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Differential Diagnosis of Apraxia of Speech
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Purpose: Apraxia of speech (AOS) is a consequence of
stroke that frequently co-occurs with aphasia. Its study
is limited by difficulties with its perceptual evaluation and
dissociation from co-occurring impairments. This study
examined the classification accuracy of several acoustic
measures for the differential diagnosis of AOS in a sample
of stroke survivors.
Method: Fifty-seven individuals were included (mean
age = 60.8 ± 10.4 years; 21 women, 36 men; mean
months poststroke = 54.7 ± 46). Participants were
grouped on the basis of speech/language testing as follows:
AOS-Aphasia (n = 20), Aphasia Only (n = 24), and Stroke
Control (n = 13). Normalized Pairwise Variability Index,
proportion of distortion errors, voice onset time variability,
and amplitude envelope modulation spectrum variables
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were obtained from connected speech samples. Measures
were analyzed for group differences and entered into
a linear discriminant analysis to predict diagnostic
classification.
Results: Out-of-sample classification accuracy of all
measures was over 90%. The envelope modulation
spectrum variables had the greatest impact on classification
when all measures were analyzed together.
Conclusions: This study contributes to efforts to identify
objective acoustic measures that can facilitate the differential
diagnosis of AOS. Results suggest that further study of
these measures is warranted to determine the best predictors
of AOS diagnosis.
Supplemental Materials: https://doi.org/10.23641/
asha.5611309
Apraxia of speech (AOS) is a motor speech dis-
order characterized by impaired planning and pro-
gramming of articulatory movements. A large

body of research has identified specific speech characteristics
consistent with AOS (e.g., Ballard et al., 2016; Cunningham,
Haley, & Jacks, 2016; Galluzzi, Bureca, Guariglia, &
Romani, 2015; Haley, Jacks, & Cunningham, 2013; Jacks,
Mathes, & Marquardt, 2010; Kent & Rosenbek, 1983;
McNeil, Robin, & Schmidt, 1997; Odell, McNeil, Rosenbek,
& Hunter, 1990; Odell, McNeil, Rosenbek, & Hunter, 1991;
Ogar et al., 2006; Rosenbek, Kent, & Lapointe, 1984;
Varley & Whiteside, 2001; Vergis et al., 2014; Wertz,
LaPointe, & Rosenbek, 1984; Ziegler & von Cramon,
1985, 1986a, 1986b). However, diagnosing AOS is chal-
lenging due to its frequent co-occurrence with aphasia
(a higher level linguistic impairment) and dysarthria (an
impairment in speech execution and control). Speech
production is impaired in different ways in AOS, dysar-
thria, and aphasia, but perceptually, speech sound errors
that occur in all three disorders can manifest similarly.
Despite attempts to improve characterization of apraxic
behaviors, there is no universally accepted definition or
highly reliable “gold standard” for its diagnosis (McNeil,
Pratt, & Fossett, 2004; Mumby, Bowen, & Hesketh, 2007).

This study is an investigation into several acoustic
measures for the differential diagnosis of AOS. Although
differential diagnosis between AOS and dysarthria is prob-
lematic, this study specifically focuses on the differential
diagnosis of AOS from poststroke aphasia. The following
sections will review literature on the assessment and diag-
nosis of AOS, followed by a detailed description of the
measures utilized in this study.

Overview of Diagnostic Criteria
In clinical practice, speech-language pathologists (SLPs)

often rely upon perceptual judgment to evaluate a patient’s
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speech, but perceptual evaluation is subject to the pitfalls
of categorical perception (Buckingham & Yule, 1987; Code,
1998) and may suffer from reduced interrater reliability
(e.g., Haley, Jacks, de Riesthal, Abou-Khalil, & Roth, 2012).
The same problems can contaminate diagnostic labeling in
research studies, especially if research groups adopt their
own diagnostic criteria (or interpretations of these criteria),
which may not be uniform across sites (McNeil et al., 1997;
Mumby et al., 2007). As discussed extensively elsewhere,
these issues constitute a major challenge for the clinical man-
agement of AOS (Ballard, Granier, & Robin, 2000; Haley
et al., 2012; McNeil et al., 2004; Wambaugh, Wright, Nessler,
& Mauszycki, 2014).

Early objective analyses characterized AOS with
acoustic (e.g., Collins, Rosenbek, & Wertz, 1983; Kent
& Rosenbek, 1983; McNeil, Liss, Tseng, & Kent, 1990;
Seddoh et al., 1996; Square-Storer & Appledoorn, 1991) and
electromyographic/kinematic measures (e.g., Fromm, Abbs,
McNeil, & Rosenbek, 1982; Itoh & Sasanuma, 1984; Itoh,
Sasanuma, & Ushijima, 1979; McNeil & Adams, 1991;
Robin, Bean, & Folkins, 1989; Shankweiler & Harris, 1966).
These studies provided more objective characterizations
of speech and motor performance and influenced the devel-
opment of clinical diagnostic markers (e.g., for discussion:
Rosenbek et al., 1984; Wertz et al., 1984). For example,
Wertz et al. (1984) published the earliest and perhaps most
widely utilized diagnostic description of AOS. This descrip-
tion is based on work from Darley, Aronson, and Brown
(1975) and from studies on the behavioral and acoustic
characteristics of AOS (e.g., Rosenbek et al., 1984; Wertz
et al., 1984). Wertz et al. (1984) define AOS by its articu-
latory struggle and “effortful groping,” multiple (often
failed) attempts at self-correction, inconsistency in re-
peated productions, and dysprosody (described as atypi-
cal rhythm, stress, and intonation). Later, the Apraxia
Battery for Adults (ABA) was published (Dabul, 1979)
and revised (Apraxia Battery for Adults–Second Edition
[ABA-2]; Dabul, 2000) and, for over three decades, was
one of the only available psychometric assessments for
AOS. Critiques of the ABA-2 argue that it is limited in
the extent that it provides a reliable differential diagnosis
between AOS and conduction aphasia (McNeil et al.,
2004). For example, in some subtests, speech production
is assessed from repetition tasks and scored according to
production delays, variability, or self-corrections—errors
that are not unique to AOS, but may also occur in apha-
sia. Most recently, the Apraxia of Speech Rating Scale
(ASRS; Strand, Duffy, Clark, & Josephs, 2014) was devel-
oped to rate the presence and severity of speech sound
disorders that can occur uniquely in AOS, in both AOS
and/or aphasia, AOS and/or dysarthria, or all three dis-
orders. The features highlighted as those that occur uniquely
in AOS include distorted sound substitutions, distorted
sound additions, increased frequency of distortion errors
upon increased articulatory length and complexity, off-
target sequential motor rates, and reduced phrase length
not due to inadequate breath support (Strand et al., 2014).
Preliminary validation of the ASRS indicates that it has
good reliability and validity (see Strand et al., 2014 for psy-
chometric properties).

