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Abstract

Seizure disorders are very common and affect 3% of the general population. The recurrent 

unprovoked seizures that are also called epilepsies are highly diverse as to both underlying genetic 

basis and clinic presentations. Recent genetic advances and sequencing technologies indicate that 

many epilepsies previously thought to be without known causes, or idiopathic generalized 

epilepsies (IGEs), are virtually genetic epilepsy as they are caused by genetic variations. IGEs are 

estimated to account for ~15-20% of all epilepsies. Initially IGEs were primarily considered 

channelopathies, because the first genetic defects identified in IGEs involved ion channel genes. 

However, new findings indicate that mutations in many non ion channel genes are also involved in 

addition to those in ion channel genes. Interestingly, mutations in many genes associated with 

epilepsy affect GABAergic signaling, a major biological pathway in epilepsy. Additionally, many 

antiepileptic drugs work via enhancing GABAergic signaling. Hence, the review will focus on the 

mutations that impair GABAergic signaling and selectively discuss the newly identified STXBP1, 

PRRT2, and DNM1 in addition to those long-established epilepsy ion channel genes that also 

impair GABAergic signaling like SCN1A and GABAA receptor subunit genes. GABAergic 

signaling includes the pre- and post- synaptic mechanisms. Some mutations, such as STXBP1, 
PRRT2, DNM1, and SCN1A, impair GABAergic signaling mainly via pre-synaptic mechanisms 

while those mutations in GABAA receptor subunit genes impair GABAergic signaling via post-

synaptic mechanisms. Nevertheless, these findings suggest impaired GABAergic signaling is a 

converging pathway of defects for many ion channel or non ion channel mutations associated with 

genetic epilepsies.
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Introduction

Epilepsy is a common neurologic disorder, and the causes are highly heterogeneous. Genetic 

generalized epilepsies (GGEs) refer to epilepsy syndromes previously classified as 

idiopathic generalized epilepsies (IGEs) (Scheffer et al., 2017), which have been associated 

with variations in multiple genes based on recent genetic advances (Klassen et al., 2011). 

The incidence of epilepsy (recurrent unprovoked seizures) in children and adolescents 

ranges from 50 to 100/100,000 (Hauser, 1994). The general frequency of IGEs is estimated 

to be 15–20% of all epilepsies (Jallon and Latour, 2005). GGEs are a group of neurological 

disorders which is common in both the pediatric population and andadults (Hauser, 1994). 

GGEs include several different epilepsy syndromes that vary in clinical severity from 

relatively benign childhood absence epilepsy (CAE), which may remit with age, to more 

severe juvenile myoclonic epilepsy (JME), and generalized epilepsy with febrile seizures 

plus (GEFS+). A subpopulation of GGEs are associated with severe recurrent seizures and 

cognitive decline that have been referred to as epileptic encephalopathies, which are often 

refractory to existing treatments and have poor developmental outcome. Epileptic 

encephalopathies include severe myoclonic epilepsy in infancy (SMEI) or Dravet syndrome, 

West syndrome or infantile spasms, Ohtohara syndrome, and Lennox-Gastaut syndrome.

Many ion channel and non ion channel gene mutations have been identified in various 

epilepsies including epileptic encephalopathy (Merwick et al., 2012). The identified ion 

channel genes include both voltage gated and ligand gated ion channel gene mutations. The 

voltage gated ion channels affected by mutations include but are not limited to SCN1A, 
SCN2A, SCN3A, SCN8A, SCN1B, KCNB1, KCNQ2, KCNQ3, Cav3.1, Cav3.2 and 

Cav3.3. As for the ligand gated ion channels, the genes include ChRNA4 and ChRNB2 as 

well as mutations in GABAA receptors including GABRA1, GABRB1–3, GABRG2 and 

GABRD (Anderson et al., 2002;Macdonald et al., 2010). To date, most functional studies of 

epilepsy genetic mutations have been focused on ion channel genes. Mutation of ion 

channels that cause either a “gain of function” in excitatory neurotransmission or a “loss of 

function” in inhibitory neurotransmission could impair the balance of excitation and 

inhibition, leading to disinhibition and hyper-excitability in the brain.

In addition to mutations in ion channel genes, many mutations in non ion channel genes 

have also been associated with various kinds of epilepsies. This has changed our traditional 

view of epilepsy as channelopathies with defects in ion channels. Many non ion channel 

genes that are associated with epilepsy are still unfamiliar to the field of epilepsy research. 

The biological function of these genes or how these genes make the brain epileptic is not 

clear. These genes include but not limited to PCDH19, CDKL5, STXBP1, STX1B, DNM1, 
PRRT2, CHD2, IQSE2, FOXG1, ALG3, RELN, etc. There is no doubt that the list of genes 

associated with epilepsy is still growing. This suggests an urgent need for defining 

biological functions of these genes and their roles in epileptogenesis.

Impaired GABAergic signaling is a converging pathway of pathophysiology in genetic 
epilepsy

Whether the mutations are in ion channel genes or non ion channel genes, they are likely to 

cause defects in possible common converging pathways that are critical for seizure 
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generation. Among all the newly identified epilepsy mutations, ion channel genes continue 

to have the most frequent occurrence on the list. This suggests the prominent role of ion 

channels in the pathogenesis of epilepsy. Activation of neurotransmitter receptor ion 

channels at synapses promotes synapse plasticity during brain development. Consequently, 

impaired ion transport may affect neural excitability and brain development, resulting in 

epilepsy and other neurodevelopmental disorders. Further, synapse formation and normal 

function are essential in the signaling and the formation of neural networks. Genes related to 

synapse formation and function are also closely related to epilepsy and other 

neurodevelopmental disorders like autism and mental disability (Delahanty et al., 2011). 

