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Recombination is a key evolutionary process that shapes the archi-
tecture of genomes and the genetic structure of populations. Al-
though many statistical methods are available for the detection of
recombination from DNA sequences, their absolute and relative
performance is still unknown. Here we evaluated the performance of
14 different recombination detection algorithms. We used the coa-
lescent with recombination to simulate DNA sequences with different
levels of recombination, genetic diversity, and rate variation among
sites. Recombination detection methods were applied to these data
sets, and whether they detected or not recombination was recorded.
Different recombination methods showed distinct performance de-
pending on the amount of recombination, genetic diversity, and rate
variation among sites. The model of nucleotide substitution under
which the data were generated did not seem to have a significant
effect. Most methods increase power with more sequence diver-
gence. In general, recombination detection methods seem to capture
the presence of recombination, but they are not very powerful.
Methods that use substitution patterns or incompatibility among
sites were more powerful than methods based on phylogenetic
incongruence. Most methods do not seem to infer more false posi-
tives than expected by chance. Especially depending on the amount
of diversity in the data, different methods could be used to attain
maximum power while minimizing false positives. Results shown
here will provide some guidance in the selection of the most appro-
priate method�s for the analysis of the particular data at hand.

Recombination, defined here as the exchange of genetic infor-
mation between two nucleotide sequences, is an important

process that influences biological evolution at many different levels.
Recombination explains a considerable amount of genetic diversity
in natural populations and, in general, genes located in regions of
the genome with low levels of recombination have low levels of
polymorphism. Recombination reshuffles existing variation and
even creates new variants at the amino acid level. Indeed, recom-
bination shapes the genetic structure of natural populations (1, 2)
and the action of natural selection (3). Characterization of the role
of recombination across genomes is of major interest. The study of
recombination events will allow us to better understand the dy-
namics of genomes (4, 5). Recombination breaks down linkage
disequilibrium and, consequently, the characterization of recombi-
nation is essential for gene mapping, quantitative trait loci, and
association studies (6). In addition, recombination has a significant
impact on the evolution of several human pathogens (7–9)
and consequently on their clinical treatment and prevention. More-
over, many applications in biology today are based on the estima-
tion of phylogenetic trees. One main assumption of most phylo-
genetic methods is that there is only one phylogeny underlying
the evolution of the sequences under study. Recombination violates
this assumption by generating mosaic genes, where different regions
have different phylogenetic histories. By ignoring the presence
of recombination, phylogenetic analysis may be severely compro-
mised (10–13).

For all these reasons, the accurate detection of recombination
from DNA sequences becomes very relevant, and indeed a number
of methods have been developed for that purpose (D. L. Robertson,
http:��grinch.zoo.ox.ac.uk�RAP�links.html). Surprisingly, only a
few studies have attempted to examine the relative performance of

these methods (14–17). Although useful, these studies have been
limited in the number of methods compared and the set of
conditions evaluated. In practice, researchers are unable to make an
objective selection of the most suitable method to detect recom-
bination in their data. Here we perform a comprehensive analysis
of 14 different methods for detecting recombination to determine
relative performance and associated conditions of performance.
We simulated DNA sequences with different rates of recombina-
tion, diversity, and rate heterogeneity to investigate the statistical
power and the rate of false positives of the 14 different recombi-
nation detection algorithms.

Methods
A glossary of terms is described in Table 1. To study the statistical
power (1—rate of Type II error, or the probability of rejecting the
null hypothesis—no recombination—when it is false) and the rate
of false positives (Type I error, or the probability of rejecting the
null hypothesis when it is true) of the methods evaluated, two sets
of simulations were carried out. In the first set (Simulations I, power
analysis; Table 2), an increasing recombination rate was simulated
for different levels of variation. In the second set (Simulations II,
false positives; Table 3), increasing rate variation among sites was
simulated for different levels of variation and without recombina-
tion. This design allows us to examine the confounding effect of rate
variation with recombination (10). For each set of conditions, 100
replicates were simulated. The range of parameter values used in
the simulations is commonly observed in real data sets. Software to
perform these simulations is available on request. The general
simulation strategy was:

(i) Simulate recombinant genealogies by using the coalescent
with recombination.

