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ABSTRACT

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org) is a public resource that manually curates the
scientific literature to provide content that illuminates the molecular mechanisms by which environmental exposures
affect human health. We introduce our new chemical-phenotype module that describes how chemicals can affect
molecular, cellular, and physiological phenotypes. At CTD, we operationally distinguish between phenotypes and diseases,
wherein a phenotype refers to a nondisease biological event: eg, decreased cell cycle arrest (phenotype) versus liver cancer
(disease), increased fat cell proliferation (phenotype) versus morbid obesity (disease), etc. Chemical-phenotype interactions
are expressed in a formal structured notation using controlled terms for chemicals, phenotypes, taxon, and anatomical
descriptors. Combining this information with CTD’s chemical-disease module allows inferences to be made between
phenotypes and diseases, yielding potential insight into the predisease state. Integration of all 4 CTD modules furnishes
unique opportunities for toxicologists to generate computationally predictive adverse outcome pathways, linking chemical-
gene molecular initiating events with phenotypic key events, adverse diseases, and population-level health outcomes. As
examples, we present 3 diverse case studies discerning the effect of vehicle emissions on altered leukocyte migration, the
role of cadmium in influencing phenotypes preceding Alzheimer disease, and the connection of arsenic-induced glucose
metabolic phenotypes with diabetes. To date, CTD contains over 165 000 interactions that connect more than 6400
chemicals to 3900 phenotypes for 760 anatomical terms in 215 species, from over 19 000 scientific articles. To our
knowledge, this is the first comprehensive set of manually curated, literature-based, contextualized, chemical-induced,
nondisease phenotype data provided to the public.
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Since 2004, the freely available public Comparative
Toxicogenomics Database (CTD; http://ctdbase.org/) has pio-
neered novel biocuration paradigms (Davis et al., 2011b, 2015) to
code, harmonize, and integrate a diverse compendium of toxi-
cological (Davis et al., 2009, 2011a, 2013a, 2017; Mattingly et al.,
2006), environmental (Davis et al., 2008; Gohlke et al., 2009;
Planchart et al., 2018), pharmaceutical (Davis et al., 2013c;
Pelletier et al., 2016), and exposure data (Grondin et al., 2016,

2018) from the scientific literature to help advance understand-
ing about chemical effects on human health. CTD scientists
read and manually curate information from peer-reviewed
articles to transform authors’ text, tables, figures, and supple-
mental files into annotated knowledge. This process, using a
suite of controlled vocabularies and ontologies with accession
identifiers, standardizes and organizes disparate data into a
structured format, making it cohesive, manageable, and
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computable for discovery. These interactions also include spe-
cies information, allowing data to be analyzed across taxa, in-
cluding model laboratory organisms and humans. Content is
derived from 3 integrated modules: CTD’s toxicogenomic core
details more than 1.7 million chemical-gene/protein interac-
tions, disease core has over 245 000 chemical-disease and gene-
disease associations, and exposure module contains over 111 000
curated statements relating environmental stressors, receptors,
biomarker measurements, and outcomes.

Many toxicology articles, however, do not report a disease as
an endpoint; rather, nonpathological cellular and physiological
events are described as being influenced by chemicals. To cap-
ture this critical data, we designed a fourth module to curate
such nondisease events in a controlled manner.

Here, we describe our latest project that curates chemical-
induced phenotypes. Operationally, CTD distinguishes between
the concepts of “disease” and “phenotype” wherein a phenotype
refers to a biological outcome that is not inherently a disease.
For example, smooth muscle cell migration is a phenotype
while distal myopathy is a disease, decreased parathyroid hor-
mone secretion is a phenotype while Barakat syndrome is a dis-
ease, and abnormal blood pressure is a phenotype while
idiopathic orthostatic hypotension is a disease, etc. This opera-
tional distinction between phenotypes and diseases allows us
to harness 2 unique controlled vocabularies (one for phenotypes
and another for diseases) to capture both types of chemical-
induced outcomes reported in the literature, with phenotype
curation often providing greater molecular and biological spe-
cificity (eg, “cell migration involved in sprouting angiogenesis”
and “regulation of cardiac muscle contraction by calcium ion
signaling”) compared with disease names, which often on their
own provide no intuitive biological insight (eg, Fanconi syn-
drome, Arnold-Chiari malformation, Gilbert disease). For dis-
ease curation, CTD uses the MEDIC disease vocabulary (Davis
et al., 2012b); consequently, any chemical-induced outcome that
does not appear in MEDIC (and thus cannot be curated via our
disease core module) is considered de facto to be a phenotype
and instead is captured using the phenotype paradigm when
possible. These phenotypes potentially provide insight to the
presymptomatic biological milieu before the overt manifesta-
tion of a disease, and understanding the predisease states may
help elucidate the molecular and cellular backdrops to aid po-
tentially in earlier clinical diagnoses and better therapeutic
interventions (Celato et al., 2013; McHale et al., 2010; Sakai and
Otomo, 2016; Yu et al., 2017).

