784
http://dx.doi.org/10.1109/MNET.2016.7513863
http://dx.doi.org/10.1109/ACCESS.2015.2509638

Sensors 2018, 18, 2660 40 of 42

63. Xu, Y.; Mahendran, V.; Radhakrishnan, S. Towards SDN-based fog computing: MQTT broker virtualization
for effective and reliable delivery. In Proceedings of the IEEE 8th International Conference on Communication
Systems and Networks (COMSNETS), Bangalore, India, 5–10 January 2016; pp. 1–6.

64. Byers, C.C. Architectural Imperatives for Fog Computing: Use Cases, Requirements, and Architectural
Techniques for Fog-Enabled IoT Networks IEEE Commun. Mag. 2017, 55, 14–20. [CrossRef]

65. Al Faruque, M.A.; Vatanparvar, K. Energy Management-as-a-Service Over Fog Computing Platform.
IEEE Internet Things J. 2016, 3, 161–169. [CrossRef]

66. Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches
for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and
Research Directions. Energies 2018, 11, 596. [CrossRef]

67. Oteafy, S.M.A.; Hassanein, H.S. IoT in the Fog: A Roadmap for Data-Centric IoT Development.
IEEE Commun. Mag. 2018, 56, 157–163. [CrossRef]

68. Naranjo, P.G.V.; Pooranian, Z.; Shojafar, M.; Conti, M.; Buyya, R. FOCAN: A Fog-Supported Smart
City Network Architecture for Management of Applications in the Internet of Everything Environments.
Available online: https://arxiv.org/pdf/1710.01801.pdf (accessed on 5 July 2018).

69. Verma, P.; Sood, S.K. Fog Assisted-IoT Enabled Patient Health Monitoring in Smart Homes IEEE Internet
Things J. 2018, 5, 1789–1796. [CrossRef]

70. Amadeo, M.; Molinaro, A.; Paratore, S.Y.; Altomare, A.; Giordano, A.; Mastroianni, C. A Cloud of Things
framework for smart home services based on Information Centric Networking. In Proceedings of the 14th
International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italty, 16–18 May 2017;
pp. 245–250.

71. Dutta, J.; Roy, S. IoT-fog-cloud based architecture for smart city: Prototype of a smart building. In Proceedings
of the 7th International Conference on Cloud Computing, Data Science and Engineering-Confluence,
Noida, India, 12–13 January 2017; pp. 237–242.

72. Javale, D.; Mohsin, M.; Nandanwar, S.; Shingate, M. Home Automation and Security System Using Android
ADK. Int. J. Electron. Commun. Comput. Technol. 2013, 3, 382–385.

73. Roy, A.; Picking, R.; Grout, V. Remote Controlled Home Automation Systems with Different Network
Technologies. In Proceedings of the 6th International Network Conference (INC 2006), Plymouth, UK,
11–14 July 2006; pp. 357–366.

74. Suárez-Albela, M.; Fraga-Lamas, P.; Fernández-Caramés, T.M.; Dapena, A.; González-López, M.
Home Automation System Based on Intelligent Transducer Enablers. Sensors 2016, 16, 1595. [CrossRef]
[PubMed]

75. MQTT. Available online: http://www.mqtt.org (accessed on 7 November 2017).
76. Mosquitto Broker. Available online: http://mosquitto.org (accessed on 5 July 2018).
77. Al-Soh, M.; Zualkernan, I.A. An MQTT-Based Context-Aware Wearable Assessment Platform for Smart

Watches. In Proceeding of the IEEE 17th International Conference on Advanced Learning Technologies
(ICALT), Timisoara, Romania, 3–7 July 2017; pp. 98–100.

78. Ahmed, S.; Topalov, A.; Shakev, N. A robotized wireless sensor network based on MQTT cloud computing.
In Proceedings of the IEEE International Workshop of Electronics, Control, Measurement, Signals and their
Application to Mechatronics (ECMSM), Donostia, Spain, 24–26 May 2017; pp. 1–6.

79. Oryema, B.; Kim, H.S.; Li, W.; Park, J.T. Design and implementation of an interoperable messaging system
for IoT healthcare services. In Proceedings of the 14th IEEE Annual Consumer Communications and
Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 45–52.

80. Vu, T.; Nguyen, T.; Jang, Y.M. MQTT protocol for connected OCC small cells. In Proceedings of the
Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017;
pp. 674–678.

81. Sinha, A.; Sharma, S.; Goswami, P.; Verma, V.K.; Manas, M. Design of an energy efficient Iot enabled smart
system based on DALI network over MQTT protocol. In Proceedings of the 3rd International Conference on
Computational Intelligence and Communication Technology (CICT), Ghaziabad, India, 9–10 February 2017;
pp. 1–5.