(ii) Evolve nucleotide sequences on the simulated genealogy
to obtain a sequence alignment.

(iii) Apply 14 different methods to the simulated data and
record how many times, of 100 replicates, a method infers the
presence of recombination.

The Coalescent with Recombination. Multiple genealogies for sam-
ples of n � 10 sequences were simulated under the coalescent
with recombination (18–26). In the recombination model im-
plemented here, there are n sequences with l sites, and the
population consists of N diploid individuals. A continuous time
approximation is used, and the time is scaled in units of 2N
generations. The recombination rate (�) is defined as � � 4Nrl,
where r is the rate of recombination per site per generation.

The coalescent is built backwards in time. It is constructed by
waiting for recombination or coalescent events until all ancestral
sites in the n sequences have found a most recent common
ancestor (not necessarily the same ancestor for all sites). The
waiting times to a coalescent event are exponentially distributed
with mean k(k � 1)�2 (k is the number of sequences at a given
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generation). The waiting times to a recombination event are also
exponentially distributed, but with mean 2NrG. G is the number
of potential locations where recombination can happen (20).
This quantity is a number between 0 and (l � 1)k, and it depends
on the outcome of the previous events. G can be written as:

G � �
i � 1

k

gi, [1]

where gi is the number of ways a sequence can be a recombinant
descendant of two sequences both ancestral to the sample. As an
example, the values of gi associated with the 4-tuples (a sequence
with four sites) (1, 0, 0, 1) (1, 0, 1, 0), (1, 1, 0, 0), and (1, 0, 0, 0) are
3, 2, 1, and 0, respectively (20) (where 1 denotes that a site is
ancestral and 0 that it is nonancestral). A site between two segments
of ancestral material is called ‘‘trapped site;’’ in the tuple (1, 0, 1, 0),
the first 0 is trapped, whereas the second is not (21).

Because coalescent and recombination events are indepen-
dent, the time to one of these events happening is exponentially
distributed with mean k(k � 1)�2 � 2NrG. The probabilities that
a given event is either a coalescence or a recombination are:

P�coalescence� �
k�k � 1��2

k�k � 1��2 � 2NrG
, [2]

P�recombination� �
2NrG

k�k � 1��2 � 2NrG
. [3]

Simulation of a single realization of this process is performed by
starting with k � n sequences at time 0, and determining when
the first event (coalescence or recombination) happens by
drawing a random number u from the uniform distribution:

Event time �
�log�u�

k�k � 1��2 � 2NrG
[4]

A decision is made whether this event is a coalescence or a
recombination based in their relative probabilities, and then the
number of sequences k is updated. If the event is a coalescence,
two sequences are chosen uniformly, and their material is

coalesced. The number of sequences decreases by one (k � k �
1). In the case of a recombination event, one sequence is chosen
at random by assigning probabilities to the sequences based on
their relative gi values. A recombination breakpoint is then
chosen uniformly over the ancestral material and the nonances-
tral material that is trapped between two blocks of ancestral
material. When a recombination event happens, the number of
sequences increases by one (k � k � 1). After each event, the
value of G is updated [initially, G � (l � 1)k]. The process is
continued until each site in the extant sequences has found a
most recent common ancestor (MRCA). With recombination,
different parts of the alignment are likely to have different
coalescent trees and different times to the MRCA.

The number of recombinational events in the history of a
sample of size n, R(n), has the expectation

E�R�n�� � � �
j � 1

n � 1 1
j

[5]

(19). Not all recombination events, R(n) in total, are detectable.
Regarding their effect on the genealogy, there are three types of
recombination events: events that do not change the branch lengths,
events that do change the branch lengths but do not change the
topology, and events that change the topology. Wiuf et al. (15)
provide the expectations for these three types of events.

Sequence Evolution. Sequences were evolved on the simulated
(potentially) recombinant genealogies. Several models of nucle-
otide substitution were used (Table 4) to study the effect of base
frequency and transition�transversion ratio on the detection of
recombination. Different mutation rates were used to obtain
alignments with different levels of divergence (Tables 2 and 3).
The expected average pairwise sequence divergence (p) depends
on the parameters of the model of nucleotide substitution. A
rough approximation for models with no rate variation would be

p �
��l

��l � 1
[6]

where � � 4N�l, and � is the mutation rate per site per generation.
For example, a value of � � 100 would indicate that a randomly
chosen pair of sequences is expected to differ in 0.1�(1 � 0.1)�9%
of their sites (given that sequence length, l � 1,000).