Although these diagnostic criteria were developed
from extensive research, the abovementioned rating scales
and assessments essentially rely on clinicians’ perceptual
evaluations, which is a limitation given that subtle motor
abnormalities may go unnoticed by listeners (Fromm et al.,
1982). Recent work has sought to decrease subjectivity in
AOS diagnosis by studying the extent that more objective
acoustic measures may be viable diagnostic tools to supple-
ment clinicians’ perception of speech (Duffy, 2005). These
studies have investigated measures of prosody (Ballard
et al., 2016; Vergis et al., 2014), articulatory imprecision
(Cunningham et al., 2016), or a combination of these mea-
sures alongside other cognitive–linguistic and demographic
variables (e.g., Ballard et al., 2016). Collectively, this work
has shown that individuals with AOS (and concomitant
aphasia) differ from those without AOS (either with aphasia
or without any speech/ language impairment) on measures
of prosody and the occurrence of sound-level distortion
errors (Ballard et al., 2016; Cunningham et al., 2016; Vergis
et al., 2014). However, apart from Ballard et al.’s study
(2016), the aforementioned studies that have objectively
quantified prosody (e.g., Vergis et al., 2014) and distortion
errors (e.g., Cunningham et al., 2016) have included rela-
tively small sample sizes, limiting the extent to which re-
sults can be generalized to the clinical population and
across research sites. Therefore, the current study sought
to replicate and extend prior work with an independent
sample of stroke survivors. A brief overview and discussion
of pertinent acoustic measures is provided in the sections
that follow.
Specific Features of Apraxic Speech
Speech Prosody in AOS

The most recent studies to investigate prosodic dis-
turbances in poststroke AOS (Ballard et al., 2016; Vergis
et al., 2014) used the Pairwise Variability Index (PVI; Grabe
& Low, 2002), a coefficient obtained by computing the
relative difference between vowel durations in multisyllabic
words, or across phrases and sentences. AOS has been
characterized by a lack of syllabic contrastiveness due to
equal and excess stress placement (Kent & Rosenbek, 1983),
and the PVI coefficient provides a quantification of this
behavioral impairment. In a small sample of participants
with AOS and concomitant aphasia (n = 9), aphasia only
(n = 8), and control individuals (n = 8), Vergis et al. (2014)
found that the PVI measures for vowel duration (hence-
forth, Pairwise Variability Index–Vowels [PVI-V]) were
similar for the individuals with aphasia and the control
group. In contrast, the individuals with AOS and aphasia
demonstrated a significantly smaller vowel duration con-
trast for words that followed a weak–strong stress pattern
(e.g., potato) when compared with those with aphasia only
and control individuals. Ballard et al. (2016) replicated this
finding in a larger sample (N = 72; albeit, in a sample that
also included data from Vergis et al.’s participants). These
Basilakos et al.: Differential Diagnosis of AOS 3379



results suggest that PVI-V shows promise for the differen-
tial diagnosis of AOS (Ballard et al., 2016).

In the dysarthria literature, Liss, LeGendre, and
Lotto (2010) showed that measures derived from the am-
plitude envelope modulation spectrum (EMS) may provide
a more automated measure of speech prosody to differen-
tially diagnose dysarthria variants, potentially with the
same (or greater) accuracy as PVI or related coefficients
(Liss et al., 2009, 2010). Speech is characterized by modu-
lations in amplitude that correspond to different features of
the speech signal, ranging from rhythmic fluctuations asso-
ciated with prosody and syllabic nuclei to faster cycles as-
sociated with rapid articulatory movements (Crouzet &
Ainsworth, 2001; Hall & Grose, 1993). Quantification of
speech energy across the amplitude modulation spectrum
can be used to investigate these aspects of production. For
example, slower modulations, that is, at 1 Hz–2 Hz, have
been associated with the prosodic contour of connected
speech (Ghitza, 2011; Ghitza & Greenberg, 2009; Liss et al.,
2010), and modulations within the 4 Hz–8 Hz range have
been associated with the regularity of syllabic production,
corresponding to cycles of jaw opening and closure (Giraud
& Poeppel, 2012; MacNeilage, 1998). Faster modulations
(i.e., >15 Hz–32 Hz) are reflective of the brief duration of
phonetic features that occur in speech production, such as
in the production of consonants (e.g., Ghitza, 2011; Giraud
et al., 2007). Each of these levels of production—prosodic,
syllabic, and phonetic—is commonly affected to some
degree in AOS (Ballard et al., 2016; Cunningham et al.,
2016; Vergis et al., 2014; Ziegler, 2005, 2009). Thus, EMS
analysis may be useful in measuring these production dif-
ferences in individuals with AOS across various speech
timescales. To our knowledge, no published studies have
investigated the utility of EMS measures in the differential
diagnosis of AOS.

Phonetic Errors in AOS
A key debate in the AOS literature has focused on

the extent to which apraxic errors are phonemic or pho-
netic in nature, even while it has long been acknowledged
that the distinction between the two may not be so clearly
dichotomous (Code, 1998). Several studies have attempted
to classify speech errors into phonetic and phonemic cate-
gories. In cases where such classifications are based on
phonetic transcriptions, narrow phonetic transcription
should be preferred to broad transcription, as broad tran-
scription does not fully capture distorted productions, po-
tentially leading to an inflated estimate of phonemic errors
(Canter, Trost, & Burns, 1985; Cunningham et al., 2016;
Miller, 1995; Odell et al., 1990; Rosenbek et al., 1984).
However, as reviewed by Cunningham et al. (2016), few
studies have actually used narrow phonetic transcription
to investigate the frequency of distorted productions, and
within those studies, findings have been mixed (Canter
et al., 1985; Miller, 1995).

In a comprehensive evaluation of articulation errors,
Cunningham et al. (2016) categorized 15 speakers with
focal left hemisphere injuries into two groups on the basis
3380 Journal of Speech, Language, and Hearing Research • Vol. 60 •
of the presence/absence of atypical prosody, quantified by
a “word syllable duration” (WSD) measure. Those with
longer WSD scores were assigned to a “probable AOS”
group (P-AOS, given that atypical prosody is often associ-
ated with AOS), and those with normal WSD scores were
assigned to a “probable aphasia with phonemic parapha-
sia” group (P-APP). Cunningham et al. (2016) found that
individuals in the P-AOS group had more distortion errors
than the P-APP group and that most errors could be cate-
gorized as consonant voicing errors (39.3%), segmental
lengthening errors (27.7%), and errors with tongue place-
ment (24.9%). Distortion errors were not unique to the
P-AOS group, as the P-APP group demonstrated distortion
errors on 2.8% of segments produced. Nevertheless, the
authors conclude that the quantification of distortion errors
has preliminary diagnostic value for AOS but that further
research is needed regarding the frequency and type of dis-
tortion errors produced by individuals with AOS compared
with those without. Currently, there is no normative refer-
ence for the use of distortion errors in the diagnosis of
AOS. Taken together, the frequency of distortion errors
indeed appears to be a valid diagnostic marker of AOS,
but more work on this topic is warranted.

Voice onset time (VOT) has also been used to adjudi-
cate between phonemic and phonetic errors in speakers
with AOS. Voiced/Voiceless contrasts have been used to
investigate whether substitution errors are indeed substitu-
tions (e.g., substituting /p/ for /b/), or if subtle changes in
articulation and voicing are perceived as such due to cate-
gorical perception. In one such study, Itoh et al. (1982)
showed that individuals with AOS and conduction aphasia
differed on the rate of phonetic errors produced (i.e., VOTs
that fell outside the range expected for the given phoneme),
with those with AOS demonstrating more phonetic errors
than those with conduction aphasia (who did not differ
from controls). Individuals with AOS (and concomitant
aphasia) have also been shown to have more variable
VOT than those with conduction aphasia (Seddoh et al.,
1996). These studies support the use of VOT in obtain-
ing information to characterize phonetic production be-
yond what could be provided from perceptual analysis of
production.