Similarly, some non ion channel genes in the pathways of cell growth (Guo et al., 2013), 

transcriptional regulation, protein kinase modulation, cell metabolism, and cell-cell 

interaction may also participate in synapse formation and function while defects in these 

genes may lead to the genesis of epilepsy (Lubin, 2012;Scharfman and Brooks-Kayal, 

2014).

GABAergic signaling is an established pathway for seizure generation. Not surprisingly, 

many mutations in both ion channel and non ion channel genes have been identified to 

impair GABAergic signaling. Here we will summarize different genes that impair 

GABAergic signaling and have been associated with epilepsy. The mechanisms by which 

these gene mutations impair GABAergic signaling include pre- and post-synaptic 

mechanisms. The epilepsy genes that impair GABAergic signaling via the pre-synaptic 

mechanisms include but are not limited to STXBP1, STX1B, DNM1, and PRRT2. These 

genes encode proteins that are involved in vesicle fusion machinery and vesicle release. The 

defects in the vesicle fusion machinery affect the pre-synaptic vesicle release. Failure or 

impaired release of key neurotransmitters would profoundly impair the corresponding 

neurotransmission and synaptic activity.

GABAergic neurotransmission

The cardinal aspects of GABAergic neurotransmission include pre-synaptic neurotransmitter 

gamma amino butyric acid (GABA) release and the GABAA receptor post-synaptic 

mechanisms (Figure 1). GABA is released by GABAergic interneurons that provide much of 

the inhibition in the cerebral cortex, hippocampus, striatum and amygdala. Impaired 

interneuron function has been established as an underlying cause for epilepsy via multiple 

preclinical animal models (Powell, 2013). Along the same line, much effort has been taken 

to rescue interneuron function to treating epilepsy. For example, it has been reported that 

GABA progenitor cells grafted into the adult epileptic brain attenuated seizures and 

comorbidities in mice (Hunt et al., 2013;Hunt and Baraban, 2015).

GABA

GABA is the major inhibitory neurotransmitter while glutamate is the major excitatory 

neurotransmitter in the brain. Both neurotransmitters work together to control many 

neuronal processes including the overall brain excitation. It has been established that 

glutamic acid decarboxylase (GAD) converts glutamate to GABA. There are two isoforms of 

GAD, GAD65 and GAD67 that synthesize GABA in the brain. After released from pre-
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synaptic terminals, GABA is taken up by GABA transporters. These transporters are widely 

expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) cells throughout the brain. 

Inside the cell, GABA is degraded by GABA transaminase to succinic semialdehyde, and 

inhibition of this enzyme by the antiseizure drug (ASD) like vigabatrin increases 

GABAergic neurotransmission. Because of the critical role of GAD in synthesizing GABA, 

it has been proposed that GAD65 loss of function may preferentially decrease the pre-

synaptic reserve pool of GABA and decrease tonic GABA inhibition, leading to increased 

seizure susceptibility (Kash et al., 1997). Although no human GAD mutations have been 

found to consistently cause epilepsy, mutations in co-factors that are necessary for GAD65 

function have been linked with early life seizures, as occurs in pyridoxine-dependent 

epilepsy (Kure et al., 1998). GABA acts through fast chloride-permeable ionotropic GABAA 

receptors and also through slower metabotropic G-protein-coupled GABAB receptors. Since 

there is no mutation that has been identified in GABAB receptors associated with epilepsy 

up to date, this review will only focus on GABAA receptors.

GABAA receptors

GABAA receptors are the primary mediators of fast inhibitory synaptic transmission in the 

central nervous system and have been repeatedly documented to play a critical role in animal 

models of seizures (Banerjee et al., 1998;Cohen et al., 2003;Evans et al., 1994;Feng et al., 

2001;Kapur and Macdonald, 1997;Karle et al., 1998;Kohling et al., 2000;Poulter et al., 

1999). These inhibitory receptors are hetero-pentomeric protein complexes composed of 

multiple subunits that form ligand gated, anion-selective channels. GABAA receptors are 

modulated by barbiturates, benzodiazepines, zinc, ethanol, anesthetics, and neurosteroids. 

GABAA receptors are formed by the assembly of multiple subunit subtypes (α1-α6, β1-β3, 

γ1-γ3, δ, ε, π, θ, and ρ1-ρ3). These GABAA receptor subunits are each encoded by a 

different gene and form chloride ion channels when assembled in a complete receptor. In the 

brain, GABAA receptors most commonly contain two α subunits, two β subunits, and a γ or 

δ subunit. The most common GABAA receptor is the α1β2γ2 subtype, but multiple subtype 

combinations exist. They vary in different brain regions and cell types and during different 

times in development. Subunit composition of GABAA receptor plays a major role in 

determining the intrinsic properties of each channel, including affinity for GABA, kinetics, 

conductance, allosteric modulation, probability of channel opening, interaction with 

modulatory proteins, and subcellular distribution.