Performance Evaluation. The recombination detection algorithms
were applied to the simulated data sets, and the number of times a
method inferred the presence of recombination of the 100 replicates
was recorded. This number approximates the probability of detect-
ing recombination for each method and therefore is a convenient
indicator of performance. Although some methods provide a
qualitative answer for the presence of recombination (yes or no),
most methods calculate a P value. In the later case, recombination
was inferred when the provided P value was smaller than 0.05.

Methods for Detecting Recombination. We evaluated 14 methods
for the detection of recombination (Table 5). A detailed de-
scription of these methods is published as supporting informa-
tion on the PNAS web site, www.pnas.org. In general, we can
tentatively classify these methods as:

(i) Distance Methods. Distance methods look for inversions of
distance patterns among the sequences (27). In general, they use a
sliding window approach and the estimation of some statistic based
on genetic distances among the sequences. Because the phylogeny
does not need to be known, these are normally fast methods.

Table 1. Glossary of terms

Symbol Meaning

s Number of replicates
k Number of sequences at a given generation
n Sample size
l Sequence length
N Effective population size
� Mutation rate per site per generation
� � 4N�l � Population mutation parameter (per gene)
p Average pairwise sequence divergence
r Recombination rate per site per generation
� � 4Nrl � Population recombination parameter (per gene)
R(n) Expected number of recombination events
G Number of potential locations for recombination to occur
� Transition�transversion rate
� Base frequencies
	 Shape of gamma distribution
	 Gamma distribution
JC Jukes–Cantor 1969 (49)
K80 Kimura-2-parameters (50)
F81 Felsenstein 1981 (51)
HKY Hasegawa–Kishino–Yano 1985 (52)
x Power to detect recombination
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(ii) Phylogenetic Methods. Several methods infer recombination
when phylogenies from different parts of the genome result in
discordant topologies or when orthologous genes from different
species are clustered. When comparisons of adjacent sequences
yield different branching patterns, there is reason to suspect the
involvement of recombinational events. If the consequence of
such changes results in reconciling different sequence phylog-
enies to a single phylogeny, then the existence of such events
becomes a reasonable hypothesis (28–33). These are the meth-
ods most extensively used in the literature.

(iii) Compatibility Methods. Compatibility methods test for partition
phylogenetic incongruence in a site-by-site basis and do not require
the phylogeny of the sequences analyzed to be known (34, 35).

(iv) Substitution Distribution. Nucleotide substitution distribution
methods examine the sequences for a significant clustering of
substitutions or fit to an expected statistical distribution (S. A.
Sawyer, http:��www.math.wustl.edu�
sawyer�geneconv�
index.html; refs. 36–43).

Implementation of Methods for Detecting Recombination. Unless
otherwise noted, the number of permutations was 1,000, and the
family significance level used was 0.05. Permuted alignments were
obtained by randomizing the position of the columns in the
alignment.

The windows program SIMPLOT (33) was generously modified
by Stuart Ray (SIMPLOT’s author) to implement the BOOTSCAN-
NING (44) of every sequence in the alignment against the rest. We
used a sliding window size of 200 base pairs and a step size of 10
nucleotides. Neighbor-joining trees were estimated by using F84
distances (45, 46), and bootstrap values were obtained from 100
replicates. Several bootstrapping thresholds for assignment of
parenthood were explored (70, 90, and 95%), but only the 95%
threshold provided reasonable false positive rates. To implement
the method of Sawyer (http:��www.math.wustl.edu�
sawyer),
we used a modified version of GENECONV 1.81. The global
permutation P values based on BLAST-like global scores, ob-
tained from 10,000 replicates smaller than 0.05, were considered
evidence of recombination. A multiple comparison correction is
already built into these P values, so there was no need for further
correction. The parameter GSCALE, which scales the mismatch
penalty, was set to 0. To implement the HOMOPLASY TEST (42),
two QBASIC programs written by Maynard Smith were translated
into a single C program, which was benchmarked against the

original implementation. Because an outgroup was not used, and
to be conservative, the number of effective sites, Se, was taken
to be 0.6 � the total number of sites.