Results from these studies provide empirical sup-
port regarding differences in prosody and articulation in
speakers with AOS (and concomitant aphasia) compared
with those with aphasia only. However, it remains uncer-
tain which of these characteristics, or combination thereof,
best distinguishes between speakers with and without AOS
(see also Ballard et al., 2016 for discussion). Perhaps, the
main reason for this uncertainty stems from the fact that
there are few studies that have obtained a variety of speech
production measures simultaneously from a large sample
of speakers (for exceptions, see Ballard et al., 2016; Haley
et al., 2012). Moreover, many measures can be time con-
suming to obtain from speech samples, especially from a
large cohort of individuals. Therefore, the goal of this
study was to provide additional data on acoustic measures
that best discriminate between speakers with AOS and those
3378–3392 • December 2017



without by comparing several measures that have been re-
ported in the AOS literature (i.e., normalized Pairwise Var-
iability Index [nPVI], VOT, distortion errors). This study
also serves as a preliminary investigation into EMS mea-
sures in AOS.
Method
Participants

This was a retrospective study that included data
from individuals who completed speech/language testing
and neuroimaging within the Aphasia Lab at the Univer-
sity of South Carolina over the past 10 years. The current
sample was selected from a larger study that recruited in-
dividuals with a history of single-event ischemic stroke,
in the chronic phase of recovery (more than 6 months post-
stroke), and between the ages of 20–80 years (both at time
of stroke and testing). Only individuals with left hemisphere
stroke were considered for this study. Exclusion criteria
included history of neurological disorder affecting the brain
(e.g., dementia), traumatic brain injury, or developmental
speech–language impairment. Aphasia severity was evalu-
ated using the Aphasia Quotient (AQ) composite score
from the Western Aphasia Battery (WAB; Kertesz, 2006).
Individuals who had a diagnosis of severe aphasia (i.e.,
WAB AQ score < 20) were excluded, as these participants’
speech output was insufficient for analysis (i.e., too few
words/utterances produced to analyze).

From the initial sample of 77 individuals who com-
pleted testing at the time of analysis, the final sample ana-
lyzed here included 57 participants (mean age = 60.8 ±
10.4 years; 21 women, 36 men; months postonset = 54.7 ±
46). All participants consented to study procedures by
signing an informed consent form approved by the institu-
tional review board at the University of South Carolina.
All participants were reimbursed for their time and were
compensated for travel.

Participants were assigned to one of three groups on
the basis of their ASRS and WAB AQ scores. Note that
because this study was retrospective, ASRS and WAB AQ
scores were obtained from our participant database. The
WAB was administered by American Speech-Language-
Hearing Association (ASHA)–certified SLPs with exten-
sive experience working with individuals with aphasia.
The primary author (AB) and a secondary rater scored
the archived ASRS for prior studies (see Basilakos, Rorden,
Bonilha, Moser, & Fridriksson, 2015 and Moser, Basilakos,
Fillmore, & Fridriksson, 2016 for additional details). Ac-
cording to the ASRS, 20 participants demonstrated behav-
iors consistent with AOS (i.e., an ASRS total score of ≥ 8,
at least one behavior unique to AOS rated as present;
Strand et al., 2014). Of these 20, all but two had a diagno-
sis of aphasia according to WAB diagnostic criteria (WAB
AQ < 93.8); all were assigned to the AOS-Aphasia group.
Note that because only two participants had AOS as
their only impairment, they were included with the other
participants in the AOS-Aphasia group. The remaining
38 participants without AOS could be further classified
with aphasia only (n = 24 participants, Aphasia Only
group) or no chronic poststroke communication impair-
ment measured by WAB or ASRS criteria (n = 13, Stroke
Control group). Group characteristics are presented in
Table 1.

Behavioral Assessments
All speech production measures used in this study were

obtained from three connected speech samples: the “cookie
theft” picture from the Boston Diagnostic Aphasia Exami-
nation (Goodglass, Kaplan, & Barresi, 2000), the “circus”
picture from the ABA-2 (Dabul, 2000), and the “picnic
scene” from the WAB (Kertesz, 2006). Pictures were dis-
played on a Dell Vostro 3550 laptop computer, and par-
ticipants were given 2 min per picture to describe it. All
picture descriptions were audio–video-recorded using the
same experimental computer for offline analysis. Partici-
pants were seated comfortably in an audiologic suite to
attenuate background noise while completing experimental
tasks. The mean number of syllables per second was as fol-
lows for each group: Stroke Control: 2.5 ± 0.43; Aphasia
Only: 1.6 ± 0.81; and AOS-Aphasia: 0.8 ± 0.41.

Procedure
Audio–video-recorded picture descriptions were con-

verted to WAV format files (44-kHz sampling rate) and
annotated using Praat sound analysis software (Boersma &
Weenink, 2001). An ASHA-certified SLP with experience
in the assessment of individuals with poststroke speech and
language deficits completed all transcription and analysis
procedures (AB). Another ASHA-certified SLP with exten-
sive experience with acoustic analysis served as a secondary
rater for reliability (LF). Details of each measure are men-
tioned below.

PVI
To obtain nPVI-V coefficients, vocalic segments

were identified in Praat (Boersma & Weenink, 2001).
Segmentation was completed according to guidelines
by Peterson and Lehiste (1960) with additional consider-
ations for spontaneous speech (Thomas & Carter, 2006)
and speakers with production disorders (Liss et al., 2009).
All intervals were segmented according to visible formant
structures (for vowel onset /offsets) and spectral energy
corresponding to different consonant classes (for conso-
nant onsets /offsets). Detailed segmentation criteria can
be found in the Supplemental Material S1 (Figures S1a
and S1b).

Once vowel durations were obtained, nPVI-V was
calculated from the comparison of the duration of each
successive vocalic interval using the following formula:

nPVI ¼ 100� ∑
m−1

k¼1

dk−dkþ1

dk þ dkþ1ð Þ=2
����

����= m−1ð Þ
� �

(1)
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Table 1. Characteristics of the study sample.

Characteristic Stroke Control (n = 13) Aphasia Only (n = 24) AOS-Aphasia (n = 20) Significant differences*

Mean age 64.8 ± 10.6 61.4 ± 9.2 58.9 ± 10.5 SC = AO = A-A
Men:Women 4:9 19:5 13:7
WAB AQ 98.4 ± 1.1 74.9 ± 20.2 64.2 ± 21.4 SC > AO > A-A
Aphasia types Anomic: 11 Anomic: 4

Broca’s: 3 Broca’s: 13
Conduction: 7 Global: 1
Wernicke’s: 3 None: 2a

ASRS AOS severity 0 0 2.8 ± 1.0 SC = AO
A-A > SC
A-A > AO

ASRS aphasia severity 0 1.6 ± 1.0 2.2 ± 1.3 SC < AO
SC < A-A
AO = A-A

ASRS dysarthria severity 0 0.1 ± 0.9 0.5 ± 0.8 SC = AO
SC < A-A
AO = A-A

Note. AOS = Apraxia of Speech; SC = Stroke Control; AO = Aphasia Only; A-A = AOS-Aphasia; WAB AQ = Western Aphasia Battery
Aphasia Quotient; ASRS = Apraxia of Speech Rating Scale.
aThese two individuals were not aphasic according to WAB AQ cutoff criterion of 93.8.