Antiseizure drugs (ASDs) that take effect via enhancing GABAergic signaling

Potentiation of inhibitory neurotransmission mediated by GABA remains a key mechanism 

of ASD action as many ASDs are designed to work via modulating GABAA receptors or 

enhance GABAergic signaling. Additionally, some ASDs work via other mechanisms like 

limitation of sustained repetitive neuronal firing via blockade of voltage-dependent sodium 

channels or blockade of glutamatergic excitatory neurotransmission (Meldrum, 1996;Taylor 

and Meldrum, 1995). Neurons that use GABA as their neurotransmitter represent only a 

small fraction of neurons in regions that are essential to epileptic activity (Houser, 2014), 

such as the neocortex, hippocampus and amygdala. Parvalbumin interneurons have been 

shown to be associated with epileptic activity (Ma and Prince, 2012;Rubinstein et al., 2015). 

These inhibitory connections are vital in restraining the natural tendency of recurrently 
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connected excitatory neurons to undergo the transition through positive feedback into 

synchronized epileptiform discharges.

GABAA receptors that contain α1–3, 5 subunits and γ2 subunits are sensitive to 

benzodiazepines and γ2 subunits are critical for clustering the receptors at synapses 

contributing to phasic inhibition (Alldred et al., 2005). Phasic inhibition refers to the effects 

of GABA released at GABAergic synapses that binds to post-synaptic receptors located at 

the synaptic cleft, in contrast to extra- or peri-synaptic receptors that are activated by 

ambient GABA, which is referred as tonic inhibition. Phasic inhibition is primarily related to 

increased conductance when chloride channels open and hyperpolarization of post-synaptic 

membrane potential when chloride influx occurs. By contrast, δ-subunit-containing GABAA 

receptors are not present in synapses but in extra- or peri-synaptic regions. GABAA 

receptors that contain δ subunit can be potentiated by neurosteroids (Bianchi and 

Macdonald, 2003). This feature has been proposed to treat epilepsy. For example, 

Ganaxolone, a synthetic analog of allopregnanolone, has been proven to be beneficial for 

refractory focal epilepsy and infantile spasms (Broomall et al., 2014;Goodkin and Kapur, 

2009;Rogawski et al., 2013). A recent phase II study indicates Ganaxolone reduces partial-

onset seizures frequency (Sperling et al., 2017).

It is known that drugs blocking GABAA receptors, such as bicuculline and pentylenetetrazol, 

can cause seizures. This effect has been widely used in experimental animal models to study 

epilepsy. Conversely, enhancement of GABAA receptor-mediated inhibition is an effective 

antiepileptic approach that remains as a key mechanism for epilepsy drug discovery. Indeed, 

the first effective epilepsy treatment, bromide, works via enhancing GABAergic signaling 

(Krall et al., 1978). It has been demonstrated that bromide enhances GABA-activated 

currents in cultured neurons (Suzuki et al., 1994). Many ASDs have been developed because 

of their effect on GABAergic signaling potentiation. These drugs, including 

benzodiazepines, phenobarbital, felbamate, and topiramate, enhance the function of GABAA 

receptors. These drugs also include vigabatrin, tiagabine, gapapentin and valproate. Tigabine 

increases the level of GABAby blocking GAT-1, and hence, is classified as a GABA 

reuptake inhibitor (Rekling et al., 1990). Vigabatrin inhibits GABA-transaminase and 

increases brain GABA content (Petroff and Rothman, 1998). Valproate and gabapentin 

increase GABA synthesis and turnover (Loscher, 1989); both valproate and gabapentin have 

a range of activities that overlaps with those of drugs that are known to interact with GABA 

systems. In summary, these ASDs enhance GABAergic signaling either by enhancing 

GABAA receptor function or increasing GABA level in the synaptic cleft.

Mutations in genes that impair GABAergic signaling via pre-synaptic mechanisms

There are several epilepsy genes that may impair GABAergic signaling via pre-synaptic 

mechanism. It is possible that many other epilepsy genes whose biologic function is 

currently unknown may also be involved in this mechanism. Below we will discuss the 

genes that may directly or indirectly impair GABAergic signaling via pre-synaptic 

mechanisms.
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SCN1A mutations—Mutations in SCN1A are one of the main causes of genetic epilepsy 

(Anderson et al., 2002;Oliva et al., 2012). Loss of function mutations in SCN1A account for 

80% of the most severe kind of epilepsy, Dravet syndrome (Marini et al., 2011). Sodium 

channel mutations that are associated with accelerated recovery from inactivation and 

increased sodium channel activity (i.e., those that produce a gain of function) can lead to 

enhanced seizure susceptibility, as in the epilepsy syndrome GEFS+ (Spampanato et al., 

2001). The missense mutations in SCN1A are generally associated with relatively milder 

epilepsy syndromes like GEFS+ (Escayg and Goldin, 2010) while the loss of function 

mutations of SCN1A are associated with more severe epilepsy syndromes like Dravet 

syndrome (Meisler and Kearney, 2005). Although there is still some controversy over the 

findings in human-patient-derived induced pluripotent stem cells in which increased sodium 

current in both bipolar- and pyramidal-shaped neurons was observed (Isom, 2014;Liu et al., 

2013), it is generally believed that mutations in SCN1A impair GABAergic interneuron 

activity (Escayg and Goldin, 2010;Kalume et al., 2007;Kalume et al., 2013;Yu et al., 2006). 

Reduced firing of inhibitory neurons would affect GABA release. This is consistent with 

enhancing GABAA receptor function by clobazam or other analogs that attenuate the seizure 

severity and rescue related comorbidity like autistic traits in a Scn1a knockout mouse model 

(Han et al., 2012).