82. Del Campo, A.; Gambi, E.; Montanini, L.; Perla, D.; Raffaeli, L.; Spinsante, S. MQTT in AAL systems for home
monitoring of people with dementia. In Proceedings of the IEEE 27th Annual International Symposium

http://dx.doi.org/10.1109/MCOM.2017.1600885
http://dx.doi.org/10.1109/JIOT.2015.2471260
http://dx.doi.org/10.3390/en11030596
http://dx.doi.org/10.1109/MCOM.2018.1700299
https://arxiv.org/pdf/1710.01801.pdf
http://dx.doi.org/10.1109/JIOT.2018.2803201
http://dx.doi.org/10.3390/s16101595
http://www.ncbi.nlm.nih.gov/pubmed/27690031
http://www.mqtt.org
http://mosquitto.org

Sensors 2018, 18, 2660 41 of 42

on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016;
pp. 1–6.

83. Li, X.; Nie, L.; Chen, S.; Zhan, D.; Xu, X. An IoT Service Framework for Smart Home: Case Study on
HEM. In Proceedings of the IEEE International Conference on Mobile Services, New York, NY, USA,
27 June–2 July 2015; pp. 438–445.

84. Lee, Y.T.; Hsiao, W.H.; Huang, C.M.; Chou, S.C.T. An integrated cloud-based smart home management
system with community hierarchy. IEEE Trans. Consum. Electron. 2016, 62, 1–9. [CrossRef]

85. Horng, M.-F.; Hung, M.-H.; Chen, Y.-T.; Pan, J.-S.; Huang, W. A new approach based on XMPP and
OSGi technology to home automation on Web. In Proceedings of the International Conference on
Computer Information Systems and Industrial Management Applications (CISIM), Krackow, Poland,
8–10 October 2010; pp. 487–490.

86. Hornsby, A.; Belimpasakis, P.; Defee, I. XMPP-based wireless sensor network and its integration into the
extended home environment. In Proceedings of the IEEE 13th International Symposium on Consumer
Electronics, Kyoto, Japan, 25–28 May 2009; pp. 794–797.

87. Viswanath, S.K.; Yuen, C.; Tushar, W.; Li, W.T.; Wen, C.K.; Hu, K.; Chen, C.; Liu, X. System design of the
internet of things for residential smart grid. IEEE Wirel. Commun. 2016, 23, 90–98. [CrossRef]

88. Khan, A.A.; Mouftah, H.T. Secured web services for home automation in smart grid environment.
In Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–4.

89. ISO/IEC 20922:2016. Information Technology—Message Queuing Telemetry Transport (MQTT) v3.1.1;
International Organization for Standardization: Geneva, Switzerland, 2016.

90. Zhuang, Z.; Chen, Y.M. Optimizing JMS Performance for Cloud-Based Application Servers. In Proceedings
of the IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012;
pp. 828–835.

91. Sernecet, R.; Rizvič, M.; Ušaj, E.; Šterk, M.; Strozak, S.; Nemček, P.; Sauer, I. Communication architecture for
energy balancing market support on smart grid. In Proceedings of the IEEE International Energy Conference
(ENERGYCON), Cavtat, Croatia, 13–16 May 2014; pp. 1500–1508.

92. HomeSeer Automation System. Available online: http://www.homeseer.com (accessed on 5 July 2018).
93. Loxone Smart Home. Available online: http://www.loxone.com (accessed on 5 July 2018).
94. Domintell. Available online: http://www.domintell.com (accessed on 5 July 2018).
95. Agocontrol Official Web Page. Available online: http://www.agocontrol.com/ (accessed on 5 July 2018).
96. Calaos Official Web Page. Available online: https://calaos.fr/en/ (accessed on 5 July 2018).
97. Domoticz Official Web Page. Available online: http://domoticz.com (accessed on 5 July 2018).
98. FEHM Official Web Page. Available online: http://www.fhem.de/fhem.html (accessed on 5 July 2018).
99. Freedomotic Official Web Page. Available online: http://freedomotic.com/ (accessed on 5 July 2018).
100. Home-Assistant Official Web Page. Available online: http://wwww.home-assistant.io (accessed on

5 July 2018).
101. Home Genie Official Web Page. Available online: http://www.homegenie.it/ (accessed on 5 July 2018).
102. IOBroker Official Web Page. Available online: http://iobroker.net/ (accessed on 5 July 2018).
103. Jeedom Official Web Page. Available online: https://www.jeedom.com (accessed on 5 July 2018).
104. LinuxMCE Official Web Page. Available online: http://www.linuxmce.com/ (accessed on 5 July 2018).
105. MajorDoMo Official Web Page. Available online: http://www.majordomohome.com (accessed on