*Based on independent samples t tests, p < .05.
where d is the duration of the selected interval, k is the
chosen interval, and m is the number of vocalic intervals in
which the PVI equation is calculated (Grabe & Low, 2002).

Articulatory Distortion Errors
Narrow transcription codes were adapted from

Cunningham et al. (2016). Distorted productions resulting
from incorrect tongue placement were identified and tran-
scribed with diacritic markers. Distortion types included
productions that were dentalized/fronted, palatized/backed,
lateralized, rhotacized, derhotacized, and frictionalized.
Distortions were summed across error type, and the pro-
portion of distortion errors was calculated as the total
number of distortions per words produced in the speech
samples. Further details can be found in the Supplemental
Material S2.

VOT
VOT was obtained for all word–initial plosives within

each speech sample. The interval from the beginning of the
burst release to the onset of voicing was demarcated in Praat.
VOT variability was calculated separately for voiced and
voiceless stop consonants as the standard deviation of VOT.

Amplitude EMS
To obtain the EMS measures, all audio recordings

were first preprocessed using Adobe Audition CC to filter
noise and remove extraneous sounds (e.g., clinician inter-
jection). Details of the preprocessing steps are outlined in
the Supplemental Material S3. Subsequent procedures were
carried out in MATLAB using custom scripts. EMS was
calculated from the first 90 s of each recording, over three
20-s windows at the beginning (0 s–20 s), middle (35 s–55 s),
and end (70 s–90 s) of each sample. Prior EMS studies
(e.g., Liss et al., 2010) analyzed shorter speech segments
3382 Journal of Speech, Language, and Hearing Research • Vol. 60 •
(i.e., sentence-level stimuli); therefore, our window duration
was chosen to ensure that a sufficient amount of speech
was analyzed (Tilsen & Johnson, 2008).

For each 20-s interval, speech was downsampled to
a frequency of 16 kHz. Envelopes were extracted via half-
wave rectification, and the envelope was low-pass filtered
using a sixth-order Butterworth filter at 50 Hz (Leong, Stone,
Turner, & Goswami, 2014; Rosen, 1992). The low-pass fil-
tered envelope was then downsampled to a sampling fre-
quency of 1000 Hz. Next, the fast Fourier transform (FFT)
was computed. Energy was summed into FFT bins that
corresponded to octave bands with the center frequencies
ranging from 1 Hz to 32 Hz. Finally, the energy in an octave-
band FFT bin was divided by the energy in the 0 bin, yield-
ing the normalized modulation index relative to the DC
offset. Variables were derived from octave bands, selected
to reflect the prosodic (1 Hz–2 Hz band), syllabic (4 Hz–
8 Hz band), and articulatory (16 Hz–32 Hz band) aspects
of speech. Octave bands were combined in this way because
amplitude modulation spectra are conventionally reported
for a given range (e.g., Giraud et al., 2007; Leong et al.,
2014; Poeppel, 2003).

To obtain each of the amplitude modulation bands,
amplitude energy was summed across octave bands and
divided by the total energy in the 1 Hz–32 Hz spectrums.
The resulting energy for each EMS band was then aver-
aged across the three sample windows obtained for each
participant. We chose to average across the three windows
in attempt to obtain stable estimates of the EMS within
the context of the typical variability in production that can
occur in aphasia (e.g., Murray, Holland, & Beeson, 1998).
It is important to note that there were no statistically
significant differences in amplitude energy for the three
EMS bands across any of the 20-s windows (Bonferroni-
corrected p value < .006; i.e., corrected for nine total
3378–3392 • December 2017



comparisons for each group: three EMS bands over three
time windows).

An example EMS plot for a typical speaker is pre-
sented in Figure 1.

Reliability
Reliability of the perceptual (distortion errors) and

manual acoustic measures (VOT, vowel durations used for
nPVI coefficients) was established using a two-way mixed
consistency single-measure intraclass correlation coefficient
(ICC). Speech samples from six individuals (10.3% of the
study sample) were randomly selected, and the secondary
rater (LF) was blind to ASRS scores, results from other
testing, and the primary rater’s scores. ICC values for each
measure were as follows: distortion errors: .87; nPVI: .83; and
mean VOT (collapsed across voiced and voiceless targets):
.98. Because ASRS scores were obtained from the archival
database, the primary rater (AB) randomly selected and
scored an additional six speech samples from participants
included in the current study to establish reliability pertinent
to this work. ICC for the sum of all ASRS ratings = .90.

Intrarater reliability was established by randomly
selecting six different participants. ICC values for intrarater
reliability are as follows: distortion errors: .91; nPVI: .96;
VOT: .96; ASRS (total of all ratings): .90: All ICC values
are considered good to excellent (Cicchetti, 1994) and are in
line with reliability measures reported in other AOS studies
(e.g., Cunningham et al., 2016; Vergis et al., 2014).

Data Analyses
Data analyses were completed in two steps. First, all

variables were inspected for group differences using an om-
nibus test suitable for their respective distributions—either
univariate or multivariate analysis of variance (MANOVA;
Figure 1. Example EMS plot for a typical speaker. The top waveform
depicts the raw audio file, the middle portion depicts the extracted
amplitude envelope, and the bottom portion displays the modulation
index for each modulation band. EMS = envelope modulation spectrum.
used for normally distributed variables) or a Kruskal–Wallis
nonparametric analysis of variance (ANOVA; for non-
normally distributed variables). Analyses were completed
with SPSS, Version 24. For all models with a significant
main effect of group, post hoc pairwise comparisons were
conducted with t tests (normally distributed variables) or
Dunn–Bonferroni post hoc tests (nonparametric tests; Dunn,
1964). All pairwise comparisons were Bonferroni corrected
for multiple comparisons according to the default SPSS
method. Details of each model and statistical assumptions
are presented in the Results section.

Next, classification analyses were completed to deter-
mine the extent to which the experimental measures were
predictive of AOS (using the ASRS criteria to define pres-
ence or absence of AOS). Classification analyses were
then completed using Fisher’s linear discriminant analy-
sis (LDA; Fisher, 1936) to evaluate whether individuals
with AOS can be distinguished from those without AOS
on the basis of the measures investigated in this study. The
LDA also provided information regarding the relevance
of variables in classification. This analysis was completed
in MATLAB using the Statistics and Machine Learning
toolbox and custom scripts.