Syntaxin Binding Protein 1 (STXBP1) mutations

A mutation in STXBP1, a gene also known as Munc18–1, was initially discovered as a cause 

for Ohtahara Syndrome (Saitsu et al., 2008). Ever since, it has been associated with many 

other epilepsy syndromes in early childhood and became one of the most prominent genes 

for epileptic encephalopathy (Stamberger et al., 2016). STXBP1 is a main part of the 

synaptic fusion machinery, which includes syntaxin, synaptobrevin, and SNAP25—the three 

main components (Ma et al., 2013). By binding to syntaxin, STXBP1 protein orchestrates 

the assembly of the other components. Syntaxin enables vesicles to fuse with the plasma 

membrane. In cells, the so-called minimal fusion machinery provides the final “push” for the 

vesicle to fuse with the membrane through proteins that twist around each other and pull the 

vesicle close enough to fuse.

A STXBP1 knockout mouse model has been developed. In STXBP1 heterozygous knockout 

mice, the reduction of readily releasable vesicles was greater in GABAergic neurons than 

glutamatergic neurons (Toonen et al., 2006). This thus suggests the contribution of 

GABAergic signaling in epilepsy associated with STXBP1 mutations. However, the biologic 

functional study of STXBP1 is still very limited. It is reported that deletion of Munc18–1 in 

mice results in widespread neurodegeneration that remains poorly characterized. It has been 

demonstrated that the early stages of spinal motor circuit formation—including motor 

neuron specification, axon growth and pathfinding, and mRNA expression—are unaffected 

in Munc18–1(−/−) mice. This indicates that the role of STXBP1 in synaptic activity is 

dispensable for early nervous system development (Law et al., 2016). A study in human 

embryonic stem (ES) cells (Patzke et al., 2015) indicated that heterozygous STXBP1 
mutations lower the levels of Munc18–1 protein and its binding partner, the t-SNARE-

protein Syntaxin-1, by approximately 30% and decrease spontaneous and evoked 
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neurotransmitter release by nearly 50%. This suggests that heterozygous STXBP1 mutations 

cause early epileptic encephalopathy specifically through a pre-synaptic impairment.

DNM1 mutations—DNM1 is a GTPase and plays an important role in pinching off the 

vesicle from the plasma membrane. De novo mutations in DNM1 are a cause of severe 

epileptic encephalopathy like infantile spasms (Allen et al., 2013). Two recent publications 

have characterized the functional consequences of DNM1 mutations and find that the seizure 

phenotype is largely due to the deleterious effects of DNM1 mutations in GABAergic 

interneurons, while behavioral locomotor phenotypes may be due to the effect of the 

mutation in pyramidal cells (Asinof et al., 2016;Asinof et al., 2015). The loss of DNM1 in 

inhibitory neurons resulted in early onset lethal seizures with age at death ranging from 

postnatal 15–27 days old.

The mouse model of DNM1, referred to as the fitful mouse, is a spontaneous mouse mutant 

that was eventually found to have point mutation in DNM1 in the middle domain of the 

DNM1 protein. The mouse DNM1 gene has an alternatively spliced exon, which means that 

two variants of DNM1 are produced from a single gene. Previous studies (Asinof et al., 

2015;Boumil et al., 2010) suggest that the homozygous fitful mouse best recapitulates the 

heterozygous situation in humans given this alternative exon. Homozygous Dnm1 fitful mice 

develop severe seizures, ataxia, and usually die before the age of 14 days, while 

heterozygous DNM1 mice only have a mild epilepsy phenotype that starts at the age of 2–3 

months.

The findings indicate that when the wild-type DNM1 is deleted from GABAergic 

interneurons the mice develop an epilepsy phenotype. The affected neurons seem to be 

parvalbuminergic neurons, a subclass of GABAergic interneurons. Gene deletion in these 

cells alone is capable of producing the same epilepsy phenotype as the deletion in all cells. 

When expressed in other interneuron subsets, the epilepsy phenotype is milder. But when 

DNM1 was deleted from glutamatergic neurons and not GABAergic neurons, the animals 

with deletions in glutamatergic neurons did not develop seizures. However, these animal 

show abnormal locomotor, exploratory, and repetitive behaviors, suggesting that the 

glutamatergic gene deletion may in part be responsible for the non-epilepsy phenotypes in 

humans, such as developmental delay and autism. It is likely that different neuronal cell 

types in DNM1 encephalopathy may be responsible for different aspects of the disease. The 

effect of the mutation in GABAergic interneurons is responsible for the epilepsy phenotype 

(Asinof et al., 2015). In summary, this suggests selective deletion of DNM1 in GABAergic 

neuron is sufficient for seizure generation. The DNM1 mutations in patients with epileptic 

encephalopathies act in a dominant-negative manner which results in less efficient vesicle 

endocytosis. GABAergic interneurons may be particularly prone to disruptions of this 

function given their fast firing frequency.