Capturing chemical-induced phenotypes in a structured for-
mat with controlled terms and integrating data with CTD’s ex-
tensive environmental content helps address the community
need to link phenotypes to the environment and make the in-
formation computable (Deans et al., 2015). Combining CTD’s
chemical-gene interactions with key phenotype events,
chemical/gene-disease associations, and exposure content can
also generate predictive adverse outcome pathways (AOPs) and
empower toxicologists to develop testable hypotheses about en-
vironmental diseases (Mortensen et al., 2018; Nymark et al.,
2018; Oki et al., 2016; Taboureau and Audouze, 2017; Villeneuve
et al., 2014a, 2014b; Wittwehr et al., 2017). Furthermore, our
unique chemical-phenotype content complements the myriad
of well-established gene-phenotype systems for model organ-
isms, such as the Monarch Initiative (Mungall et al., 2017),
Mouse Phenome Database (Bogue et al., 2018), RGD PhenoMiner
(Laulederkind et al., 2013), and ZFIN (Howe et al., 2017). Because
many of these external databases use the same controlled vo-
cabularies and accession identifiers for gene symbols, gene

annotations, and diseases, the information can be cross-
integrated to make novel computational discoveries, allowing
gene-phenotype information to be brought into the chemical
environment provided by CTD.

MATERIALS AND METHODS

Training, triaging, and curating the phenotype literature. For training,
CTD biocurators were provided with a curation manual (con-
taining instructions, documentation, rules, tips, and policy
issues) and test articles for practice curation. Extensive feedback
was given during early project management to ensure all biocu-
rators were adequately prepared and curating in a consistent
manner. CTD’s literature triaging process has been described in
detail (Davis et al., 2011b). All articles curated in CTD are identi-
fied using PubMed (Agarwala et al., 2018), with chemical-centric
queries to improve data completeness (Davis et al., 2013b), tar-
geted journal queries to enhance data currency (Davis et al.,
2012a), or exposure-themed queries for the exposure module
(Grondin et al., 2016). CTD-associated data are related to an arti-
cle via its PubMed identification number (PMID). Articles slated
for the toxicogenomic core, disease core, and exposure modules

Figure 1. CTD phenotype curation. A, When an article reports that a chemical

(C) influences a biological outcome, the biocurator first determines if that out-

come exists as a term in the MEDIC disease vocabulary; if yes, then the interac-

tion is curated via disease core; if no, the interaction is curated using the GO

vocabulary in the phenotype module. B, CTD biocurators leverage 8 controlled

vocabularies to construct a chemical-phenotype statement that must include,

at a minimum, a Chemical (C), Qualifier (Q), Entity phenotype (E), Anatomy (A),

Taxon (T), Method (M), Source (S), and PubMed identification number (P). An ex-

ample of terms for a chemical-phenotype statement is shown at the bottom

(and its web display is shown in Figure 2B). Currently, source (S) and method (M)

data are stored internally at CTD and not displayed on the public website.
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are assigned to CTD biocurators on a routine basis. As articles
are read for assigned projects, any reported phenotype data are
curated concurrently in CTD’s chemical-phenotype module.

Software engineering. CTD’s web-based Curation Tool (CURAPP,
curation application) has been previously described (Davis et al.,
2011b). CURAPP was modified to accommodate new syntax for
the structured notation expressing phenotype-based chemical
and gene relationships. The phenotype and anatomy vocabular-
ies were integrated into CURAPP; revised and new schematic
data structures were implemented, along with new reporting
and quality control-related processes and correction mecha-
nisms. Existing CTD load processes were modified and new
ones developed to incorporate phenotype display mechanisms.
Inference engines were developed to generate gene- and
chemical-based inference networks. Anatomical terms from the
Medical Subject Headings (MeSH) “Anatomy [A]” controlled vo-
cabulary (Coletti and Bleich, 2001) were loaded to our public
database in a requisite format sufficient to support hierarchical-
based anatomy searches [similar to our existing chemical-,
Gene Ontology- (GO), and organism-based search features].
Significant changes to CTD’s database schemas, including the
creation of new tables, and the modification of existing tables,
were necessary to accommodate the new data storage require-
ments. CTD’s Public Web Application (PWA) was modified to
implement new display, search, and associated functionality
requirements. All CTD data, including phenotype data, are

stored in PostgreSQL database management systems. Load pro-
cesses and inference engines are Java-based and run in a Linux
environment. The CURAPP and PWA utilize a J2EE-based Model-
View-Controller architecture within the context of Apache/
Tomcat.

Data version. CTD is updated with new content on a monthly ba-
sis (http://ctdbase.org/about/dataStatus). All analyses and met-
rics reported here are derived from version 15351M (February
13, 2018).

GO-slim distribution analysis. A generic GO-slim list maintained
by the GO Consortium was downloaded (http://www.geneontol-
ogy.org/page/go-slim-and-subset-guide) and filtered for the 69
terms in “biological_process” category. Each phenotype term
was looked up in CTD to record the number of associated chem-
ical interactions. Because GO is a hierarchy, counts are sub-
sumed; thus, the number of chemical interactions represents
the CTD data associated with the term directly and all child/de-
scendant terms.

Data analyses: leukocyte migration case study. Leukocyte data were
collected from the relevant data-tabs on CTD’s page for the GO
term “leukocyte migration” (http://ctdbase.org/detail.go?
type¼go&acc¼GO:0050900). A Pathway View map for genes asso-
ciated with “vehicle emissions” and “leukocyte migration”
was retrieved using the CTD web tool icon SetAnalyzer (http://