The program PIST (A. Rambaut and M. Worobey, http:��
evolve.zoo.ox.ac.uk�) was modified for simulations to implement
the INFORMATIVE SITES TEST (43). PIST takes as input and
alignment a tree and the parameter values of a model of
evolution. For each data set, a maximum likelihood (ML) tree
was estimated under the Hasegawa–Kinshino–Yano (HKY) � 	
model. At the same time, we obtained ML estimates of the
parameters in the HKY � 	 model (�, �, and 	). The trees and
model parameter estimates for each data set were used in the
PIST analysis. For the parametric simulation of the null distri-
bution of the statistic (see supporting information, www.pnas.
org), 100 replicates were used. A computer program was written
in C implementing a modification of Maynard Smith’s maximum

2 method (15, 41) by using only variable sites. The statistic is the
maximum 
2 in the original alignment. The P value equals the
number of times the original statistic is smaller than the statistic
from permuted alignments divided by the number of permuta-
tions. For all calculations, a sliding window was used, with the
width of the windows set to the number of polymorphic sites
divided by 1.5. This window moved in steps of one nucleotide at
a time. A previous implementation calculated the P values by
calculating the value of the statistic in the permuted data sets
exactly at the same position (breakpoint and sequences) where
the original maximum was found. This strategy resulted in many
false positives and was discarded. The computer program CHI-
MAERA was written in C, implementing the maximum mismatch

2 method (D.P., unpublished work) (see supporting informa-
tion). The rest of the implementation is the same as in the
maximum 
2 method. A computer program was written in C
implementing an extension of the Phylogenetic Profiles
(PHYPRO) method (27), which in its original form does not
provide statistical significance. Only variable sites were used.
The statistic is the minimum distance vector correlation in the
original alignment. The rest of the implementation was the same
as in the maximum 
2 and CHIMAERA methods.

The program PLATO (30) was also modified for simulations. For
each data set, a maximum likelihood tree was estimated, with
parameter estimates then obtained under the Hasegawa–Kinshino–
Yano � 	 model of evolution. Those values were used in the
calculation of the likelihoods in PLATO. A null distribution was
simulated by 100 Monte Carlo replicates. The default window
settings were used (minimum size, 5; step, 1). The WINDOWS

Table 2. Parameter values in Simulations I (power analysis)

s n l N � � r � R(n) Model 	*

100 10 1,000 1,000 0.25 � 10�5 10 0 0 0.00 JC �

1.25 � 10�5 50 0.25 � 10�6 1 2.83 K80
2.5 � 10�5 100 1 � 10�6 4 11.32 F81

5 � 10�5 200 4 � 10�6 16 45.26 HKY
16 � 10�6 64 181.05

*	 indicates the strength of rate variation among sites. When 	 � �, there is no rate variation among sites. The smaller the 	 the stronger
the rate variation (53).

Table 3. Parameter values used in Simulations II (false positive analysis)

s n l N � � r � R(n) Model 	

100 10 1,000 1,000 0.25 � 10�5 10 0 0 0 JC �

1.25 � 10�5 50 0 0 0 K80 2.00
2.5 � 10�5 100 0 0 0 F81 0.50

5 � 10�5 200 0 0 0 HKY 0.05
0 0 0
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program RDP (32) was generously modified by Darren Martin for
the simulations. After exploring different conditions, the best
settings were using internal and external reference sequences and
a window size of 10 nucleotides. Turning off the multiple signifi-
cance correction improved performance. The C program RECPARS
(K. Fisker, ftp:��ftp.daimi.aau.dk�pub�empl�kfisker�programs�
RecPars) was modified for the simulations to implement the
recombination parsimony method (28, 29). A recombination cost of
three times the maximum substitution cost (d � 3 � s) was found
to perform the best with the statistic below. The substitution costs
were the true values of the parameters of the model. The statistic
used was the number of histories recovered. If more than one
history was recovered, recombination was inferred.