To be entered into the LDA, all measures were stan-
dardized to z-score distributions. Higher z scores were
defined to correspond with better performance. Variables
in the opposite direction (i.e., where a higher value corre-
sponded to worse performance) were reversed by multi-
plying each z score value by −1. Importantly, the LDA
implemented a leave-one-out cross-validation approach to
avoid overfitting the model. This is an iterative process where
one subject was set aside and the relationship between the
behavioral variables and group membership was determined
using the remaining N-1 subjects (where N is the original
sample size). This relationship was used to predict the group
of the set-aside subject; the subject was consequently put
back into the pool, and another subject was set aside. The
process was repeated until all subjects were, in turn, set
aside and their group membership was predicted. Classifi-
cation accuracy was computed as the percentage of subjects
for whom the group membership was predicted correctly.
Variables were entered into the LDA regardless of correla-
tions; LDA can handle correlations between variables and
uses the correlations to yield a more accurate separation
of the classes (i.e., the presence/absence of AOS; for a gen-
eral example, see Box 2 in Haynes & Rees, 2006). See
Figure S2 (Supplemental Material S4) for correlation coef-
ficients between each variable.
Results
Results by Variable
nPVI-V

Each group’s nPVI-V distribution met the assump-
tion of normality. nPVI-V scores for each group are dis-
played in Figure 2a as box plots, and mean nPVI-V (± SD)
are as follows: Stroke Control: 62.94 ± 3.61; Aphasia
Basilakos et al.: Differential Diagnosis of AOS 3383



Figure 2. Box plots of the proportion of nPVI-V (Panel A), distortion errors (Panel B), and VOT variability for voiced (Panel C) and voiceless
(Panel D) initial stop consonants. Horizontal lines indicate group differences at Bonferroni-corrected p level of .0167. Outliers are indicated by
the x. SC = Stroke Control; AO = Aphasia Only; AOS-A = Apraxia of Speech with Concomitant Aphasia; nPVI-V = normalized Pairwise Variability
Index–Vowels; VOT-SD = standard deviation of voice onset time.
Only: 60.93 ± 5.51; AOS-Aphasia: 52.21 ± 7.11. A univari-
ate ANOVA revealed a significant main effect of group,
F(2, 54) = 17.68, p < .001, partial η2 = .40. Bonferroni-
corrected pairwise comparisons on the basis of the mean
3384 Journal of Speech, Language, and Hearing Research • Vol. 60 •
difference of nPVI-V scores show that the AOS-Aphasia group
had significantly reduced nPVI-V scores when compared
with the Stroke Control (mean difference = 10.34, p < .001)
and Aphasia Only (mean difference = 8.72, p < .001) groups.
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nPVI-V scores for the Stroke Control and Aphasia Only
groups were not significantly different (p = .95). The nPVI-V
values for the Stroke Control and Aphasia Only groups
were in line with previously reported nPVI values for English
speakers for connected speech samples (Arvaniti, 2012).

Distortion Errors
Group differences in the proportion of distortion er-

rors were analyzed with a Kruskal–Wallis ANOVA, as
the distributions of distortion errors violated the assump-
tion of normality for all groups (Shapiro–Wilk p < .05 for
all). Mean proportion of distortion errors (± SDs) are as
follows: Stroke Control: 0.005 ± 0.002; Aphasia Only:
0.025 ± 0.007; AOS-Aphasia: 0.188 ± 0.037. Box plots for
each group are presented in Figure 2b. There was a main
effect of group, χ2(2) = 34.88, p < .0001, with the Bonferroni-
corrected Dunn’s test showing that the AOS-Aphasia group
had significantly more distortion errors than both the
Stroke Control (z = −32.26, p < .001) and Aphasia Only
(z = −22.65, p < .001) groups. There was no significant
difference between the Stroke Control and Aphasia Only
groups (z = −9.64, p = .09).

VOT Variability
The Aphasia Only and AOS-Aphasia groups’ distri-

butions for standard deviation of voice onset time (VOT-
SD)voiced did not meet the assumption of normality (Shapiro–
Wilk p < .05), but all groups’ distributions were normal
for VOT-SDvoiceless. VOT data were analyzed separately—
a Kruskal–Wallis one-way ANOVA was used to analyze
the VOT-SDvoiced variables, and a parametric one-way
ANOVA was used for the VOT-SDvoiceless comparisons.

Results of the Kruskal–Wallis one-way ANOVA of
VOT-SDvoiced showed a significant effect of group, χ2(2) =
8.06, p = .02. Pairwise comparisons with Mann–Whitney
U tests revealed a significant difference between the AOS-
Aphasia group when compared with the Stroke Control
group (AOS-Aphasia mean rank = 19.75; Stroke Control
mean rank = 11.08; U = 55, z = −2.53, p < .01), but not
when compared with the Aphasia Only group (AOS-
Aphasia mean rank = 25.83; Aphasia Only mean rank =
18.67.28; U = 153, z = −1.86, p = .06). There was no sig-
nificant difference between VOT-SDvoiced for the Stroke
Control and Aphasia Only groups (p = .11).

Results of the one-way parametric ANOVA for
VOT-SDvoiceless were marginally significant, F(2, 56) =
3.26, p = .049, driven by a significant difference between
the Stroke Control and AOS-Aphasia groups, t(31) = 2.56,
p = .016. There were no other statistically significant
comparisons. VOT variability for voiced and voiceless
stop consonants is presented in Figures 2c and 2d, respectively.

EMS Variables
A one-way MANOVA was conducted to determine

whether groups differed in amplitude energy for the three
EMS modulation bands evaluated (1 Hz–2 Hz, 4 Hz–8 Hz,
and 16 Hz–32 Hz). Results of the omnibus MANOVA
showed that the three groups indeed differed significantly,
F(6, 104) = 16.86, p < .001, partial η2 = .49. Follow-up
univariate ANOVAs showed that these differences oc-
curred in each of the three bands: 1 Hz–2 Hz: F(2, 54) =
12.25, p < .001, partial η2 = .31; 4 Hz–8 Hz: F(2, 54) = 6.56,
p < .005, partial η2 = .20; 16 Hz–32 Hz: F(2, 54) = 19.18,
p < .001, partial η2 = .42. Post hoc tests revealed that the
AOS-Aphasia group had greater amplitude energy in
the 1 Hz–2 Hz and 16 Hz–32 Hz bands when compared
with both the Stroke Control (mean difference = 0.06,
p < .001) and Aphasia Only (mean difference = 0.04,
p < .005) groups but less amplitude at the 4 Hz–8 Hz band
when compared with the Stroke Control group (mean dif-
ference = −0.04, p < .005). The AOS-Aphasia and Aphasia
Only groups did not differ significantly for the 4 Hz–8 Hz
band (p > .05). There were no significant differences in am-
plitude modulation between the Stroke Control and Aphasia
Only groups for the three bands evaluated (p > .11 for all
comparisons). Figure 3 presents box plots for each modula-
tion band by group.

Relationships With Overall AOS Severity
The relationship between ASRS AOS severity (quan-

tified on a 0–4 scale, where a score of 0 means AOS is
absent and a score of 4 means AOS is marked in severity;
Strand et al., 2014) and each of the variables was inspected
with Spearman correlation coefficients. All correlations,
except for those with VOT-SDvoiced and VOT-SDvoiceless,
survived Bonferroni correction (p level = .05/7 compari-
sons = Bonferroni-corrected p level = .007). Results showed
that overall AOS severity and the proportion of distor-
tion errors were positively correlated (rs = .79, p < .001),
whereas nPVI-V was inversely related to AOS severity
(rs = −.70, p < .001). With respect to the EMS variables,
more severe AOS is significantly correlated with greater
amplitude energy in the 1 Hz–2 Hz (rs = .59, p < .001) and
16 Hz–32 Hz (rs = .59, p < .001) bands but less amplitude
energy in the 4 Hz–8 Hz band (rs = −.46, p < .001). Corre-
lation coefficients between ASRS AOS severity and each
variable are presented in Table 2.