Figure 2. Accessing chemical-phenotype interactions. A, A “Gene Ontology” (GO) Keyword Search Box query with “leukocyte” retrieves 83 results. Clicking the pheno-

type icon next to “leukocyte migration” opens up the chemical-phenotype interactions. B, The “Chemical Interactions” display is similar to other CTD pages, with data

in a table format with sortable columns and hyperlinked terms that go to their respective pages in CTD. Shown is the interaction of how vehicle emissions affect the

phenotype of leukocyte migration in mouse lung monocytes. The “Inference Network” lists 79 genes that have both a CTD curated interaction to vehicle emissions

and, independently, have a GO-gene annotation to leukocyte migration, creating a chemical-gene-phenotype inference. Clicking the SetAnalyzer tool icon in front of

the gene list generates a Pathway View map. A “Download” feature, found at the bottom of all CTD web pages, allows users to export data to their desktop in a variety

of formats. For simplicity, all screenshots show an edited subset of actual web display.
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ctdbase.org/tools/analyzer.go) to display the gene-gene and
protein-protein interactions derived from imported BioGRID
data (Chatr-Aryamontri et al., 2017; Davis et al., 2015). The de-
fault map was manually configured (merged edges and tree
view layout) and exported in PNG format. Genes were collected
under the “Genes” data-tab and chemicals from the “Chemical
Interactions” data-tab; all results were downloaded, sorted, and
filtered to unique sets for manual inspection.

Data analyses: cadmium-Alzheimer’s disease case study.
Information was collected from the appropriate data-tabs on
CTD’s “Cadmium” page (http://ctdbase.org/detail.go?
type¼chem&acc¼D002104). The 131 cadmium-associated phe-
notypes were derived from downloading the interactions under
the “Phenotypes” data-tab and filtering the results to a set of
unique terms. The 44 genes forming an Inference Network be-
tween cadmium and Alzheimer’s disease (AD) were submitted
to CTD’s Batch Query (http://ctdbase.org/tools/batchQuery.go) to
retrieve a list of 1, 641 GO biological process annotations. CTD’s
MyVenn tool (http://ctdbase.org/tools/myVenn.go) was used for
all Venn analyses to prioritize phenotypes. Terms were manu-
ally inspected for GO ancestry using the CTD PWA (http://
ctdbase.org/detail.go?type¼go&acc¼GO%3a0008150) and sorted
to levels depending upon mappings. Subcellular level included
terms mapping to “response to stimulus” (GO: 0006954),
“signaling” (GO: 0023052), or “metabolic process” (GO: 0006006);
cellular level included terms mapping to “cellular process” (GO:
0009987) or “cell proliferation” (GO: 0008283); and system level
included ancestry terms “system process” (GO: 003008),
“developmental process” (GO: 0001525), “behavior” (GO:
0007610), “reproduction” (GO: 0007283), or other. A few terms
mapped to more than one level and were assigned based upon
either the level that had a preponderance of mappings or the of-
ficial definition provided for the term, whichever made the
most biological sense.

RESULTS AND DISCUSSION

CTD Phenotype Curation Phases
In 2011, CTD initiated the manual curation of chemical-induced
phenotypes as part of a collaborative project with Pfizer, Inc.

Table 1. CTD Chemical Interactions for Phenotype Terms, as
Distributed Across GO-Slim

No. CTD
Chemical
Interactions CTD Phenotype/GO-Slim Term GO Term ID

29 640 Cell death GO: 0008219
14 734 Biosynthetic process GO: 0009058
12 638 Cellular nitrogen compound metabolic

process
GO: 0034641

12 526 Lipid metabolic process GO: 0006629
12 396 Cell proliferation GO: 0008283
10 031 Catabolic process GO: 0009056
9619 Response to stress GO: 0006950
9111 Circulatory system process GO: 0003013
7233 Transport GO: 0006810
5783 Signal transduction GO: 0007165
5391 Small molecule metabolic process GO: 0044281
5375 Cofactor metabolic process GO: 0051186
4816 Cellular protein modification process GO: 0006464
4688 Homeostatic process GO: 0042592
4356 Immune system process GO: 0002376
4288 Sulfur compound metabolic process GO: 0006790
3948 Anatomical structure development GO: 0048856
3394 DNA metabolic process GO: 0006259
3136 Cell differentiation GO: 0030154
3115 Locomotion GO: 0040011
2907 Cell motility GO: 0048870
2901 Cell cycle GO: 0007049
2345 Nucleobase-containing compound

catabolic process
GO: 0034655

2181 Cell-cell signaling GO: 0007267
1730 Transmembrane transport GO: 0055085
1460 Mitotic cell cycle GO: 0000278
1448 Autophagy GO: 0006914
1366 Generation of precursor metabolites

and energy
GO: 0006091

1125 Carbohydrate metabolic process GO: 0005975
1038 Mitochondrion organization GO: 0007005
1019 Chromosome organization GO: 0051276
987 Reproduction GO: 0000003
858 Cellular component assembly GO: 0022607
761 Growth GO: 0040007
758 Nucleocytoplasmic transport GO: 0006913
651 Cell adhesion GO: 0007155
585 Vesicle-mediated transport GO: 0016192
559 Membrane organization GO: 0061024
465 Nervous system process GO: 0050877
348 Cellular amino acid metabolic process GO: 0006520
309 Anatomical structure formation

involved in morphogenesis
GO: 0048646

302 Cytoskeleton organization GO: 0007010
295 Protein-containing complex assembly GO: 0065003
291 Embryo development GO: 0009790
234 Symbiont process GO: 0044403
192 Cell morphogenesis GO: 0000902
178 Plasma membrane organization GO: 0007009
172 Secondary metabolic process GO: 0019748
146 Developmental maturation GO: 0021700
136 Protein maturation GO: 0051604
125 Translation GO: 0006412
59 Cytoskeleton-dependent intracellular

transport
GO: 0030705

54 Extracellular matrix organization GO: 0030198
52 Protein targeting GO: 0006605
47 Cell division GO: 0051301

Table 1. (continued)