PRRT2 mutations—Proline-rich transmembrane protein 2 (PRRT2 protein) is a pre-

synaptic transmembrane protein and a key component of the calcium-dependent 

neurotransmitter release machinery (Valente et al., 2016). It is thought that PRRT2 protein 

interacts with the vesicle cycle in several ways. First, it may act as one component of the 

SNARE complex itself. Secondly, it is involved in vesicle recycling. Third, it may have a 
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role in regulating the pre-synaptic ion channels that trigger the vesicle release. Mutations in 

PRRT2 protein are associated with benign familial infantile seizures (BFIS), paroxysmal 

kinesogenic dyskinesia (PKD) (Chen et al., 2011), infantile convulsions with choreoathetosis 

(ICCA) (Heron et al., 2012;Scheffer et al., 2012), and other atypical phenotypes. It is 

believed that PRRT2 protein interacts with members of the SNARE complex, namely 

SNAP25. The SNARE complex is involved in synaptic vesicle fusion and forms the minimal 

fusion machinery that allows synaptic vesicles to fuse with the plasma membrane. Both 

vesicles and the pre-synaptic membrane are lipid bilayers that repel each other. The synapse 

uses torsion of the proteins in the SNARE complex to overcome this repulsion – basically, 

the vesicle is pulled so close to the membrane that it eventually fuses. The detailed role of 

PRRT2 protein in modulating this process is unknown.

The mouse model of PRRT2 knockout recapitulates the neurological diseases associated 

with PRRT2 mutations (Michetti et al., 2017). This suggests haploinsufficiency of PRRT2 
underlies the pathophysiology of PKD, ICCA, and seizures associated with PRRT2 
mutations (Michetti et al., 2017). Although normal at birth, PRRT2 knockout mice display 

paroxysmal movements at the onset of locomotion that persist into adulthood. In addition, 

adult PRRT2 knockout mice present abnormal motor behaviors characterized by wild 

running and jumping in response to audiogenic stimuli and reduced seizure threshold. Patch-

clamp electrophysiology in hippocampal and cerebellar slices revealed specific effects in the 

cerebellum, where PRRT2 is highly expressed, consisting of a higher excitatory strength at 

parallel fiber-Purkinje cell synapses during high frequency stimulation. The results show that 

the PRRT2 knockout mouse reproduces the motor paroxysms present in the human patients 

carrying PRRT2 mutations. Although a recent study indicates that PRRT2 mutation results 

in a decrease in the frequency of vesicle release probability (Valente et al., 2016), it is 

unclear how PRRT2 mutation differentially affects inhibitory vs excitatory neurons. It is 

likely that mutations in PRRT2, as well as other genes that affect pre-synaptic mechanisms 

as mentioned above, affects both excitatory and inhibitory neurons. However, it is the effect 

on GABA neurotransmitter release that influences the epilepsy phenotype.

Mutations in other genes involved in impairing GABAergic signaling via pre-synaptic 
mechanisms

Mutations in other less-studied genes may also impair GABAergic signaling via pre-synaptic 

mechanisms. Since the initial discovery of STXBP1 in Ohtahara syndrome, several other 

genes coding for proteins in the pre-synaptic fusion machinery have been identified as genes 

for human epilepsies. In addition to those aforementioned mutations, STX1B and SNAP25 
have also been found to be mutated in patients with genetic epilepsies. The molecular 

defects of STX1B (Schubert et al., 2014) and SNAP25 (Rohena et al., 2013) may also 

involve pre-synaptic vesicle release. This emerging picture of impaired pre-synaptic vesicle 

release suggests that disruption of the regular function of pre-synaptic proteins may results 

in epilepsy. This mechanism may be counterintuitive given that global impairment of 

neurotransmitter release should primarily affect the excitatory neurons given the prominent 

presentation of pyramidal neurons in the brain. However, the epilepsy phenotype may be 

more related to the impairment of neurotransmitter release in GABAergic interneurons 
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resulting from the mutations. Consequently, this would result in overall reduced inhibition of 

neurotransmission, leading to a brain state more tilted toward convulsion.

The mutations that impair GABAergic signaling via post-synaptic mechanisms

As mentioned earlier, the neurotransmitter GABA activates both GABAA and GABAB 

receptors. Although there are reports that an antibody against GABAB receptor mediates 

epilepsy opsoclonus-myoclonus syndrome and ataxia (Hoftberger et al., 2013;Kruer et al., 

2014), there is no mutation identified in GABAB receptor subunit genes up to date. Thus, we 

will only focus on GABAA receptor mutations in this review article.

GABAA receptor subunits form a super family that contains 19 subunits. Mutations or 

variants in several GABAA subunits have been associated with epilepsies. These subunit 

genes include GABRA1, GABRB1, GABRB2, GABRB3, GABRG2, and GABRD (Ishii et 

al., 2017a;Johannesen et al., 2016;Kang and Macdonald, 2016;Macdonald et al., 

2006;Moller et al., 2017a). Most of these mutations have autosomal dominant inheritance, 

and thus the patients are heterozygous for the mutation. The seizures and epilepsy 

syndromes resulting from mutations in these GABAA receptor subunit genes include 

multiple GE syndromes and vary in severities. These include pure febrile seizures (FS) 

(Audenaert et al., 2006) and epilepsy syndromes such as CAE (Tanaka et al., 2008), mixed 

afebrile and febrile seizures (CAE and FS and GEFS+ including Dravet syndrome), and 

afebrile seizures (Baulac et al., 2001;Dibbens et al., 2004;Harkin et al., 2002;Kananura et 

al., 2002;Sun et al., 2008;Wallace et al., 2001). The epilepsy mutations include missense and 

nonsense mutations, as well as insertion or deletion mutations resulting in frame shift 

mutations in coding regions, and mutations in noncoding regions.