The C program RETICULATE (34) was modified for the simula-
tions. The statistic used was the neighbor similarity score. A C
program was written implementing the RUNS TEST (40). The
program was benchmarked against results in Takahata’s paper (40).
Sneath’s method (38, 47) implemented in QBASIC was translated
into C and benchmarked against the original implementation.
Because P values are calculated for each pairwise comparison, P
values were Bonferroni-corrected. To evaluate Stephens’ method
(36), an improved implementation written in FORTRAN by Mary
Kuhner (48) was translated into C and benchmarked against the
original implementation. Because many tests are made, the Bon-
ferroni correction was applied with a family 	 level of 0.01 (a 0.05
level gave an excess of false positives).

Results
Different methods for detecting recombination showed very
distinct performance in different conditions (Fig. 1).

Power. At very low divergence (� � 10), the HOMOPLASY TEST
seems to be the more powerful method, attaining 80 and 100%
detection levels when � equals 16 and 64, respectively. RETICU-
LATE follows with 49 and 88% detection, respectively. PIST
attained 73% power only when � equals 64. Substitution methods
like CHIMAERA, MAXCHI, and GENECONV show similar power

compared with the methods above at low recombination levels,
but do not increase detection even with increasing amounts of
recombination after � � 16. These substitution methods (CHI-
MAERA, MAXCHI, and GENECONV) and PHLYPRO were the most
powerful in detecting recombination, followed by RETICULATE.
Phylogenetic methods performed the worst. Some of them
increased their overall power (RDP, RECPARS, TRIPLE) with
increasing amounts of recombination (but the power was always
lower relative to the substitution methods), whereas others
detected recombination only when it was frequent (PLATO,
BOOTSCANNING). At medium levels of divergence (� � 100),
power slightly increased for all methods, especially for low
recombination rates, except for the HOMOPLASY TEST, which
detected recombination only when it was extremely frequent. At
a high level of divergence (� � 200), power again increased for
low levels of recombination, except for the HOMOPLASY TEST.

False Positives. Most methods showed false positive rates around
the expectation of 5%. However, the HOMOPLASY TEST inferred
recombination (30–86%), with extreme levels of rate variation
(	 � 0.05). At high levels of divergence, methods like PIST and,
to a lesser extent, RECPARS, RDP, and TRIPLE, also inferred
recombination 11–49% of the time when rate variation was
extreme. This false positive rate trend with high rate variation
was more evident with increasing levels of divergence.

Models of Nucleotide Substitution. The model of substitution used
in the simulations did not have significant impact on the power
of the different recombination detection methods (see support-
ing information on the PNAS web site). However, it seems that
more complex models slightly increased the power and rate of
false positives for some methods.

Discussion
Most methods showed more power with increased rates of recom-
bination, which is the expected behavior for efficient methods.
However, some methods are more efficient than others. Most
methods showed better performance at higher levels of divergence,
probably because in such cases there is more information available
to recognize the footprint of recombination. The only method that
showed decreased power with more sequence divergence was the
HOMOPLASY RATIO. For most methods, a minimum sequence
divergence of 5% seems necessary to attain substantial power.
When the number of recombination events in the history of the
sequences is around 3 (� � 1), the most powerful methods inferred
the presence of recombination only 50% of the time, which
indicates that several recombination events are needed in order for

Table 4. Models of evolution and parameter values used in
the simulations

Model �A �C �T �G �

JC 0.25 0.25 0.25 0.25 0.5
K80 0.25 0.25 0.25 0.25 2.0
F81 0.40 0.20 0.10 0.30 0.5
HKY 0.40 0.20 0.10 0.30 2.0

Table 5. Methods for detecting recombination evaluated for performance

Method Implementation Reference Category

1 Bootscanning SIMPLOT 33, 44 Phylogenetic
2 Geneconv GENECONV 37 Substitution
3 Homoplasy Test HOMOPLASY TEST* 42 Substitution
4 Informative Sites Test PIST 43 Substitution
5 Maximum 
2 MAXCHI* 41 Substitution
6 Maximum mismatch 
2 CHIMAERA* D.P., unpublished work Substitution
7 Phylogenetic Profiles PHYPRO* 27 Distance
8 Partial Likelihood PLATO 30 Phylogenetic
9 Rdp RDP 32 Phylogenetic

10 Recombination Parsimony RECPARS 28 Phylogenetic
11 Reticulate RETICULATE 34 Compatibility
12 Runs Test RUNS TEST* 40 Substitution
13 Sneath Test SNEATH TEST* 38 Substitution
14 Triple TRIPLE* 48 Phylogenetic

*Local program written in C.
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these methods to detect recombination. However, it should be kept
in mind that around 10% of the data sets simulated under � � 1
contain no recombination events. For the most powerful methods
to detect recombination around 80% of the time, 12 recombination
events (� � 4) are needed.