No. CTD
Chemical
Interactions CTD Phenotype/GO-Slim Term GO Term ID

38 Chromosome segregation GO: 0007059
35 Mitotic nuclear division GO: 0140014
34 Pigmentation GO: 0043473
34 Cell junction organization GO: 0034330
33 Ribonucleoprotein complex assembly GO: 0022618
30 Nitrogen cycle metabolic process GO: 0071941
16 Vacuolar transport GO: 0007034
10 mRNA processing GO: 0006397
9 Protein folding GO: 0006457
5 tRNA metabolic process GO: 0006399
1 Ribosome biogenesis GO: 0042254
0 Cell wall organization or biogenesis GO: 0071554
0 Photosynthesis GO: 0015979
0 Transposition GO: 0032196
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(Davis et al., 2013c). For this initial project, CTD was restricted to
using 143 phenotype terms preselected by Pfizer from the
“Phenomena and Process [G]” branch of MeSH (Coletti and
Bleich, 2001). In 3 months, CTD biocurators manually curated
9488 articles and generated 38 083 interactions for 2849 chemi-
cals and 121 MeSH phenotypes (Davis et al., 2013c).

After 2011, CTD continued with phenotype curation as a new
in-house module, but expanded the available phenotype terms
by switching to the GO as a source of vocabulary terms for bio-
logical outcomes. Leveraging the GO affords several advantages
(Ashburner et al., 2000). It is a robust vocabulary that provides a
greater depth and broader range of terms that better reflect the
multitude of outcomes reported in the toxicology literature. It is
a well-known resource that is widely used by other databases in
the scientific community for gene annotations. All GO terms
have comprehensive definitions and stable accession identi-
fiers, the latter of which allows GO annotations to act as a nexus
to connect, integrate, and harmonize knowledge from domains
curated across a variety of databases. For example, CTD collects
and stores all the GO-gene annotations from NCBI Gene
(Maglott et al., 2011); integration of these external GO-gene
annotations with CTD’s gene-disease content provides a novel
way to explore disease mechanisms based upon shared GO
terms as opposed to shared gene symbols (Davis et al., 2016).
Finally, the GO vocabulary is structured as a multi-level hierar-
chy, enabling users to view, navigate, and meta-analyze the as-
sociated content at different levels of granularity. This
hierarchy also allows GO terms to be computationally sorted
into categories that differentiate subcellular events (eg, “JNK
cascade”) from larger developmental and system level

processes (eg, “learning and memory”). Because of these numer-
ous advantages, we transitioned to using GO as the source of
phenotype terms.

To reconcile our legacy MeSH-based phenotype data-set
with the new GO-based phenotype content, a CTD biocurator
manually mapped the initial MeSH terms to their best equiva-
lent terms in GO. This mapping and translation process
retained 35 538 interactions (93%) to seed the new GO-based
chemical-phenotype module. Going forward, all CTD chemical-
phenotype interactions use only GO as the source of nondisease
term events.

CTD Phenotype Curation Process
When an article reports a chemical’s effect upon a disease, the
information is curated via CTD’s disease core using the MEDIC
disease vocabulary (Davis et al., 2012b); any reported outcome
that is not in MEDIC is considered de facto to be a phenotype
and is captured using GO terms in the chemical-phenotype
module where possible (Figure 1A).

A CTD chemical-phenotype interaction statement includes
8 types of data (C-Q-E-A-T-M-S-P) annotated using 8 controlled
vocabularies (Figure 1B), including, at a minimum: C, a chemical
from the CTD Chemical Vocabulary (Davis et al., 2009); Q, a CTD
action qualifier that reflects the direction of the interaction
(“increases,” “decreases,” or “affects,” when not specified by the
authors); E, the entity phenotype from GO; A, an anatomical
term from the MeSH “Anatomy [A]” branch (Coletti and Bleich,
2001); T, an organism from NCBI Taxonomy (Federhen, 2012); M,
a CTD method code (in vivo, in vitro); S, the CTD information
source code (abstract, full text); and P, the article identifier

Figure 3. Chemical-Phenotype Interaction Query page. CTD’s Chemical-Phenotype Interaction Query page allows users to perform advanced searches, combining dif-

ferent parameters. Searching for a high-level phenotype (signaling) in an anatomical category (intestine) in rat retrieves 11 hits. Because many CTD curation vocabular-

ies are hierarchical, the query returns child terms as well, and all matching terms are highlighted to alert the user.
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(PMID) from NCBI PubMed (Agarwala et al., 2018). “Not reported”
is allowed for both taxon and anatomy fields if the authors do
not provide this information. CTD biocurators are careful to fo-
cus on collecting chemical-induced phenotypes, and not gene-
associated phenotypes; this helps keep our resources focused
on chemical-centric data and avoids duplicating gene-
phenotype information that is more appropriately curated at
other databases; however, we have found that sometimes a
gene needs to be included as part of a complex chemical-
phenotype interaction to best reflect the authors’ intentions;
when necessary, official gene symbols from NCBI Gene (Maglott
et al., 2011) are used in conjunction with the chemical and the
phenotype.

CTD’s practice of implementing well-established, commu-
nity-accepted controlled vocabularies (with definitions and ac-
cession identifiers) and having all manually curated
interactions traced directly to the source article ensures that
the information conforms with the FAIR principle, allowing the
data to be Findable, Accessible, Interoperable, and Reusable
(Wilkinson et al., 2016).