5 July 2018).
106. MyController Official Web Page. Available online: http://www.mycontroller.org/ (accessed on 5 July 2018).
107. OpenHAB. Available online: http://www.openhab.org (accessed on 5 July 2018).
108. OpenNetHome Official Web Page. Available online: http://opennethome.org/ (accessed on 5 July 2018).
109. Pimatic Official Web Page. Available online: http://www.pimatic.org (accessed on 5 July 2018).
110. ZBoss’ Official Web Page. Available online: http://zboss.dsr-wireless.com (accessed on 5 July 2018).
111. ESP8266. Available online: http://espressif.com/en/products/hardware/esp8266ex/overview (accessed

on 5 July 2018).
112. Sonoff Official Web Page. Available online: http://sonoff.itead.cc (accessed on 5 July 2018).
113. SonOTA Web Page on GitHUB. Available online: https://github.com/mirko/SonOTA (accessed on

5 July 2018).

http://dx.doi.org/10.1109/TCE.2016.7448556
http://dx.doi.org/10.1109/MWC.2016.7721747
http://www.homeseer.com
http://www.loxone.com
http://www.domintell.com
http://www.agocontrol.com/
https://calaos.fr/en/
http://domoticz.com
http://www.fhem.de/fhem.html
http://freedomotic.com/
http://wwww.home-assistant.io
http://www.homegenie.it/
http://iobroker.net/
https://www.jeedom.com
http://www.linuxmce.com/
http://www.majordomohome.com
http://www.mycontroller.org/
http://www.openhab.org
http://opennethome.org/
http://www.pimatic.org
http://zboss.dsr-wireless.com
http://espressif.com/en/products/hardware/esp8266ex/overview
http://sonoff.itead.cc
https://github.com/mirko/SonOTA

Sensors 2018, 18, 2660 42 of 42

114. Sonoff Update via OTA Bypassing SSL Verification. Available online: http://blog.nanl.de/2017/05/sonota-
flashing-itead-sonoff-devices-via-original-ota-mechanism/ (accessed on 5 July 2018).

115. ESPurna Web Page on BitBucket. Available online: https://bitbucket.org/xoseperez/espurna (accessed on
5 July 2018).

116. NodeMCU. Available online: http://nodemcu.com (accessed on 5 July 2018).
117. SparkFun. Available online: https://www.sparkfun.com (accessed on 5 July 2018).
118. Adafruit. Available online: https://www.adafruit.com (accessed on 5 July 2018).
119. WEMOS Electronics. Available online: https://www.wemos.cc (accessed on 5 July 2018).
120. Ziwi’s Official Repository on GitHub. Available online: https://github.com/ifrz/Home-Automation---

ESP8266-ZigBee (accessed on 5 July 2018).
121. IFTTT. Available online: https://ifttt.com/discover (accessed on 5 July 2018).
122. Fraga-Lamas, P.; Fernández-Caramés, T.M. Reverse Engineering the Communications Protocol of an RFID

Public Transportation Card. In Proceedings of the 2017 IEEE International Conference on RFID
(IEEE RFID 2017), Phoenix, AZ, USA, 9–11 May 2017; pp. 30–35.

123. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Castedo, L. Reverse Engineering and Security
Evaluation of Commercial Tags for RFID-Based IoT Applications. Sensors 2017, 17, 28. [CrossRef] [PubMed]

124. Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Evaluation of
a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications Sensors 2017, 9, 1978.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://blog.nanl.de/2017/05/sonota-flashing-itead-sonoff-devices-via-original-ota-mechanism/
http://blog.nanl.de/2017/05/sonota-flashing-itead-sonoff-devices-via-original-ota-mechanism/
https://bitbucket.org/xoseperez/espurna
http://nodemcu.com
https://www.sparkfun.com
https://www.adafruit.com
https://www.wemos.cc
https://github.com/ifrz/Home-Automation---ESP8266-ZigBee
https://github.com/ifrz/Home-Automation---ESP8266-ZigBee
https://ifttt.com/discover
http://dx.doi.org/10.3390/s17010028
http://www.ncbi.nlm.nih.gov/pubmed/28029119
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Home Automation Protocols and Technologies
	Academic Solutions
	Home Automation Systems for Heterogeneous Networks
	Fog Computing Architectures and Applications
	Protocol Compatibility Approaches

	Commercial Home Automation Solutions
	Open-Source Home Automation Software
	Analysis of the State-of-the-Art

	System Design
	HAS Architecture
	IoT Nodes

	Implementation
	IoT Nodes
	Actuator Nodes
	Sensor Nodes
	Master Node

	Home Controller (Main Local Gateway)

	Experiments
	Initial Configuration
	Demo Prototype
	Response Time for Actuators and Events
	Cross-Interference Evaluation
	Current Consumption with Encryption
	Key Findings

	Conclusions
	References