In this simulation, methods based on the patterns of substi-
tutions and in-site compatibility worked better than phylogenetic
methods, a result also obtained by Brown et al. (16) and Wiuf et
al. (15) in their comparison of four recombination detection
methods. Simple implementations of methods like CHIMAERA or

Fig. 1. Power (Left) and rate of false positives (Right) corresponding to 14 recombination detection algorithms. The probability of detecting recombination is plotted
against increasing levels of recombination (�) and nucleotide diversity (�). Sequences were evolved under the Hasegawa–Kinshino–Yano model of evolution.
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MAXCHI, based on summary statistics, performed the best.
Indeed, phylogenetic methods can detect only recombination
events that change the topology (see supporting information on
the PNAS web site), although at high recombination rates, there
should be plenty of such events.

To maximize the chances of detecting recombination when it
is present and to avoid, at the same time, the inference of
recombination when it is absent, it will be useful to estimate the
amount of divergence and rate heterogeneity in the data. Given
those estimates and the performance graphs shown here, the
most suitable methods for detecting recombination for the data
at hand might be readily selected. For example, if variation is
around 1%, the HOMOPLASY TEST could be the method of choice,
as long as there is not much rate variation. Indeed, this method
was intended to work at low levels of divergence (42). For the
more divergent data sets (5–20%), methods like CHIMAERA,
MAXCHI, PHYPRO, RETICULATE, and GENECONV are more pow-
erful and do not infer false positives in excess.

The power of different methods for detecting recombination is
not superb, but recombination is not an easy problem. Several
methods seem to often capture the presence of recombination but
detect far less recombination than possible, a fact also pointed out
by Wiuf et al. (15). Fortunately, recombination methods do not
seem to infer many false positives. Here we study only the different
methods from a qualitative point of view. Of course, the problem
of recombination is much more complex than that, and includes the
identification of parentals and recombinant individuals (sequences)
and the localization of the recombinational breakpoint�s. Indeed,
in many cases it is important not only to detect the presence of
recombination but also to measure its frequency (17).

There are two different contexts in which we may wish to
detect recombination: rare recombination or frequent repeated
recombination (17). In this study, we have tackled both problems
by simulating data over a wide range of recombination rate
values. Not surprisingly, most methods have trouble detecting
rare recombinational events, especially when sequence diver-
gence is low. Indeed, recent events should be more easily

identifiable than older events, as the later may be obscured by
subsequent mutation. On the other hand, when recombination
rates are very high (higher than those simulated here), leading
to situations close to linkage equilibrium, substitution methods
might have trouble identifying site patterns (17).

Current recombination methods do not seem to make use of
the information contained in the substitution pattern in the data
(i.e., model of evolution). Nevertheless, this information could
be used to better distinguish between those homoplasies pro-
duced by recombination and those produced by mutation.

Our results are based on computer simulations, which are
simplifications of the problem. However, analysis of real data (D.P.,
unpublished work) seems to confirm and validate the conclusions
obtained here. It should be noted that we used a limited number
of replicates (100) to explore a reasonable parameter space within
a practical computing time. The 95% confidence limits for the
estimate of power, x, are given by x  1.96�x(1 � x)�100. This
confidence interval will be largest when x � 0.5, being �0.402–
0.598, implying that the power of some methods would not be
statistically distinguishable in some situations (see Fig. 1).

Indeed, the accurate inference of recombination is a key to
understanding the role of the different molecular evolutionary
processes and the architecture of genes and genomes. Hopefully,
the results shown here will provide some guidance in the
selection of the most appropriate method�s for analysis of the
particular data at hand.
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