The data captured in this new module are wide-ranging:
over 6400 chemicals and 3900 phenotypes reported in 215 spe-
cies using 760 anatomy terms, manually curated from more
than 19 000 articles published in 1200 scientific journals. To ex-
plore the distribution of CTD phenotypes and provide a perspec-
tive of the knowledge landscape covered by this module, we
analyzed our curated content against the generic GO-slim list

developed and maintained by the GO Consortium (Davis et al.,
2010). The GO-slim list is a summarized subset of the entire bio-
logical process ontology and provides a broad, top-level view of
the available information, without the detailed granular termi-
nology that provides the depth and specificity to GO. The top
phenotype terms curated with the most number of CTD chemi-
cal interactions include cell death, general and specific meta-
bolic processes (including biosynthesis and catabolism), cell
proliferation, response to stress, circulatory system processes,
transport, and signal transduction (Table 1). Currently, CTD has
curated interactions for every term in this GO-slim, except 3 (2
of which are processes found in plants and fungi which are taxa
that CTD does not include). This extensive coverage of GO-slim
illustrates the breadth of CTD’s phenotype content from the
toxicology literature.

Accessing CTD Phenotype Data
Chemical-phenotype content can be accessed using the Keyword
Search Box in the upper right hand corner of any CTD page by
querying either the “Chemical” or “GO” field (from the drop-
down pick-list) with a term-of-interest (Figure 2A). A new data
icon (“eye,” for phenotype) identifies the retrieved matching
terms that have chemical-phenotype associated data. Clicking
the icon, or going to the “Chemical Interactions” tab on a re-
spective GO page, shows all the curated chemical-phenotype
interactions in a tabular web-display. Users can sort the infor-
mation by clicking on any column header, and discover, for

Figure 4. Prioritizing phenotypes that connect cadmium to Alzheimer’s disease (AD). The “Diseases” (top arrow) and “Phenotypes” (bottom arrow) data-tabs for the

chemical Cadmium (Cd) are depicted from CTD (edited view). In the top panel, the Inference Network computes a list of 44 genes that directly interact with cadmium

and also have a direct association with AD, allowing an inferred relationship (dotted arrow) to be made between Cd and AD: these 44 inference genes are annotated to

1641 GO terms (by external databases). As well, there are 131 unique phenotypes directly associated with Cadmium (bottom panel) that can also be inferred to the dis-

ease. A Venn analysis (middle panel) reveals 58 GO terms/phenotypes that are shared between these 2 independently derived data-sets; consequently, these 58 pheno-

types could be prioritized as key events (KEs) connecting cadmium exposure to AD.
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example, a report that exposure to vehicle emissions affects
leukocyte migration of monocytes in the lungs of mice
(Figure 2B). Any comentioned terms (eg, chemicals, genes, and
other phenotypes) are hyperlinked to their respective CTD
pages, allowing users to easily traverse the database.

In addition to the directly curated interaction between vehi-
cle emissions and leukocyte migration (Figure 2B), CTD also pro-
vides inference networks (Davis et al., 2011a, 2013a, 2015). In this
example, there are 3 pieces of independently derived informa-
tion: (1) the chemical vehicle emissions directly affects the phe-
notype leukocyte migration (from chemical-phenotype
module), (2) vehicle emissions have effects on 79 unique genes
or proteins (from toxicogenomic core), and (3) independently,
these same 79 genes have been (externally) annotated to the GO
term leukocyte migration (integrated into CTD from the NCBI
Gene database). Thus, these 79 genes provide a potential (in-
ferred) mechanistic link connecting vehicle emissions to leuko-
cyte migration. Clicking on the SetAnalyzer tool icon diagrams
an extensive gene/protein interaction module (Figure 2B),
quickly providing a starting point for testable molecular-genetic
hypotheses for vehicle emission-induced leukocyte migration
in mouse lungs.

Furthermore, users can leverage additional curated content
in CTD to expand the analysis. Although vehicle emissions and
leukocyte migration share 79 genes, there are currently 205
genes in CTD annotated to the GO term “leukocyte migration”,
providing an additional 126 genes to test for influence by expo-
sure to vehicle emissions. As well, there are 471 additional
chemicals (other than vehicle emissions) that influence leuko-
cyte migration, including 68 that specifically increase this phe-
notype in lung compartments of mice, including such
additional traffic-related air pollutants as soot, ozone, and par-
ticulate matter. Having diverse data manually curated from a
variety of articles, but harmonized using controlled

vocabularies in one database, helps discover information to
broaden hypotheses about traffic-related exposure and immune
system processes.

Content also can be accessed using the Chemical-Phenotype
Interaction Query page (http://ctdbase.org/query.go?type¼phe-
notype). Parameters such as chemical, phenotype, anatomy, or
organism can be specified and combined to perform an ad-
vanced query, enabling scientists to find data specific for certain
taxa or anatomical sites (Figure 3). Because many CTD curation
vocabularies (chemicals, phenotypes, anatomy, and organisms)
are hierarchical, the query returns associations for the entered
term as well as all child/descendant terms, and highlights the
matches in the results. Thus, a neurotoxicologist can search
with just the word “brain” and immediately retrieve over 12 500
interactions for 1330 chemicals and 710 phenotypes occurring
in 115 anatomical parts (from “amygdala” to “white matter”) for
35 organisms, whereas a user searching with “heart” will dis-
cover 6100 cardiotoxic events for 910 chemicals, 420 pheno-
types, and 18 structures from 21 species.

