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Abstract

Near infrared spectroscopy (NIRS) is an imaging-based diagnostic tool that provides non-invasive 

and continuous evaluation of regional tissue oxygenation in real-time. In recent years, NIRS has 

shown promise as a useful monitoring technology to help detect relative tissue ischemia that could 

lead to significant morbidity and mortality in preterm infants. However, some issues inherent in 

NIRS technology use on neonates, such as wide fluctuation in signals, signal dropout and low 

limit of detection of the device, pose challenges that may obscure reliable interpretation of the 

NIRS measurements using current methods of analysis. In this paper, we propose new 

nonparametric statistical methods to analyze mesenteric rSO2 (regional oxygenation) produced by 

NIRS to evaluate oxygenation in intestinal tissues and investigate oxygenation response to red 

blood cell transfusion (RBC) in preterm infants. Specifically, we present a mean area under the 

curve (MAUC) measure and a slope measure to capture the mean rSO2 level and temporal 

trajectory of rSO2, respectively. We develop estimation methods for the measures based on 

multiple imputation and spline smoothing and further propose novel nonparametric testing 

procedures to detect RBC-related changes in mesenteric oxygenation in preterm infants. Through 

simulation studies, we show that the proposed methods demonstrate improved accuracy in 

characterizing the mean level and changing pattern of mesenteric rSO2 and also increased 

statistical power in detecting RBC-related changes, as compared with standard approaches. We 

apply our methods to a NIRS study in preterm infants receiving RBC transfusion from Emory 

Univerity to evaluate the pre- and post-transfusion mesenteric oxygenation in preterm infants.
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1 Introduction

Near infrared spectroscopy (NIRS) technology is a diagnostic tool to non-invasively and 

continually evaluate regional tissue oxygenation in real-time.1 This type of monitoring has 

particular clinical significance as relative tissue ischemia is captured by NIRS producing 

decreased rSO2 (regional oxygenation) measurements.1 The application of NIRS in very low 

birth weight (VLBW) infants has great appeal, especially due to the non-invasive application 

and continuous monitoring, as these infants are vulnerable to diminished oxygen delivery to 

many vital tissues including cerebral, mesenteric, and renal.1–5 The consequences related to 

inadequate oxygenation of these organs causes significant morbidity and mortality in 

preterm infants. One such morbidity is necrotizing enterocolitis (NEC), which is an 

intestinal inflammatory disease with a multifactorial etiology.6,7 Factors contributing to NEC 

include abnormal intestinal microbiota and ischemia, possibly from inadequate oxygen 

delivery from anemia or abnormal vascular regulation.8,9 Given the high-case fatality rate 

and limited treatment options once an infant develops NEC, new tools and approaches are 

greatly needed to identify infants who are most likely to develop NEC or have worse 

outcomes once they have the disease. Towards this end, several studies have started utilizing 

NIRS in assessing mesenteric oxygenation in the setting of VLBW preterm infants.10,11 

Compared with alternative tools such as color Doppler and ultrasonography which cannot be 

performed continuously to follow evaluation of disease,12 NIRS provides a significant 

advantage for monitoring real-time changes in oxygen extraction within tissue beds, hence 

allowing direct and continuous comparison of how much oxygen is being delivered vs. 

consumed in different (or regional) organ tissue beds.2 Recent studies have suggested a 

temporal relationship between red blood cell (RBC) transfusion and NEC onset,13 but a 

specific mechanism has yet to be determined. Some reports suggest enteral feeding 

continuation during RBC transfusion decreases mesenteric oxygenation.14 Moreover, recent 

studies have demonstrated that the severity of anemia (hemoglobin per week of ≤ 8 g/dL), 

not RBC transfusion exposure, is associated with NEC.9 Many prospective observational 

investigations have started utilizing NIRS to examine these aforementioned relationships.

Although NIRS technology has shown great promises as an effective and non-invasive new 

tool for monitoring VLBW infants and potentially for early detection of NEC, there is no 

systematic or consistent methodological approach to analyze the NIRS data output. 