Epilepsy phenotypic heterogeneity of GABAA receptor subunit mutations—
There is a great phenotypic heterogeneity of epilepsy syndromes associated with GABAA 

receptor subunit gene mutations. For example, mutations in GABRA1 have been associated 

with childhood absence epilepsy (Maljevic et al., 2005), juvenile myoclonic epilepsy 

(Cossette et al., 2002), and generalized tonic clonic seizures (Lachance-Touchette et al., 

2011), as well as Dravet, Ohtahara, and West syndromes (Carvill et al., 2014;Kodera et al., 

2016). Studies from mouse models indicate that deletion of GABRA1 is sufficient to cause 

absence epilepsy (Arain et al., 2012). The knockin mice carrying GABRA1(A322D) 
displayed absence and myoclonic jerks (Arain et al., 2015). The functional consequence of 

GABRA1 mutations that are associated with Dravet syndrome has not been characterized.

Mutations in GABRG2 have been associated with a spectrum of seizures and generalized 

epilepsy syndromes. Phenotypes associated with both missense and nonsense mutations in 

GABRG2 are variable ranging from mild childhood absence epilepsy and febrile seizures 

(Baulac et al., 2001;Wallace et al., 2001), to GEFS+ and epileptic encephalopathies like 

Dravet syndrome(Harkin et al., 2002;Kang and Macdonald, 2016;Shen et al., 2017). The 

basis for the more severe epilepsy phenotypes with GABRG2 mutations are likely related to 

the extent of receptor function reduction and the metabolism of the mutant γ2 subunit 

protein (Kang et al., 2013). This notion is also supported by the comparison of two Gabrg2 
loss-of-function mutations in mouse models, which revealed that the mouse with production 

of the aggregation-prone mutant γ2 subunits had a more severe epilepsy phenotype than the 
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mouse that had simple Gabrg2 haploinsufficiency without the mutant γ2 subunit protein 

produced (Warner et al., 2016). Protein structure modeling indicates that different mutant γ2 

subunits have differing stabilities and interactions with their wild-type subunit binding 

partners because they adopt different conformations and have different surface 

hydrophobicities and different tendencies to dimerize. The mutant γ2 subunit associated 

with the most severe epilepsy phenotype is more likely to form dimers/oligomers than other 

γ2 mutants, and these oligomers are prone to form ring-like structures (Wang et al., 2016). 

However, to date, it is unknown if there is a predictable trend for how the type and location 

of mutation may correlate with disease severity.

Recently, many mutations in GABRB3 have been associated with febrile seizures, absence 

seizures, autism, infantile spasm, and Lennox-Gaustaut syndrome (Moller et al., 2017b). 

Some patients are associated with uncharacterized seizures and mental disability (Hamdan et 

al., 2014). The detailed biological consequences resulting from these mutations are less 

clear. The functional assays of GABRB3 mutations in an in vitro cell system indicate the 

mutations reduced receptor trafficking and gating, resulting in a reduced net channel 

function (Janve et al., 2016). Future study from an in vivo mouse model may shed more light 

on understanding the defect caused by GABRB3 mutations.

Mutations in GABRB2 and GABRD have also been associated with different epilepsy 

syndromes. The epilepsy phenotype of GABRB2 mutations include early onset myoclonic 

encephalopathy or generalized tonic clonic seizures and atypical seizures with intellectual 

disability (Ishii et al., 2017b;Srivastava et al., 2014). The mutations in GABRD are 

associated with febrile seizures and juvenile myoclonic epilepsy (Dibbens et al., 2004;Feng 

et al., 2006).

Impaired trafficking is a major abnormality resulting from GABAA receptor 
subunit gene mutations—We have demonstrated that loss or impairment of subunit 

protein on the cell surface is the most common defect for all the missense, nonsense, and 

other premature termination codon (PTC)-generating GABAA receptor subunit gene 

mutations, although gating defects has also been identified in some mutations. The reduced 

cell surface expression could be accompanied by a reduction of total subunit protein or, in 

some cases, an increased amount of the mutant protein intracellularly. This seems 

counterintuitive but the mutant protein is not functional, thus explaining the pathophysiology 

of disease phenotype. We demonstrated that the mutant GABAA receptor subunits (eg. 

GABRG2(R82Q), GABRG2(R136X), GABRG2(Q390X)) are retained inside the ER, which 

is the location where the immature GABAA receptor subunit resides once synthesized. With 

glycosylation studies, we have identified all the mutant subunits that have arrested 

glycosylation. When coexpressed with the wild-type partnering subunits, the mutant 

subunits only adopt the ER glycosylation that is the core glycosylation for the immature 

subunits, while the wild-type subunits have mature glycosylation, suggesting subunit 

trafficking beyond the trans-Golgi to the cell surface. The mutant subunits with only core 

glycosylation are retained in the ER, suggesting that they are nonfunctional.
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GABAA receptor mutations only cause loss or impaired function of the mutant subunit.

To date most insights into the functional defects are from studies in GABRG2 subunits, 

although some studies have been carried out in other GABR gene mutations. There are some 

GABRG2 mutations that may result in a simple loss of function, nearly a simple loss of, or 

impaired function of the subunit. For example, we have demonstrated that there was no 

dominant negative suppression by γ2(R136X) subunits on the wild-type partnering subunits 

like the α1 subunit (Johnston et al., 2014). These mutations often result in a mutant subunit 

protein that is readily degraded without much interference of the biogenesis and function of 

the remaining wild-type subunits. Alternatively, nonsense or PTC generating mutations 

could result in nonsense mediated decay (NMD) that eliminates the mutant allele at the 

mRNA level if the PTCs occur in an early exon and activate NMD. The functional 

consequence of these mutations would be similar to the Gabrg2+/− knockout condition, 

which may represent a simple haploinsufficiency condition. It is interesting that mutations in 

GABRG2 are more likely to be associated with febrile seizures than other GABAA receptor 

subunits (Boillot et al., 2015).