Illuminating the Predisease State
Using CTD’s transitive process, the curated set of chemical-
phenotype interactions can be integrated with CTD’s chemical-
disease associations from our disease core: if phenotype A
interacts with chemical B, and, independently, chemical B is as-
sociated with disease C, then phenotype A can be inferred to
disease C (via chemical B). These inferences generate potential
biological phenotypes that may be modulated by the chemicals
during the predisease/presymptomatic state. The heavy metal
environmental pollutant cadmium has evidence suggesting a
connection to AD; as well, cadmium modulates 131 unique phe-
notypes in CTD (Figure 4, top and bottom panels). These 131
phenotypes can be inferred to AD using the transitive process to
explore potential biological reactions happening in a predisease

Figure 5. Leveraging CTD curation modules for AOP components. An adverse outcome pathway (AOP) is composed of ordered components (top rows): the molecular

initiating event (MIE) between a chemical and gene product launches a series of KEs resulting in an adverse outcome (AO), which can have effects at the population

level (PO). These components mirror curation modules at CTD (double arrows and middle row): toxicogenomic core, chemical-phenotype module, disease core, and ex-

posure module. The numbers of manually curated interactions, chemicals, genes, phenotypes, anatomy terms, diseases, and taxa (organisms) in each CTD module are

listed (note: the exposure module only curates data for humans). n/a, not applicable; n/d, not determined/displayed (data are collected but not yet publicly released).
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state. A diversity of phenotypes is seen, including the disruption
of subcellular metabolic pathways (eg, fatty acids, triglycerides,
vitamin E, phospholipids, amino acids), cellular processes (eg,
cell cycle, mitochondrial depolarization, lymphocyte activation,
testosterone secretion), cell death phenotypes (eg, apoptosis,
cell killing, necrosis, DNA fragmentation), and system level
events (eg, renal filtration, olfactory behavior, bone resorption).
These phenotypes allow toxicologists, risk assessors, regulatory
decision makers, and pharmaceutical drug scientists to explore
biological events potentially preceding the clinical manifesta-
tion of cadmium-induced AD.

The 131 phenotypes can be prioritized by comparing them
with the GO terms annotated to genes in the inference network.
Currently, 44 genes form an inference network between cad-
mium and AD (Figure 4, top panel). All 44 genes have curated
interactions with cadmium (from CTD’s toxicogenomic core),
and, independently, have curated associations with AD (from
CTD’s disease core). These 44 genes are also annotated to 1641
unique GO biological process terms (annotated by external GO
annotators and imported into CTD via a monthly upload from
NCBI Gene). A Venn analysis of the 1641 GO biological process
terms (derived from external, independent GO curation) with
the 131 GO-based phenotypes (from internal CTD chemical-
phenotype curation), reveals 58 shared terms, which, because of

their derivation from 2 separate, independent data analyses,
could potentially prioritize them as key events (KEs) connecting
cadmium to AD (Figure 4, middle panel). These prioritized 58
phenotypes are annotated to 35 of the original 44 genes.

Generating Predictive AOPs
Integrating content from all 4 CTD curation modules (toxicoge-
nomic, chemical-phenotype, disease, and exposure) provides
an opportunity to generate predictive AOPs. An AOP is a frame-
work that organizes information to construct a biologically
plausible explanation for how a toxicant can result in an ad-
verse outcome (AO), such as a disease (Villeneuve et al., 2014a,
b). AOPs are useful constructs to organize data across species,
identify information gaps, and inform bioassay development
(Mortensen et al., 2018; Nymark et al., 2018; Oki et al., 2016;
Taboureau and Audouze, 2017; Wittwehr et al., 2017). A generic
AOP framework can include 4 components: a molecular initiat-
ing event (MIE) that links a toxicant to a gene product, followed
by a series of KEs, resulting in an AO that enhances an under-
standing at the population level (PO). CTD’s 4 curation modules
reflect these 4 AOP components (Figure 5).

For cadmium and AD, the prioritized 58 phenotypes first can
be sorted into arbitrary KE levels by their mapping in the GO hi-
erarchy. All 58 terms ultimately map to the GO root term

Figure 6. Classifying prioritized phenotypes. The 58 prioritized phenotypes were classified to 3 key event levels: KE1 (subcellular), KE2 (cellular), or KE3 (system) based

on their mapping in the GO hierarchy. Similar biological themes are coded (legend at bottom). A schematic summary of the meta-data is shown in lower right corner:

direct interactions between cadmium (Cd) and 35 genes are reported in CTD’s toxicogenomic core, and CTD’s disease core reports that these 35 genes are also directly

associated with Alzheimer disease, as well as independently annotated by external databases to 58 GO terms; simultaneously, CTD’s phenotype module reports manu-

ally curated interactions between cadmium and these same 58 prioritized phenotypes; and CTD disease core also describes a connection between cadmium and

Alzheimer disease, allowing the 58 prioritized phenotypes to be inferred (dotted arrow).
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“biological process” (GO: 0008150); however, by mapping to their
penultimate or antepenultimate root terms, the phenotypes
start to segregate into different levels of biological specificity.
Using this strategy, the 58 prioritized phenotypes were divided
into subcellular, cellular, and system KE levels (Figure 6), and
similar biological themes emerged for many GO terms (even in
different KE levels), such as neuron-related, cell death, oxidative
stress, metabolism, cardiovascular, and mitochondrial. Many of
these themes can be corroborated in the literature for AD. To
wit, individually querying PubMed for abstracts that contain
“AD” plus these words retrieves extensive literature-based co-
occurrences for “cell death” (2107 articles), “oxidative stress”
(3669 articles), “cardiovascular” (3327 articles), and
“mitochondrion” (1432 articles), whereas other phenotypes may
be simply coincidental (or not yet realized), such as
“spermatogenesis” (only 3 articles).