Moreover, NIRS technology use on neonates poses several challenges that may obscure 

reliable statistical interpretation using current methods of analysis. For example, raw rSO2 

measurements are often highly variable which may mask the underlying temporal changing 

pattern in oxygen extraction. Second, currently used NIRS devices generally produce an 

rSO2 measurement range of 15% to 95% as any measurement beyond this scale becomes 

nonspecific and unreliable. Because of this design, signal ‘‘dropout’’ may occur in severely 

compromised tissue beds due to the 15% low detection cut-off, which potentially leads to 

biased results in the subsequent analysis. Furthermore, as with all transcutaneous monitor 

devices, loose sensor adherence may cause periods of artifact, especially on tenuous skin 

surfaces of VLBW infants. These issues may lead to imprecise results using conventional 

analysis of intestinal rSO2, which exhibit greater variability than other tissues beds such as 

cerebral and renal.15
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In this paper, we develop a nonparametric statistical framework to characterize infants’ 

mesenteric oxygen saturation and its changes as they relate to RBC transfusion. We propose 

to model the observed rSO2 time series with a nonparametric smooth function, estimated via 

penalized regression splines,16 to capture the underlying biological process of mesenteric 

oxygen saturation. We present two new statistical measures for accurately characterizing 

important features in rSO2 series. The first measure is a mean area under the curve (MAUC) 

statistic that reflects the average rSO2 levels during a specific time period. The second is a 

slope measure that reflects the rate and direction of temporal change in rSO2 trajectory 

during the pre- and post-transfusion period. These two measures capture different aspects of 

temporal dynamics of the regional oxygenation. We present robust estimation approaches 

and nonparametric tests for the MAUC and slope measure. The proposed inference 

procedures can adjust for the detection limit problem in the NIRS device, improve accuracy 

in characterizing the mean level and trajectory of rSO2 and increase statistical power in 

detecting RBC-related changes in infants’ mesenteric oxygen saturation.

Our proposed methods address some of the challenging issues in NIRS rSO2 data analysis, 

result interpretation, and clinical relevance of findings. Through simulation studies and 

application to a real-world NIRS data example, we illustrate the advantages of the proposed 

methods over existing approaches. We have developed an R package NIRStat for 

implementing the methods in the paper and made it available on CRAN.

2 Motivating data example

The motivating data were from a previous prospective observational study investigating the 

effect of RBC transfusion on mesenteric oxygenation measured by NIRS conducted at a 

level III neonatal intensive care unit (NICU) in Emory University Hospital Midtown at 

Atlanta, Georgia.17 The decision to transfuse was determined by the attending neonatologist 

independent of this study. Infants with congenital anomalies, intraventricular hemorrhage 

Grade III or greater, hemodynamically significant patent ductus arteriosus, requiring 

vasopressor support or previous NEC were excluded from this study. Nineteen VLBW 

infants were enrolled in the study and mesenteric rSO2 NIRS measurements were obtained 

30 min prior to each RBC transfusion, during transfusion, and up to 48 h following 

transfusion completion. Among the 19 enrolled infants, five were excluded from the analysis 

because they either developed NEC during transfusion or received split transfusions, i.e. two 

half doses separated by 12 h. For our analysis, we included data collected on the remaining 

14 infants who received RBC transfusions. Per study protocol, all transfusions throughout 

their hospitalization were monitored with mesenteric NIRS and the transfusion approach 

was guided per the clinical team. Of the 14 infants, four received two transfusions during 

their hospitalization producing 18 NIRS data sets for analysis. The mean (SD) birth 

gestational age was 27.6 (2.21) weeks and birthweight was 1039 (256.3) g. Of the 14 infants, 

10 were male, 11 were black, and all were appropriate for gestational age.

Mesenteric rSO2 values were measured using an FDA-approved NIRS somatic oximeter 

(INVOS 5100C; Covidien, Boulder, CO, USA). The INVOS 5100C (Covidien) is a 

frequently used NIRS device for neonatal clinical research because the rSO2 values 

produced are 75% venous weighted with 25% arterial and capillary measured, which 
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provides a highly sensitive evaluation of actual tissue oxygenation. NIRS produces an rSO2 

value that reflects total oxygen bound to hemoglobin. The measured value is the result of the 

amount of oxygen delivered minus oxygen consumed at the tissue level, reflecting tissue 

oxygenation. Data were recorded every 30 s in real-time before, during, and up to 48 h after 

each RBC transfusion event. NIRS sensor probes were placed on the infant mid-abdomen, 

below the umbilicus for the mesenteric readings.