Correlation With ASRS Items
Spearman correlation coefficients were also computed

to relate each of the variables to scores for individual ASRS
items. This was done for the AOS-Aphasia group only, as
the other groups had too few items scored on the ASRS.
The only correlations to reach statistical significance when
Bonferroni corrected (p < .0031) were between (a) the 1 Hz–
2 Hz band and ASRS Item 2.2 (syllable segmentation across
words in phrases/sentences, rs = .64, p = .003), (b) 4 Hz–
8 Hz band and Item 2.4 (slow overall speech rate, rs = −.76,
p < .0001), (c) the proportion of distortion and Item 2.1
(syllable segmentation within words > 1 syllable, rs = .65,
p = .003), and (d) the proportion of distortion errors and
Item 2.2 (syllable segmentation across words in phrases/
sentences, rs = .68, p = .001). There was a significant cor-
relation between nPVI-V and Item 1.4 (increased sound
distortions…with increased rate), but this did not remain sig-
nificant when subject to Bonferroni correction (rs = −.48,
Basilakos et al.: Differential Diagnosis of AOS 3385



Figure 3. Amplitude energy for each of the EMS bands tested. Horizontal lines indicate significant group differences at the Bonferroni-
corrected p level of .0167. EMS = envelope modulation spectrum; SC = Stroke Control; AO = Aphasia Only; AOS-A = Apraxia of Speech
with Concomitant Aphasia.
p = .04). There were no significant correlations between
ASRS Items and VOT variability or the 16 Hz–32 Hz
band. Table S1 (Supplemental Material S5) presents all
correlation coefficients between predictor variables and
ASRS item scores.
Interim Summary
Results from the above analyses show that the AOS-

Aphasia group differed significantly from (a) the Stroke
Control group on all measures and (b) the Aphasia Only
group on all measures except for amplitude energy in the
4 Hz–8 Hz modulation band and VOT variability. The
Table 2. Spearman correlation coefficients between all variables
and ASRS AOS severity scores (quantified on a 0–4 scale).

Predictor Correlation coefficient

Proportion distortions rs = .79, p < .001*
nPVI-V rs = −.70, p < .001*
VOT-SDvoiced rs = .35, p = .01
VOT-SDvoiceless rs = −.28, p = .04
1 Hz–2 Hz band rs = .59, p < .001*
4 Hz–8 Hz band rs = −.46, p < .001*
16 Hz–32 Hz band rs = .59, p < .001*

Note. ASRS = Apraxia of Speech Rating Scale; AOS = Apraxia of
Speech; nPVI-V = normalized Pairwise Variability Index–Vowels;
VOT-SD = standard deviation of voice onset time.

*Correlations significant at the Bonferroni-corrected p = .007
(p = .05/7 comparisons).
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Aphasia Only and Stroke Control groups did not signifi-
cantly differ on any measures investigated.
Classification Analysis
Discriminant analyses were completed by compar-

ing the individuals with AOS (n = 20) to (a) all partici-
pants without AOS (n = 37; collapsed into one group) and
(b) the Aphasia Only group (n = 24). Models were run first
with all variables, and then a series of LDA models were
run with each variable, independently, to determine the
amount of variance accounted for by each variable on its
own. Results of each model are detailed in the following
sections. Note that all percentages reported for LDA ac-
curacy reflect accuracy following the leave-one-out cross-
validation procedure. Sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
are reported using the ASRS guidelines as a reference (i.e.,
total score of ≥ 8, at least one item scored from Section 1.1–
1.6; Strand et al., 2014).

All Variables: AOS-Aphasia Versus All Others
The model that included all variables was 96.5%

accurate in diagnostic classification (p = 6.3 × 10−10;
sensitivity = 100%; specificity = 94.6%; PPV = 90.9%; NPV =
100%). As presented in Figure 4, higher amplitude energy in
the 1 Hz–2 Hz and 16 Hz–32 Hz bands was associated with
AOS group membership, but higher nPVI-V coefficients
and 4 Hz–8 Hz amplitude energies were associated with the
absence of AOS.
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Figure 4. Results from the linear discriminant analysis (LDA) with
all variables and all participants included. Variables with negative
weights indicate that a higher score on that variable is predictive of
AOS diagnosis (according to the Apraxia of Speech Rating Scale
[ASRS]). Variables with positive weights indicate that a higher score
on that variable was not associated with AOS diagnosis. AOS =
apraxia of speech; nPVI-V = normalized Pairwise Variability Index–
Vowels; VOT-SD = standard deviation of voice onset time.

Table 3. Correlation coefficients (r denotes Pearson; rs denotes
Spearman) between LDA input variables and WAB AQ scores.

Predictor Correlation coefficient

1 Hz–2 Hz band r = −.20, p = .14
4 Hz–8 Hz band r = .34,* p = .009
16 Hz–32 Hz band r = −.47,* p < .001
VOT-SDvoiced rs = −.09, p = .51
VOT-SDVoiceless r = −.23, p = .08
nPVI-V r = .22, p = .09
Distortion errors rs = −.48,* p < .001

Note. LDA = linear discriminant analysis; WAB AQ = Western
Aphasia Battery Aphasia Quotient; VOT-SD = standard deviation
of voice onset time; nPVI-V = normalized Pairwise Variability Index–
Vowels.

*Correlations significant at the Bonferroni-corrected p value of
p = .007 (p = .05/7 comparisons).
All Variables: AOS-Aphasia Versus Aphasia Only
LDA classification accuracy was 95.45% (p = 9.85 ×

10−11; sensitivity = 100%; specificity = 91.7%; PPV =
90.9%; NPV = 100%) when only the AOS-Aphasia and
Aphasia Only groups were compared. The relative weight
and direction of each variable did not differ from the (above)
model where all participants were included (see Figure 4).

The AOS-Aphasia group had significantly greater
aphasia severity than the other two groups, but inclusion
of WAB AQ in all of the aforementioned models did not
change prediction accuracy, and the WAB AQ had the
least weight in discrimination (< −0.28 across models). Some
of the variables included were correlated with WAB AQ
scores (all correlation coefficients | r | < .48, as presented
in Table 3), but the finding that inclusion of WAB AQ did
not improve diagnostic classification in the LDA suggests
that WAB AQ does not contribute any additional predictive
information that has not already been captured by other
variables in our model (see Figure S3 in Supplemental
Material S6).
Individual Variables LDA
When each variable was inspected individually, all

variables, except for VOT variability, yielded a signifi-
cant prediction model (p < .05). The distortion errors and
16 Hz–32 Hz variables each yielded the highest classification
accuracies. On its own, nPVI-V had the highest sensitivity
and NPV, whereas distortion errors had the highest speci-
ficity and PPV. Results were similar when all groups were
combined, or when restricting analyses to the AOS-Aphasia
and Aphasia Only groups. Results are presented in Tables 4
and 5.
Discussion
The purpose of this study was to determine which

acoustic speech measures aid in the diagnosis of AOS and
to identify the measures that account for the greatest vari-
ance in diagnostic classification. Results showed that the
objective measures included here indeed distinguish indi-
viduals with AOS and concomitant aphasia from those
with aphasia only. Each of the individual objective mea-
sures (except for VOT variability) had moderate to high
sensitivity and specificity for diagnostic classification when
confirmed with a clinical diagnosis obtained from the
ASRS (see Tables 4 and 5).