Three phenotypes were selected from the prioritized 58 (one
from each KE level), and used to construct a predictive AOP con-
necting cadmium to AD (Figure 7). Ten independent MIEs repre-
sent a curated interaction between cadmium and 10 genes
(IL1B, TNF, APP, CASP3, PRNP, GSK3B, BAX, CRH, BDNF, and
PSEN1) from CTD’s toxicogenomic core. Independently, these 10
genes are directly annotated to AD from CTD’s disease core. As
well, these 10 genes are annotated to at least 1 of the 3 KEs as a
GO-gene annotation (from NCBI Gene), and all 3 KEs have been
curated as interacting with cadmium from CTD’s chemical-
phenotype module. Although an AOP describes a single
toxicant-gene MIE, the fact that CTD’s curated content provides
10 independent MIEs converging upon repeated occurrence of
the same 3 KE phenotypes evinces multiple possible lines of
support for the model. It should not be construed that all 10

independent MIEs must occur for the AOP to be valid; rather,
the model simply provides at least 10 different independent
ways for the AOP to be validated. Finally, an article leveraging
data from the National Health and Nutrition Examination
Survey (NHANES), and curated in CTD’s exposure module, con-
firms a relationship between cadmium exposure and AD (Min
and Min, 2016). This is just one of the several predictive AOPs
that can be generated using all 35 genes and 58 prioritized phe-
notypes connecting cadmium to AD. Recall that cadmium
influences 131 phenotypes (Figure 4); we only focused on the
58 that were prioritized based upon them also being annotated
to genes associated with AD. This leaves an additional 73 novel
phenotypes for constructing additional KEs in cadmium-
induced AOPs.

Similar analyses can be performed easily with any chemical
in CTD. Arsenicals, for example, currently modulate over 600
distinct phenotypes (http://ctdbase.org/detail.go?type¼chem-
acc¼D001152&view¼phenotype), including 10 related to glucose
metabolism (Table 2). The genes that form the inference net-
works between arsenical compounds and these 10 phenotypes
can be compared with known diabetic genes in CTD. In total, of
the 171 unique inference genes that relate arsenicals to a glu-
cose phenotype, 39 (23%) are also independently associated
with diabetes (Table 2), allowing researchers to rapidly design
predictive AOPs wherein arsenic interacts with the genes (MIEs)
to affect glucose metabolism (KE) as potential presymptomatic
phenotypes before the onset of diabetes (AO).

The seamless integration of CTD content allows users to ex-
plore additional information, such as identifying other chemicals
(besides cadmium) that influence “learning or memory” by view-
ing the “Chemical Interactions” tab for this phenotype term

Figure 7. Integrating CTD content to generate predictive AOPs. Curated content from CTD toxicogenomic core is used to identify 10 molecular initiating events (MIE1-

10) relating the toxicant cadmium to 10 genes that are also directly associated with the AO of AD from disease core. CTD’s chemical-phenotype curation module fills in

the intermediate KEs. Here, just 3 of the 58 prioritized phenotypes (KE1-KE3) are depicted that are directly influenced by cadmium in addition to being independently

annotated to the same 10 genes by external GO databases (dotted lines). Phenotypes are organized into 3 KE levels (KE1 subcellular, KE2 cellular, and KE3 system) to

generate a predicted AOP (bottom) connecting cadmium to AD. Furthermore, the association of cadmium exposure to AD is confirmed at the PO by CTD’s exposure

module (top arrow), with a U.S. study correlating cadmium blood levels (0.39-1.14 micrograms per liter) with patients.

DAVIS ET AL. | 153

http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype
http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype
http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype
http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype
http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype
http://ctdbase.org/detail.go?type=chem&hx0026;acc=D001152&hx0026;view=phenotype


(http://ctdbase.org/detail.go?type¼go&acc¼GO%3a0007611&view¼
phenotype), or discovering other diseases inferred to this pheno-
type under the “Diseases” tab (http://ctdbase.org/detail.go?
type¼go&acc¼GO%3a0007611&view¼disease), or retrieving the
details that describe this phenotype as an exposure outcome
at the PO (http://ctdbase.org/detail.go?type¼go&acc¼GO%
3a0007611&view¼expConsol). Similar data extensions can be
done for any of the other listed phenotypes in the cadmium-AD
AOP or the 10 genes forming the MIEs. This helps discover and
connect information to grow and extend the predictive AOPs, as

well as interrelate other AOPs to generate testable hypotheses
about chemical exposures and environmentally influenced dis-
eases. The predictive AOPs easily generated from CTD curated
content should help toxicologists review, test, and refine AOPs for
official approval (https://aopwiki.org/).