3 Methods

In this section, we present two statistical measures for characterizing the features in the rSO2 

measurements during pre-transfusion and post-transfusion time-period. These two measures 

capture different aspects in rSO2 temporal pattern.

3.1 Mean area under the curve

To set notation, let Y(tk) denote the rSO2 value measured at time tk{k = 1,…,K} for a 

subject and Y={Y(tk), k = 1,…,K}, we assume the following nonparametric model for the 

observed rSO2 series

Y(tk) = μ(tk) + ε(tk) (1)

where μ(t) denotes a smooth function representing the oxygen saturation biological process 

underlying the observed rSO2 series and ε(t) is a zero-mean random process representing the 

variability of the observed data around the underlying smooth biological function. To 

capture the average oxygen saturation level, we propose a MAUC statistic based on the 

smooth function μ(t) Specifically, MAUC of μ(t) within a time interval (a,b) is defined as 

follows

MAUC(a, b)=
∫ a

bμ(t)dt
b − a (2)

The MAUC essentially represents the average mesenteric oxygen saturation level during a 

given time interval. This is the most commonly used information from NIRS rSO2 series for 

monitoring infants.

To estimate MAUC, we first obtain a smoothing spline estimate μ(t) based on penalized 

regression splines18 where the smoothing parameter is chosen based on Generalized Cross 

Validation (GCV) criterion.19 The estimate of MAUC is then obtained from μ(t) One issue in 

MAUC estimation is that the rSO2 measurements acquired by current NIRS devices have a 

low detection cut-off at 15% which can potentially cause biased estimate of the average 

rSO2 level. To address this issue, we consider a multiple imputation approach which has 

been shown to be an effective strategy to help reduce bias due to limit of detection problem.
20,21
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In the following, we present the algorithm for estimating the MAUC within an interval (a,b) 

based on a set of observed rSO2 Y = {Y(tk), k = 1,…,K}.

Algorithm 1. Estimation of MAUC—Step 1: For the mth imputation (m = 1,…, M), for 

an observed rSO2 at the detection limit in the observed rSO2 series Y, i.e. Y(tj) = 15%, we 

generate a random value Ym* tj  from the uniform distribution U(0,15%) which will be used 

as the mth imputed value for Y(tj). Repeat the imputation for all the observations at the 

detection limit in Y. The new set of observations with the imputed values is then denoted as 

Ym
∗ .

Step 2: Using the penalized regression spline method, obtain a smoothing spline estimate 

μ(t) based on the imputed data Ym*  and then derive the estimate MAUCm* a, b  based on μm(t)

following equation (2).

Step 3: Repeating Steps 1 and 2 for M times, the imputation-based estimator of MAUC is 

derived as follows

MAUC∗(a,b) = 1
M ∑

m = 1

M
MAUCm

∗ (a, b)

We also present the following variance estimator for MAUC*(a,b) proposed in Algorithm 1

1
M ∑

m = 1

M
Wm

AUC + 1 + 1
M BAUC

where BAUC is the between-imputation sample variance of MAUCm* a, b  (m = 1,…,M) and 

Wm
AUC is the variance of MAUCm* a, b  within its specific imputed dataset which can be 

estimated by the block bootstrap approach which takes into account the temporal 

correlations in the rSO2 series.

3.2 A nonparametric test for the difference in MAUC between pre- and post-transfusion 
period

A main goal in the NIRS study is to examine transfusion-related changes in rSO2. To this 

end, we present a nonparametric permutation test to examine the difference in MAUC 

between the pre- and post-transfusion period. For a given infant, we denote the pre-

transfusion rSO2 time series as Ypre = {Ypre(tk), k = 1,…,Kpre} where t1 is set as 0 and Kpre 

is the total number of rSO2 measurements recorded during pre-transfusion period for the 

infant and {tk} is the series of time points when rSO2 values were recorded. We denote the 

post-transfusion rSO2 time series as Ypost = {Ypost(tk), k = Kpre + 1,…, Kpre + Kpost} where 