Unlike prior work (e.g., Ballard et al., 2016; Vergis
et al., 2014), we obtained each production measure from
connected speech samples rather than isolated word/sentence
productions that were constant across speakers. The high
classification accuracy, along with use of relatively uncon-
strained materials, suggests that these measures are captur-
ing important production features that occur in longer
connected speech samples. This high accuracy is also an
indication of how robust these measures are against vari-
ability in spoken speech.

Recent studies aimed at improving differential diag-
nosis through objective measures have revealed that the
PVI coefficient may predict AOS diagnosis with high sensi-
tivity and specificity. Ballard et al. (2016) demonstrated
that PVI coefficients from words with a weak–strong stress
pattern and scores from the “increasing word-length” sub-
test of the ABA-2 (evaluates production upon trials where
words increase in length/complexity, i.e., cat, catapult,
catastrophe; see ABA-2 for additional details and word
list) reliably differentiated speakers with AOS and aphasia
from those with aphasia only. PVI coefficients used in this
study were derived from connected speech samples, whereas
Ballard et al. (2016) and Vergis et al. (2014) computed PVI
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Table 4. Classification accuracy, sensitivity, specificity, and positive and negative predictive values (PPV, NPV, respectively) of each individual
variable for the AOS-Aphasia group relative to all other participants.

Variable Accuracy Sensitivity Specificity PPV NPV Criterion score

VOT-SDvoiced 68 (n.s.) 50 78 55 74 0.03
nPVI-V 79 85 76 65 90 57
Distortion errors 84 60 97 93 82 11%
1 Hz–2 Hz 81 80 81 70 88 0.32
4 Hz–8 Hz 77 65 84 68 82 0.65
16 Hz–32 Hz 82 70 89 78 85 0.24

Note. All variables yielded significant predictive models with the exception of the VOT-SDvoiced variable (n.s. = nonsignificant). The last
column reports the criterion score for the given variable’s sensitivity/specificity. The two predictors with highest values for each metric are
presented in bold and underlined text. AOS = apraxia of speech; VOT-SD = standard deviation of voice onset time; nPVI-V = normalized
Pairwise Variability Index–Vowels.
from single-word productions, perhaps explaining differ-
ences in mean PVI values for participant groups in this
study. Ballard et al.’s (2016) study also differed from the
current study in other key aspects: (a) A different method
of prediction was used; (b) Their statistical model included
a large number of variables in addition to measures of speech
production (i.e., demographics, comprehension, naming,
working memory, reading performance, auditory word dis-
crimination, and oral motor movement abilities). Despite
these differences, the results from the current study corrob-
orate Ballard et al.’s findings with an independent and com-
parably large sample—confirming that certain features are
indeed different in individuals with and without AOS and
can be used to discriminate between groups reliably. We
should also emphasize that our high classification accuracy
(> 90% for the full LDA model) was obtained in a leave-
one-out fashion, where the “to-be diagnosed” individual
was excluded from the model estimation procedure. This
cross-validation procedure reflects how well our classifica-
tion model generalizes to new data, providing a measure
of confidence that these results are not attributed to over-
fitting the statistical model.

The inclusion of the EMS variables in this study ex-
pands upon efforts to identify other objective behavioral
measures to differentiate individuals with AOS and con-
comitant aphasia from speakers with only aphasia or no
Table 5. Classification accuracy, sensitivity, specificity, and positive and n
variable for the AOS-Aphasia group relative to the Aphasia Only group.

Variable Accuracy Sensitivity Spe

VOT-SDvoiced 63 (n.s.) 50
nPVI-V 75 85
Distortion errors 80 60
1 Hz–2 Hz 75 70
4 Hz–8 Hz 71 60
16 Hz–32 Hz 80 70

Note. All variables yielded significant predictive models with the exceptio
column reports the criterion score for the given variable’s sensitivity/speci
presented in bold and underlined text. AOS = apraxia of speech; VOT-SD
Pairwise Variability Index–Vowels.
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impairment (as detected by the WAB or ASRS). To our
knowledge, this is the first study that has investigated am-
plitude modulation spectra in the classification of AOS.
The following sections will include a brief discussion of the
clinical and theoretical relevance of the EMS measures, how
the EMS measures relate to the other measures included
in this study, and suggestions for future research.
Relevance of EMS Measures in AOS Evaluation
It should be emphasized that the EMS measures are

associated with how speech is produced, but not necessar-
ily with one specific aspect of speech. As discussed in the
Introduction and Method sections, slower rate modulations
(1 Hz–2 Hz) reflect speech prosody, the 4 Hz–8 Hz range
is associated with syllabic rate, and the higher frequency
band (16 Hz–32 Hz) corresponds to consonant features. As
shown in Figure 3, the AOS-Aphasia group had significantly
greater amplitude energy in the 1 Hz–2 Hz and 16 Hz–
32 Hz bands when compared to the Stroke Control and
Aphasia Only groups (who did not differ significantly
from each other). This finding suggests that speakers
with AOS place equal emphasis on words within phrases
and sentences (i.e., greater 1 Hz–2 Hz amplitudes) and
emphasizes individual sounds within each word (i.e., greater
16 Hz–32 Hz amplitudes). The former likely reflects reduced
egative predictive values (PPV, NPV, respectively) of each individual

cificity PPV NPV Criterion score

75 63 64 0.03
67 68 84 56.8
96 92 74 11%
79 74 76 0.33
79 71 70 0.40
88 82 78 0.24

n of the VOT-SDvoiced variable (n.s. = nonsignificant). The last
ficity. The two predictors with highest values for each metric are
= standard deviation of voice onset time; nPVI-V = normalized
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variance in prosodic patterns, whereas the latter may
reflect articulatory problems and stalling on individual
speech sounds, that is, less smooth transitions between
articulations.

Inspection of correlation coefficients (Figure S2) shows
that the 1 Hz–2 Hz band was inversely correlated with
nPVI. It is important to note that correlations with each
ASRS item show that, for the participants with AOS, am-
plitude energy in the 1 Hz–2 Hz band was correlated with
ASRS items that reflect perceptual evaluation of prosody
(e.g., syllable segmentation across words in phrases/sentences,
Item 2.2), but nPVI-V was not. It has been argued that seg-
mental duration measures, like nPVI, ignore important in-
formation about the acoustic signal and may not relate to
perceptual evaluation of prosody (Lowit, 2014; Tilsen &
Johnson, 2008). One clinical and theoretical implication
is that measures derived from the speech signal, such as EMS
measures, may be more informative in speech analysis
(Lowit, 2014; Tilsen & Johnson, 2008).

With regard to phonetic features, the correlation
coefficients restricted to the AOS-Aphasia group (Figure S2)
show that the 16 Hz–32 Hz band is correlated with distor-
tion errors (r = −.47, p < .05). This suggests that greater
emphasis on consonant features during connected speech
results in fewer distortion errors. Further research should
examine this relationship as it pertains to different types of
sound level errors. Regarding the 1 Hz–2 Hz band, it has
been speculated that dysprosody may be a compensatory
mechanism for articulatory impairments (e.g., Darley et al.,
1975). However, the significant (positive) correlation be-
tween distortions and 1 Hz–2 Hz (r = .51, p < .05) for the
AOS participants suggests that greater emphasis on pro-
sodic features does not necessarily attenuate the frequency
of distortion errors. Rather, this relationship between pros-
ody (1 Hz–2 Hz band) and distortion errors may be driven
by overall AOS severity (see Table 2), where dysprosody
is a primary deficit that results from impaired motor plan-
ning/programming (e.g., Rogers, 1997).