SUMMARY

We present a new chemical-phenotype module at CTD that
describes chemical-induced, nondisease biological outcomes

Table 2. Glucose-Related Phenotypes Modulated by Arsenicals in CTD

Arsenical Compound Phenotype (ID) Inference Network Genes

Subset of Inference Network
Genes Also Associated With

Diabetes

Arsenic trioxide;
arsenite; methyl-
arsonite; sodium
arsenate; sodium
arsenite

Glucose homeostasis (GO:
0042593)

95 genes: ADGRF5; ADIPOQ; ADRA1B; ADRA2A;
AKT1; AKT2; ATG7; BAD; C5; CACNA1A;
CACNA1C; CACNA1E; CAV3; CD36; CDKN2A;
CEBPA; CNR1; CRH; CRY2; DBH; ERO1B; FABP5;
FFAR2; FGFR4; FOXA1; FOXO1; FOXO3; G6PC;
GCK; GLIS3; GPI; GPR39; GPRC5B; HIF1A;
HNF1A; HNF1BA; HNF4A; IGFBP5; IL6; INS;
INSR; IRS1; KCNB1; KLHL42; LEP; LEPR;
MAP2K1; MCU; MET; NCOR2; NEUROD1; NMB;
NOTCH2; NR1H4; NUCKS1; PARK2; PAX4; PAX6;
PCK1; PDK2; PDK4; PDX1; PFK; PGD; PLA2G6;
PPARG; PPP3CB; PRCP; PRKAA1; PRKAA2;
PTCH1; PTPN11; PYGL; RAB13; RBM4; RPS6;
SELENOT; SERPINE1; SESN2; SESN3; SIRT1;
SLC16A1; SLC18A2; SLC2A4; SLC37A4; SOX4;
SRI; SSTR5; STAT3; TCF7L2; TRPV4; UBA1;
USF1; VSNL1; XBP1

28 genes: ADIPOQ; AKT2; CAV3;
FOXO3; GCK; GLIS3; HIF1A;
HNF1A; HNF4A; IL6; INS; INSR;
IRS1; LEP; LEPR; NEUROD1;
NOTCH2; PAX4; PAX6; PCK1;
PDK4; PDX1; PPARG; SERPINE1;
SIRT1; SLC2A4; STAT3; TCF7L2

Sodium arsenite Glucose metabolic process (GO:
0006006)

43 genes: ADIPOQ; AKR1A1; AKT1; AKT2; CPT1A;
CREM; FABP5; G6PD; G6PDX; GALM; GAPDH;
GCK; GHRL; HK2; IGF2; IGFBP1; IGFBP5; INS;
INS1; IRS2; LEP; MAPK14; MYC; NISCH; PCK1;
PDHA2; PDHB; PDHK-2; PDK1; PDK2; PDK3;
PDK4; PDX1; PGM1; PIK3CA; PIK3R1; PKM;
PRKAA1; SERP1; SERPINA12; SORD; TNF; TPI1

13 genes: ADIPOQ; AKT2; CPT1A;
CREM; GCK; INS; INS1; IRS2;
LEP; PCK1; PDK4; PDX1; TNF

Arsenic trioxide Gluconeogenesis (GO: 0006094) 21 genes: ALDOA; ALDOC; ATF3; ATF4; FBP1;
G6PC3; GAPDH; GOT1; GOT2; GPD1; GPD2; GPI;
MDH1; PCK2; PER2; PFKFB4; PGK1; PGM1;
PPARGC1A; TAT; TPI1

3 genes: ATF3; GPD2; PPARGC1A

Sodium arsenite Canonical glycolysis (GO:
0061621)

18 genes: ALDOA; ALDOB; ALDOC; BPGM; ENO1;
ENO2; ENO3; GAPDH; GCK; GPI; HK2; HK3;
PGAM1; PGAM2; PGK1; PKLR; PKM; TPI1

2 genes: GCK; PKLR

Sodium arsenite Regulation of glycolytic process
(GO: 0006110)

13 genes: ECD; GCK; HIF1A; NDC1; NUP155;
NUP210; NUP62; NUP85; NUP88; NUP93;
PGAM1; RAE1; TPR

2 genes: GCK; HIF1A

Arsenic trioxide Positive regulation of insulin
secretion involved in cellular
response to glucose stimulus
(GO: 0035774)

10 genes: ATG7; BAD; CRH; HIF1A; PARK2;
PLA2G6; PPP3CB; SIRT1; SRI; VSNL1

2 genes: HIF1A; SIRT1

Sodium arsenite Positive regulation of gluconeo-
genesis (GO: 0045722)

9 genes: DGAT2; FOXO1; HIF1A; HNF4A; PCK1;
PPARGC1A; PPP4R3A; PRKAA1; SIRT1

5 genes: HIF1A; HNF4A; PCK1;
PPARGC1A; SIRT1

Sodium arsenite Positive regulation of glucose
import in response to insulin
stimulus (GO: 2001275)

9 genes: AGT; AKT2; INS; IRS1; MARCKS; PIK3R1;
PIK3R2; PIK3R3; PTPN11

4 genes: AGT; AKT2; INS; IRS1

Arsenite;
methylarsonite

Positive regulation of glycogen
biosynthetic process (GO:
0045725)

6 genes: AKT1; IGF1; INS; INSR; IRS1; RACK1 4 genes: IGF1; INS; INSR; IRS1

Arsenic trioxide Regulation of glycogen meta-
bolic process (GO: 0070873)

2 genes: KHK; PHLDA2 0 genes
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that are manually curated from the peer-reviewed scientific lit-
erature. These interactions are embellished with taxon and ana-
tomical descriptors, allowing the data to be analyzed
comparatively across model organisms and humans. The use of
well-known vocabularies (with accession identifiers) enhance
database interoperability and provide an easy way for model or-
ganism databases to bring their gene-phenotype information
into the chemical landscape provided by CTD. This freely avail-
able module will help toxicologists better understand the predis-
ease state and generate predictive AOPs for environmental
diseases. To our knowledge, this is the first comprehensive set
of manually curated, literature-based, contextualized, chemical-
induced, nondisease phenotype data provided to the public.
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