Kpost is the total number of rSO2 measurements recorded during post-transfusion period for 

the infant. Using the method in Section 3.1, we can estimate the MAUCpre
∗  and MAUCpost

∗
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based on the observed Ypre and Ypost, respectively. We then evaluate the pre- to post-

transfusion changes in the MAUC as

ΔMAUC = MAUCpost
∗ − MAUCpre

∗

We consider the following permutation test to examine whether there is significant change 

between the MAUC from the pre- and post-transfusion periods. In the proposed test, we 

permute the temporal orders in the observed rSO2 series collected within each subject during 

the pre- and post-transfusion period to generate a null distribution of the test statistics under 

the null hypothesis that there are no differences in MAUC between pre-transfusion and post-

transfusion periods. As mentioned, an issue with the observed rSO2 is the presence of low 

detection limit. To appropriately account for this matter, we present a multiple imputation 

(MI) nested permutation test procedure

Algorithm 2. a MI nested permutation test—(1) For g=1,…G, (The permutation 

procedure)

Let k j
(g)

j = 1

K pre + K post
 be the g th permutation of index{1,…,Kpre+Kpost}, and t

k j
(g)  are the 

corresponding permuted time points, let Y pre
(g) = Y pre(t

k j
(g)

j = 1

K pre

 and 

Y post
(g) = Y post(tk j

(g)
j = K pre + 1

K pre + K post

 denote the pre-transfusion and post-transfusion rSO2 series 

based on the g th permutation and we further denote Y(g) = Y pre
(g) , Y post

(g) .

(2) For m = 1,…,M, (The multiple imputation procedure)

(a) For each observed rSO2 at the detection limit 15% in Y(g),generate a random value from 

the uniform distribution U(0,15%) and use it as the mth imputed value. Repeat the 

imputation for all the observations at the detection limit in Y(g). The new set of observations 

with the imputed values is then denoted as Ym
(g) ∗ = Ym, pre

(g) ∗ , Ym, post
(g) ∗ .

(b) Obtain an estimate of the MAUCm, pre
(g) ∗  and MAUCm, post

(g) ∗  for the pre- and post-transfusion 

periods based on Ym, pre
(g) ∗ , Ym, post

(g) ∗  respectively, and then evaluate the pre- to post-transfusion 

changes in the MAUC as

Δm, MAUC
(g) = MAUCm, post

(g) ∗ − MAUCm, pre
(g) ∗

After repeating step a. and b. for m = 1,...,M, the MAUC difference estimate for the g th 

permuted sample is derived as
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ΔMAUC
(g) = 1

M ∑
m = 1

M
Δm, MAUC

(g)

(3) After repeating steps (1) and (2) for g = 1,…,G, we derive the permutation test p-value 

for ΔMAUC based on the empirical distribution of ΔMAUC
(g)

g = 1
G

 as follows

PMAUC
perm = 1

G ∑
g = 1

G
I ΔMAUC

(g) > ΔMAUC

3.3 The slope of the rSO2 trajectory

The MAUC measure proposed Section 3.1 reflects the average level of rSO2 during a period 

of time. When monitoring an infant’s condition with the NIRS technology, another 

important feature is how a subject’s oxygen level changes across time. The temporal 

trajectory of the rSO2 measurements can provide information on whether the oxygen level 

remains stable, is experiencing a fast decrease indicating a quick deterioration in the 

intestinal condition, or shows significant increase after the transfusion. The temporal pattern 

is of interest for researchers because it potentially provides a sensitive measure to capture 

modifications in the status of a baby, where a positive slope with an increase in rSO2 

indicates potential improvement in the health status of a baby and a significant negative 

slope with decrease in rSO2, indicating the condition of the baby is deteriorating.

To capture the trajectory in rSO2 levels, the naïve method is to fit linear models to the 

observed rSO2 measurements Ypre and Ypost, respectively and then compare the difference 

in the estimated slopes during pre- and post-transfusion periods. Though straightforward to 

apply, this naïve approach has several limitations. It does not take into account the NIRS 

device’s low detection cut-off. The linear model is fitted based on raw rSO2 measurements 

which are highly noisy. This can potentially lead to inaccuracy and high variability in the 

estimated slopes, which in turn decreases the statistical power in detecting the pre- to post-

transfusion changes in the trajectories.