Refining Objective Measures for AOS Diagnosis:
Future Directions

The diagnostic value of these measures remains in
the early stages of investigation, but the results obtained
here are promising. When all variables were included in
the LDA, the EMS variables were by far the predictors
with the greatest weight in clinical classification, even though
the univariate ANOVAs for each of the three EMS measures
had smaller effect sizes and mean group differences relative
to nPVI-V and the proportion of distortion errors (see also
Figures 2a–2d). This apparent paradox can be explained by
the fact that the LDA is a multivariate analysis that simulta-
neously considers (a) correlations between measures and
(b) mean differences between groups (i.e., “center distances”),
meaning a given variable can have a higher weight in clas-
sification even if there is a substantial overlap in that vari-
able’s value across the classes, but at the same time, the
correlations between this variable with the other variables
can be used to inform the separation function (see Haynes
& Rees, 2006 for a detailed discussion). Because LDA
predicts the group membership from a combination of
variables, the weight of a variable within this combination
reflects its importance when it is combined with other
variables. As our results suggest, more than one measure
should be obtained for the classification of AOS. As evident
in Tables 4–5, several measures have relatively high accu-
racy in prediction when analyzed individually, but when
inspecting results from the LDA model with all variables,
the combination of variables yielded higher predictive value,
with 1 Hz–2 Hz (a measure of prosody) and 16 Hz–32 Hz
(a measure of consonant features) being the strongest pre-
dictors. This is rather similar to Ballard et al.’s finding (2016)
that measures of prosody (nPVI-V), along with a measure
of sound errors, were highly predictive of AOS. The benefit
to further exploration of the EMS measures is that these
two top predictors can be obtained with an automated pro-
cedure. Further work should investigate the most efficient
combination of variables for prediction.

Based on these findings, future research investigat-
ing objective classification of AOS should consider imple-
menting amplitude modulation measures, as replication of
these results across clinical and research sites could have
important, and practical, clinical applications. First, these
variables had high accuracy in AOS classification, and var-
iables representing low amplitude modulation rates have
also demonstrated similar accuracy in discriminating be-
tween the dysarthria subtypes (Liss et al., 2010). Second,
we suggest that the EMS measures could be relatively eas-
ily automated for widespread clinical use. We acknowledge
that the speech samples that were analyzed in this study
required some preprocessing (i.e., removing noise unrelated
to the participant), but this process may be avoided if
speech samples are obtained in a quiet environment and
experimenters/clinicians refrain from providing verbal cues/
prompts. MATLAB scripts used for the EMS analyses
may be packaged in formats more accessible to clinicians
(i.e., via downloadable apps). Future research should also
consider the influence of different analysis settings (e.g.,
window durations) or the type of elicitation materials on
classification outcomes. In light of our present findings,
we will continue to work toward the development of such
applications.

Limitations
The lack of a reliable gold standard definition or tool

for diagnosing AOS has remained one of the biggest chal-
lenges to its clinical management. Moreover, inherent in
any study where a perceptual evaluation is used as the gold
standard, the issues of circularity and nonindependence
between perceptual ratings and the measures under inves-
tigation are of concern. The present study diagnosed AOS
on the basis of the ASRS, a scale that has been shown to
have high validity when compared with expert diagnosis
(Strand et al., 2014). Nevertheless, the ASRS is inherently a
perceptual scale and has not yet been validated in a multisite
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study. Because ASRS diagnoses were used to confirm the
classification accuracy of the LDA model, overall accuracy
of the LDA could have been influenced by ASRS AOS di-
agnosis itself. To address this concern post hoc, we applied
an additional unsupervised approach that does not use clin-
ical classification as a guide (k-means cluster approach,
where k = 2 “forced” groups) to evaluate further our origi-
nal LDA model. We found that the predictor variables clas-
sified participants into two groups. When comparing ASRS
classification to these groups, this unsupervised approach
grouped 16 of the 20 with AOS into the same group, for an
overall accuracy of 88%. In the absence of an uncontrover-
sial gold standard, this may either mean that (a) certain
characteristics of AOS are not captured by our acoustic
measures, but only by the perceptual ratings on the ASRS,
or that (b) the diagnosis of AOS on the basis of the percep-
tual ASRS ratings is erroneous in at least 12% of cases.
At present, there is no means of establishing which is true.

Aside from the challenges imposed by studying post-
stroke AOS in the context of aphasia (e.g., Graff-Radford
et al., 2014), another challenge to the differential diagnosis
of AOS is the presence of dysarthria. As in AOS, speakers
with dysarthria may demonstrate atypical prosody and speech
sound distortions (Strand et al., 2014). However, unless
basal ganglia and/or brain stem structures are affected,
dysarthria often resolves after a unilateral cortical stroke
(Duffy, 2005). In cases of unilateral upper motor neuron
dysarthria that persists, effects tend to be mild (Duffy, 2005).
This can be exemplified by the rate/severity of dysarthria
in the current sample (n = 3 individuals with a diagnosis of
dysarthria in the Aphasia Only group, n = 6 in the AOS-
Aphasia group; mean ASRS dysarthria severity score < 1
for the Aphasia Only and AOS-Aphasia groups). Never-
theless, the validity of measures intended to quantify speech
production deficits that occur due to a neurologic injury
should also account for the possibility of concomitant dys-
arthria. Because few participants in this sample presented
with dysarthria, we were unable to determine the extent to
which the measures used here could also distinguish those
with dysarthria from the speakers with AOS. However, there
is precedent for using a more fine-grained EMS analysis for
the classification of dysarthria subtypes (Liss et al., 2010),
indicating the potential for differential diagnosis between
AOS and dysarthria using similar acoustic metrics.

Similarly, further research is necessary regarding how
these measures fare in more “difficult” diagnostic decision-
making cases. For example, conduction aphasia may often
be misdiagnosed as AOS due to frequent phonemic errors
and frequent attempts at self-correction (Haley et al., 2013).
In addition, both AOS and Broca’s aphasia result from
similar patterns of brain damage (e.g., Hillis et al., 2004;
Richardson, Fillmore, Rorden, LaPointe, & Fridriksson,
2012) and are characterized by similar sounding impairments,
such that individuals with Broca’s aphasia are often falsely
classified with AOS due to the effortful struggle with speech
and reduced fluency that characterize both impairments.
The current study included a sample size of N = 57, yield-
ing sufficient power for meaningful classification accuracy.
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However, as evidenced by Table 1, direct comparisons be-
tween subgroups of different types of aphasia would result
in analyses with small sample sizes. Further research should
consider these more challenging clinical questions.

Conclusions
With over 90% classification accuracy, the acoustic

measures of this study are promising and warrant further
analysis and replication for the development of these mea-
sures as behavioral markers of AOS. Pending further re-
search, the measures investigated here may provide an
objective way to estimate prognosis and monitor patients’
responses to treatment throughout the course of speech/
language therapy, as severity/intelligibility judgments can
be biased due to clinician familiarity with a patient (Kent,
1996).
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