GABAA receptor epilepsy mutations cause cellular toxicity in addition to the 
loss or impaired function of the mutant subunit—Some GABAA receptor mutations 

may cause severe dominant negative suppression of the wild-type GABAA receptors while 

some mutations only cause simple haploinsufficiency or mild dominant negative suppression 

of the wild-type subunits. We have extensively studied GABRG2 nonsense mutations and 

identified the degradation rate of the mutant protein is likely the modifier of dominant 

negative suppression and epilepsy phenotype (Kang et al., 2013). Using the nonsense 

GABRG2 mutations as example, despite loss of function for all the truncated subunits, we 

have demonstrated that R136X has no dominant negative effect on the remaining α1β2 

subunits and Q390X has a strong dominant negative suppression of the wild-type subunits, 

while W429X has a mild dominant negative effect on the remaining α1β2 subunits (Kang et 

al., 2009;Kang et al., 2013). Thus the degree of dominant negative suppression of each 

mutant γ2 subunit varies, likely depending on the specific structural disturbance of each 

specific mutation (Wang et al., 2016).

The comparison of mouse models of Gabrg2 knockout and Gabrg2+/Q390X knockin mice has 

validated the hypothesis from in vitro studies. Gabrg2 knockout mice displayed infrequent 

absence epilepsy in a seizure prone genetic background or only hyper-anxiety (Crestani et 

al., 1999;Reid et al., 2013;Warner et al., 2016). By contrast, Gabrg2+/Q390X knockin mice 

displayed spontaneous seizures, multiple neuropsychiatric comorbidities, and sudden death, 

featuring the major presentations of Dravet syndrome (Kang et al., 2015). Consistently, data 

from both in vitro and in vivo models indicate a slight compensatory increase of wild-type 

subunits in the half gene dose or heterozygous Gabrg2+/− knockout condition but a reduction 

of wild-type subunits in the dominant negative mutant condition. In addition to impaired 

channel function, the mutations with dominant negative suppression may also cause 

neuronal injury or death because of the sustained production and accumulation of the mutant 

toxic protein. The mutant subunits with dominant negative suppression are likely to form 

protein aggregates and may disturb cellular homeostasis because of the sustained production 

of the mutant protein (Kang et al., 2015).
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Conclusions—The findings from clinic patients and experimental animal models indicate 

impaired GABAergic signaling is a common converging pathway underlying multiple 

epilepsy syndromes associated with these ion channel or non ion channel mutations. This 

thus suggests that modulating GABAergic signaling remains as an essential therapeutic 

approach for genetic epilepsy. Although the diagnosis can be highly precise with genetic 

sequencing, it is unlikely that each specific epilepsy syndrome could have a specific drug 

developed with the capacity of current technology. It is critical to identify a few common 

converging pathways that could serve as therapeutic target for more than one epilepsy 

syndrome. In this scenario, enhancing GABAergic signaling would be an ideal—if not the 

best—choice for therapeutic target.

Traditionally, there are a few approaches to enhance GABAergic signaling, which include 

increasing GABA and enhancing GABAA receptor function. One approach to increase 

GABA levels is via modifying or inhibiting the activity of enzymes and transporters that 

alter the dynamics of GABA. The examples of ASDs that modify GABA dynamics include 

valproate, gabapentin, and vigabatrin, which increase cellular GABA by inhibiting GABA-

transaminase. Another approach is to selectively increase GABA release. However, there is 

no ASD available for this specific action. Currently, one of the widely used ASDs, 

levetiracetam (Keppra), specifically binds to the synaptic vesicle protein SV2A and reduces 

excitatory neurotransmitter release during trains of high frequency activity. SV2A knockout 

mice display a severe seizure after the first week indicating that SV2A may regulate 

signaling cascades involved in seizure generation (Crowder et al., 1999). Keppra has also 

been reported to affect both glutamate and GABA release (Meehan et al., 2012) but the 

vesicular release machinery may act differentially in glutamatergic and GABAergic nerve 

terminals (Janz et al., 1999). In the future, more selective ASDs could be designed to 

specifically enhance GABA release or reduce glutamate release if the vesicular release 

mechanisms that differentiate pyramidal cells and interneurons are clearly elucidated.

In addition to traditional ASDs, promoting protein trafficking would be another reasonable 

approach to enhance GABAergic signaling. Although there is no data available, based on the 

findings from GABRG2 mutations (Wang et al., 2016;Warner et al., 2016;Xia et al., 2016), 

promoting GABAA receptor trafficking could attenuate disease phenotype. Potential 

therapeutic approaches would include increasing wild-type and/or mutant GABAA receptor 

channel numbers and function, or decreasing the disturbance of the cellular signaling by the 

presence of the mutant GABAA receptor subunit protein. The drug, whether via direct 

modulation of the receptor function or increasing receptor trafficking, should be effective in 

compensating the lost or impaired GABAA channel function. Thus, a combined therapeutic 

strategy to enhance the wild-type GABAA receptor channel function and eliminate 

production of mutant protein or promoting protein homeostasis might be beneficial.