To more reliably capture the trajectory, we propose to model the observed rSO2 series using 

the nonparametric model in equation (1) and then fit a linear model to the smooth function 

µ(t). The slope parameter in the linear model represents the temporal change rate in the 

underlying biological process. To take into account the detection limit at 15%, we apply the 

multiple imputation approach. The following algorithm summarizes the steps for estimating 

the slope parameter based on the observed rSO2 series Y = {Y(tk), k = 1,.. .,K}.

Algorithm 3. Estimation of the slope measure—Step 1: For the mth imputation (m = 
1,…,M), for an observed rSO2 at the detection limit in the observed rSO2 series Y, i.e. Y(tj) 

= 15%, we generate a random value Ym* tj  from the uniform distribution U(0,15%) which 

will be used as the mth imputed value for Y(tj). Repeat the imputation for all the 
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observations at the detection limit in Y. The new set of observations with the imputed values 

is denoted as Ym* .

Step 2: Using the penalized regression spline method, obtain a smoothing spline estimate 

μm(t) based on the Ym*  and then obtain the slope parameter estimate βm, 1
∗  by fitting a linear 

model to μm(t), i.e.

μm(t) = βm, 0 + βm, 1
∗ t

Step 3: Repeat Steps 1 and 2 for M times, and the imputation-based estimator of the slope is 

derived as follows

β1
∗ = 1

M ∑
m = 1

M
βm, 1

∗

The variance estimator of β1,
∗  1 can be obtained as follows

1
M ∑

m = 1

M
βm

β + 1 + 1
M Bβ

where Bβ is the between-imputation sample variance of βm, 1
∗  (m = 1,…,M), and Wm

β  m is the 

variance of βm, 1
∗  within its specific imputed dataset which can be estimated by the block 

bootstrap approach where bootstrap samples were generated based on block bootstrap 

resamples of residuals from the fitted linear model.

To test whether there is significant change in the slope from pre- to post-transfusion period, 

we first apply Algorithm 3 to estimate the pre- and post-transfusion slope parameters β1, pre
∗

and β1, post
∗  based on Ypre and Ypost, respectively. We then evaluate the pre- to post-

transfusion changes in the slope as

Δslope = β1, post
∗ − β1, pre

∗

To derive the p-value for testing the significance of the change in slope, we apply an MI-

nested permutation test procedure similar as the testing procedure presented in Algorithm 2. 

One slight difference with the slope test is that in the permutation procedure we permute the 

time points in pre-transfusion data Ypre and the time points in the post-transfusion data Ypost 

separately to generate each permuted sample. This permutation strategy will help avoid 

potential confounding effects due to the difference in the mean rSO2 levels in the pre- and 

post-transfusion periods when we test on the slope difference.
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4 Simulation studies

We conducted simulation studies to evaluate the performance of the proposed methods in 

comparison with alternative methods. First, we performed a simulation study to evaluate the 

accuarcy of the proposed MAUC method in estimating the mean rSO2 level between the pre- 

and post-transfusion periods. We simulated mesenteric rSO2 series data that mimic the 

characteristics of the real rSO2 series observed in the study. Specifically, we first generated 

the underlying smooth function μ(t) based on the biological process estimated from real 

rSO2 time series, hence capturing realistic oxygenation temporal dynamics. We then 

generated the residual time series, which incorporate the random variations in the observed 

rSO2 measurements around the underlying smooth function. Specifically, we adopted the 

linear process bootstrap (LPB) approach22 to simulate residual time series by bootstrapping 

the real residual time series estimated from the observed rSO2 data. As a technique 

developed for bootstrapping-dependent time series data, LPB has an important advantage in 

that it can generate residual time series that maintain the covariance structure in the real 

rSO2 series. The simulated residual time series were then added to the smooth function to 

generate the observed NIRS rSO2 measurements. As in the real data, we incorporated the 

detection limit by replacing any rSO2 measurement below 15% with 15%. We considered 

three simulation settings with different combinations of pre-transfusion and post-transfusion 

mean rSO2 levels. The percentage of observations at the detection limit ranged between 10% 

and 50% across the settings, which were in compliance with our observation from the real 

data. We applied the proposed MAUC method to estimate the mean rSO2 level at pre- and 

post-transfusion periods and then estimate the difference between the two periods. In 

comparison, we considered the standard estimates based on sample means of the observed 

rSO2 data. Furthermore, we evaluated the performance of the proposed MI-nested 

permutation test vs. the standard t-test for detecting changes in mean rSO2 from pre- to post-

transfusion. We compared both the type I error rate as well as the statistical power of the two 

tests.

