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Abstract

‘Cassette’-ISES (In Situ Enzymatic Screening) Identifies Complementary Chiral Scaffolds for 

Hydrolytic Kinetic Resolution Across a Range of Epoxides

A new ‘Cassette’-In Situ Enzymatic Screen (ISES) for combinatorial catalysis is introduced. This 

allows the experimentalist to obtain an information-rich readout, in real time, providing an 

estimate of the sense and magnitude of enantioselectivity across more than one substrate. In its 

first iteration, the screen identified CoIII-salen catalysts with β-pinene- and α-naphthylalanine-

derived chiral scaffolds with broad, yet complementary, substrate specificities.
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For combinatorial catalysis,[1,2] rapid and information-rich screening methods are very 

useful. Toward, this end, we describe herein a new ‘cassette’-ISES approach which allows 

the experimentalist to obtain a parallel readout on substrate specificity, as well as sense and 

magnitude of enantioselectivity.[3] In its first iteration, ‘cassette’-ISES is used to ‘cherry 

pick’ only those catalysts in the array that show high ISES-ee readouts across both test 
substrates. Two such catalysts are then investigated further, yielding promising results.

In our ISES approach, typically the reaction product[4] or byproduct[5] diffuses from an 

organic layer into an aqueous layer containing the ‘reporting enzyme.’ [6] There, an enzyme-

catalyzed reaction leads to a spectroscopic signal that is monitored in real time. The 

approach complements other emerging screens using chiroptical techniques,[7] liquid 

crystalline arrays,[8] IR thermography,[9] mass,[10] NMR,[11] IR[12] and fluorescence 

spectroscopy.[13] The technique is sensitive (i.e. 10 nmol of product gives rise to Abs340 ~ 

0.12 for a dehydrogenase reporting enzyme in a 500 μL aq. volume), allowing one to get 

information on catalyst performance at relatively early conversions/short reaction times. 

Catalysts may be screened in parallel in a standard spectrophotometer with a multicell 

changer, without the need to draw aliquots or work-up the reaction. Moreover, the need to 

install a chromophore (adding steps and potentially altering substrate reactivity) is obviated.

In this Communication (Scheme 1), we describe a new pair of reporting enzymes, capable of 

differentiating the 1,2-hexanediol antipodes (LKADH – highly S-selective kS/kR ~20 and 

HLADH – modestly S-selective kS/kR ~2.2). This allows one to obtain simultaneous 

enantioselectivity readouts on two distinct substrates for the CoIII-salen-mediated HKR 

(hydrolytic kinetic resolution) of epoxides,[14] presenting both ‘short’ (propylene oxide; R = 

Me)[4] and long (hexene oxide: R = Bu) R groups. In this way, one can begin to address the 

question of substrate generality so important in asymmetric catalysis today.[15,16]

To demonstrate proof of principle for ‘cassette’-ISES, we employed a focused chiral salen 

array (Figure 1) that crosses chiral space variation in the constituent 1,2-diamines with 

considerable steric[17], and electronic variation in the ‘salicylaldehyde partners’ (including 

benzoylacetaldehyde = baen[18] precursor). Figure 2 illustrates the ‘four coordinate’ SER 

(structure-enantioselectivity relationship) data that one obtains from such a ‘cassette’-ISES 

protocol. The x and y axes represent the two structural variables in the salen array. The 

directionality and length of the z-vector provide the sense and magnitude of 

enantioselection, respectively. The fourth dimension is substrate variation, and this is 

represented by color-coded bars.

Several trends are apparent from this ‘cassette’-ISES readout. Unfortunately, the baen 

ligands (e) do not appear to produce effective CoIII-based HKR catalysts. Conversely, the 

most versatile diamine partner in the array is 1, successfully conferring S-selectivity, 

particularly for the hexene oxide test substrate, upon all of its derivative salens. This chiral 

element was first constructed through a clever MnIII-mediated diazidation of β-pinene by 

Snider,[19] and appears from these findings to have significant (as yet untapped) potential in 

asymmetric catalysis.
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In seeking to ‘cherry pick’ the catalysts with the most promise for both high 

enantioselectivity and generality,[15] one quickly gravitates to ligands 1d, 3a and 4a. We 

chose 1d and 4a, as representative S- and R-selective cassette-ISES hits, for further 

development. These were next exposed to a more extensive battery of epoxides, differing in 

functionality, sterics, polarity and position and electronic nature of π-surfaces presented.