Rapid advances in gene editing technology like CRISPR/Cas9 have brought new hope for 

the treatment of genetic diseases including epilepsies. For example, a recent report on using 

CRISPR/Cas9-mediated gene editing has successfully ameliorated neurotoxicity and 

alleviated disease phenotype in a mouse model of Huntington’s disease (Yang et al., 2017). 

Given that CRISPR/Cas9 can permanently eliminate the expression of targeted genes, use of 

this approach should be able to remove the mutant allele, thus preventing the production of 
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the mutant protein and attenuating disease phenotype, especially in the condition with a 

dominant negative mutation like GABRG2(Q390X).
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Highlights

1. Impaired GABAergic signaling is a converging pathway for epilepsies 

associated with mutations in several unrelated genes.

2. GABAergic signaling could be impaired via pre- and post-synaptic 

mechanisms.

3. Mutations in some genes like STXBP1, DNM1, PRRT2 and SCN1A may 

impair GABA release via pre-synaptic mechanisms.

4. Mutations in some genes like GABRA1, GABRG2, GABRB2 and GABRB3 
impair GABAergic signaling via post-synaptic mechanisms.

5. Modulating GABAergic signaling remains an essential therapeutic approach 

for genetic epilepsies.
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Figure 1. 
GABA signaling. In GABAergic interneurons, the neurotransmitter GABA is synthesized 

from glutamic acid, the principal excitatory neurotransmitter via glutamic acid 

decarboxylase (GAD). GABA is catabolized by GABA transaminase (GABA-T) which is a 

membrane bound enzyme expressed by neurons and glia. GABA is released from vesicles in 

pre-synaptic terminals and activates GABA receptors which include GABAA receptors and 

GABAB receptors. GABAA receptors hyperpolarize neurons via Cl- influx. The released 

GABA is taken up by GABA transporters (GAT-1 and GAT-3) back into pre-synaptic 

compartments of neurons or into astrocytes.
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Figure 2. 
Mutations via impairing both pre-synaptic GABA neurotransmitter release and post-synaptic 

GABAA receptor expression and function can affect GABAergic signaling. Synaptic 

transmission relies on the availability of the neurotransmitter; the release of the 

neurotransmitter by exocytosis and the binding of the normal functional postsynaptic 

receptor by the neurotransmitter. (A). Interneurons are the main source of cortical 

modulation over glutamatergic pyramidal cells (PCs). GABA-releasing interneurons as 

classified by a complex combination of morphological, connectivity, and intrinsic 

electrophysiological properties and molecular content are critical for cortical inhibition. (B). 

Mutations associated with epilepsy could impair both the proteins involving in pre-synaptic 

GABA release and post-synaptic GABAA receptor function.
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Figure 3. 
Diverse defects caused by mutations in different genes impair GABA neurotransmitter 

release. In a given neuron, opening of sodium channels encoded by SCN1A and influx of Na

+ cause neuronal firing in which sodium channels are responsible for the rising phase of 

action potentials. Calcium enters the axon terminal during an action potential, causing 

release of the neurotransmitter into the synaptic cleft. Synaptogamin acts as a calcium sensor 

which binds calcium and activates vesicle fusion. Gene mutations that encode proteins 

involved in the process of vesicle release include but are not limited to PRRT2, SNAP25, 

syntaxin, STXBP1 and DNM1. Although the biological function of each gene still requires 

further study, it has been proposed that these proteins are essential for making up the 

complicated vesicle release machinery for vesicle docking, fusion and exocytosis.
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Table 1.

EE genes affecting GABAergic signaling and their postulated molecular defects.

 GENE  LOCUS  pre- or post-
synaptic 
mechanism

 POSTULATED MECHANISMS  PHENOTYPES REFERENCES
(for mechanisms)

SCN1A 2q24 pre-synaptic impaired interneuron activity GEFS+, DS Yu et al, 2006

PRRT2 16p11.2 pre-synaptic impaired neurotransmitter release? IS,EE, PKD Valente et al, 2016

STXBP1 9q34.11 pre-synaptic impaired neurotransmitter release? GEFS+, DS Patzke et al., 2015

STX1B 16p11.2 pre-synaptic impaired neurotransmitter release? FS, epilepsy Schubert et al, 2014

SNAP25 20p12.2 pre-synaptic impaired neurotransmitter release? epilepsy and ID Rohena et al., 2013

DNM1 9q34.11 pre-synaptic impaired neurotransmitter release? IS, LGS, EE Asinof et al 2015

GABRA1 5q34 post-synaptic NMD, ERAD CAE, JME, EE, DS Kang et al, 2009

GABRB2 5q34 post-synaptic ERAD, reduced surface expression EME Ishii et al, 2016

GABRB3 15q12 post-synaptic reduced surface expression, gating defect CAE, IS, LGS, DS Janve et al, 2016

GABRG2 5q34 post-synaptic NMD, ERAD,gating defect, neuronal injury FS, GEFS+,DS,EE Kang et al, 2016

DS=Dravet syndrome, IS=infantile spasm, EE=epileptic encephalopathy

PKD=paroxysmal kinesigenic dyskinesia, ID=intellectual disability

CAE=childhood absence epilepsy, JME=Juvenile myoclonic epilepsy

EME=early myoclonic encephalopathy, FS=febrile seizures

LGS=Lennox Gaustaut syndrome

GEFS+=generalized epilepsy with febrile seizure plus
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