As can be seen in Table 1, catalyst CoIII-1d-OAc does indeed appear to retain ‘S’-antipodal 

selectivity across the epoxide library. Several substrates presenting π-surfaces at 

intermediate chain lengths from the epoxide are well matched with this catalyst. Particularly 

striking are the HKR’s with O-phenylglycidol (E ~20) and 4-benzyloxybut-1-ene oxide (E 

~65!). Moreover, the selectivity associated with the HKR of the 2’-acetyl-4’-nitro-O-

phenylglycidol [final entry, remaining epoxide (96% ee) has the correct handedness[20] for 

the drug], though not quite as spectacular, provides a formal new route[21] into the β-blocker 

celiprolol.

In a complementary fashion, the CoIII-4a-OAc catalyst apparently displays rather general 

‘R’-bias for epoxide ring-opening (Table 2). Here, epoxides bearing long chain alkyl groups 

such as 1,7-octadien-1-oxide,[22] and 6-t-butyldiphenylsilyloxy-hex-1-ene oxide appear to be 

especially well-resolved. And while O-phenylglycidol shows almost perfectly mirrored 

enantioselectivity here, the celiprolol substrate is processed much less selectively.

Three dimensional X-ray structures of both CoII-1d and CoII-4a have been obtained. If one 

assumes that upon oxidation to CoIII, the acetate ligand coordinates axially to the least 

hindered face,[23] then one can be begin to examine the available chiral epoxide-binding 

surface at the opposite face.

A schematic model[24] is presented in Figure 3, wherein preferred approach of the S-

antipode from the ‘front left quadrant,’ as drawn, is proposed for CoIII-1d-OAc system. This 

raises the intriguing possibility of favorable π-π interactions between the α-hydroxy-β-

naphthaldehyde platform and aryl substituents on the best resolved substrates. On the other 

hand, for CoIII-4a-OAc, ‘front right quadrant’ approach of the opposite enantiomer is 

suggested. No such π-π-interactions would be accessible to intermediately spaced aryl 

substituents here. Rather, these might have to ‘thread the needle’ in avoiding the bulky t-

butyl groups, upon coordinating to the CoIII center.

In conclusion, the ‘cassette’-procedure described herein, with readout on both enantio- and 

substrate selectivity, makes for an especially information rich in situ enzyme-based parallel 

screen. An interesting subtlety is that fact that the two 1,2-hexanediol reporting enzymes 

introduced here (LKADH and HLADH), are both S-selective, but differ greatly in the 

magnitude of that selectivity. That difference in selectivity allows us to pick up both S- and 

R-selective catalysts for hexene oxide ring opening. On the discovery side, this 

combinatorial approach has uncovered some rather unconventional scaffolds for asymmetric 

catalysis. For example, one of our best HKR ligands, 1d, is assembled from a non-C2-

symmetric, terpene-derived chiral diamine and a sterically unencumbered α-hydroxy-β-

naphthaldehyde partner, yet shows remarkable enantiodiscrimination (E ~ 65 for 4-

benzyloxybutene oxide!). Given the rapidly expanding menu of metal-salen mediated C-X 
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bond-forming reactions, this ligand scaffold likely will find application well beyond the 

HKR chemistry reported here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure vs. enantioselectivity profile for the CoIII-acetate catalysts derived from this 5 × 4 

salen/baen ligand library. Within a box, the entries (top to bottom) represent (a) ISES-

estimated ee; (b) observed ee (flask conditions: neat, rt) and (c) calc’d E value. Black (left) 

and blue (right) columns designate results with propylene oxide, and hexene oxide, 

respectively. ** and § denote slow catalysts showing enzymatic reporting rates ≤ 15 mAbs 

min−1, for propylene oxide, and hexene oxide, respectively.
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Figure 2. 
Three dimensional view of the enantioselectivity output from cassette-ISES for the 5 × 4 

ligand array. For a given catalyst, brown and blue bars represent predicted ee’s for propylene 

oxide and hexene oxide, respectively. A positive deflection indicates S-selectivity, whereas a 

negative deflection indicates R-selectivity (convention follows the 1,2-propanediol optical 

rotation sign).
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Figure 3. 
Three dimensional tube representation (Spartan 1.0.3) of X-ray crystallographic structures 

determined for the Co(II)-1d and Co(II)-4a complexes. Supermimposed upon the structures 

is presented a model consistent with the observed Co(III)-salen-enantiopreferences.
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Scheme 1. 
A suitable pair of ‘reporting enzymes’ for 1,2-hexanediol permits for a ‘cassette’-ISES 

evaluation of HKR catalyst candidates. Each ’side’ of the cassette screens for a particular 

substrate, and comprises a pair of cuvettes, with identical (lower – CH2Cl2) organic layers, 

but distinct reporting DH’s in the (upper) aqueous layer.
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Table 1.

Kinetic Resolutions with the CoIII-1d-OAc Catalyst

Epoxide Loading
(mol%) Cond.[

a] Isolated epoxide
(% yield, % ee, E-value)

Isolated diol
(% yield, % ee, E-value)

5 A 51, 45 R, 4 37, 52 S,[
b] 4

5 B 46, 70 (R), 8 52, 67 (S),[
c] 11

2 B 71, 27 (R), 6 29, 71 (S),[
c] 8

2 B 70, 33 (R), 11 29, 79 (S),[c] 12

2 B 50, 80 S,[
d] 22 45, 80 R,[

d],[e] 18

3 B 48, 96 R, 65 50, 91 S, [
e] 67

10 C 37, 96 S,[
d],[f] 13 63, 55 R,[

d],[g] 11

[a]
Cond. A: 12 h, 0°C, neat; Cond. B: 12 h, 0°C, THF; Cond. C: 24 h, rt, THF;

[b]
Stereochemistry assigned by comparison of HPLC ret’n time with that of authentic standards (ref 17) (see SI for details);

[c]
In these cases absolute stereochemistry was assigned by analogy to catalyst selectivity with structurally related substrates;

[d]
Note: The sense of enantioselection is the same for these examples, but substituent priorities lead to the opposite configurational assignment;

[e]
Absolute stereochemistry assigned by comparison of the observed optical rotation with literature value (ref 17);

[f]
The R-epoxide was independently synthesized from S-glycidol, and matches the minor peak here (Chiralcel OD);

[g]
Stereochemistry assigned by relative HPLC retention time (Chiralcel OD -ref 23).
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Table 2

Kinetic Resolutions with the CoIII-4a-OAc Catalyst

Epoxide Loading
(mol%) Cond.[

c] Isolated epoxide
(% yield, % ee, E-value)

Isolated diol
(% yield, % ee, E-value)

1 A 70, 33 S, 11 26, 72 R,[
c] 8

1 A 44, 92 S, 20 56, 72 R,
e
19

4 B 59, 55 (S), 16 39, 80 (R),[
d] 15

2 B 59, 53 (S), 13 37, 75 (R),[
d] 11

2 B 45, 93 R,[
e] 25 55, 72 S,[

e],[f] 17

1 B 82, 17 S, 9 18, 80 R,[
f] 11

10 B 62, 28 R,[
g] 3.5 37, 46 S,[

e] 3.5

[a],[b]
as for Table 1;

[c]
Assigned by comparison of optical rot'n with that of the known R-diol (ref 25);

[d]-[f]
– see notes

[c]-[e]
, Table 1;

[g]
The sign of the optical rotation was found to differ with that reported [the S-epoxide is said to levorotatory (ref 24) but the R-epoxide was found 

to be levorotatory here]. To confirm the absolute stereochemistry, the R-epoxide was independently from S-glycidol.

[h]
note

[g]
, Table 1.
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