In the second simulation study, we evaluated the performance of the proposed slope 

measure. We first generated the underlying smooth function based on estimates from real 

rSO2 time series. Specifically, we first generated a zero-slope μ0(t) by detrending and 

demeaning an estimated smooth curve from real rSO2 time series. We then added linear 

trends associated with specified slopes to μ0(t) to generate μ(t) with temporal trajectories. 

Then, residual time series simulated using the LPB approach were added to μ(t) to generate 

the observed NIRS rSO2 series. We considered three simulation settings with different 

combinations of pre-transfusion and post-transfusion slopes including: a no slope difference 

setting with no linear trend at either pre- and post-transfusion periods, a moderate slope 

difference setting with no linear trend at pre-transfusion and a positive linear trend after 

transfusion, and a large slope difference setting with a negative linear trend in pre-

transfusion period and a positive trend in post-transfusion. We compared the accuracy of the 

proposed slope estimate in Algorithm 3 and the naïve slope estimate based on linear 

regression modeling of the rSO2 observations. Furthermore, we evaluated the performance 

of the proposed slope test versus the naïve slope test in detecting pre- to post-transfusion 

changes in the slope.
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Table 1 presents the results for estimating the mean rSO2 levels between pre- and post-

transfusion periods. Results show that as compared with the standard sample-mean based 

method, the proposed MAUC-based method demonstrated much lower bias in estimating the 

mean rSO2 levels during the pre- and post-transfusion periods across all simulation 

scenarios. The proposed method also showed higher accuracy in estimating the pre- to post-

transfusion changes in mean rSO2 levels. Especially, when the percentage of observations at 

the detection limit was inbalanced between the pre- and post-transfusion periods, the 

standard method had a large bias in estimating the mean changes in rSO2 while the proposed 

method demonstrated very small bias. Figure 1 presents the type I error and power in 

detecting the changes in mean rSO2 levels based on the proposed MI-nested permulation test 

for MAUC and the standard t-test based on the differences in the sample means. Results 

show that the type I error of the proposed test was closer to the nominal level under the null 

when there was no difference between pre- and post-tranfusion mean rSO2 level. When the 

pre- to post-transfusion difference in the mean rSO2 increased, the power to detect the 

difference rised in both tests but the proposed test in general demonstrated much higher 

power as compared with the standard t-test.

Table 2 presents the results for estimating the slope of the rSO2 series during pre- and post-

transfusion periods. Results show that as compared with the naïve slope estimate, the 

proposed slope estimate demonstrated much lower bias in estimating the slope of the rSO2 

series during the pre- and post-transfusion periods. The proposed method also showed 

higher acuracy in estimating the changes in the slope from pre- to post-transfusion. 

Furthermore, for testing the changes in slope, Figure 2 shows the proposed testing procedure 

demonstrated type I error that was closer to the nominal level under the null when there was 

no pre- to post- transfusion difference. When there was a difference between the pre- and 

post-transfusion slopes, the proposed test procedure had better power in detecting the change 

in slope as compared with the naïve slope test.

Finally, we evaluate the performance of the proposed variance estimators for the MAUC and 

slope measures in several simulation settings (Table 3). Results show that the average of the 

proposed standard error estimates was close to the Monte Carlo standard deviations of the 

MAUC and slope estimates, indicating accurate variance estimation.

5 Results for the Emory NIRS study

We applied the proposed methods to investigate the pre- and post-transfusion mesenteric 

rSO2 among infants using already collected, de-identified data, from a previously published 

observational study conducted at Emory University.19 First, we estimated mean rSO2 at pre- 

and post-transfusion periods using the proposed MAUC measure based on Algorithm 1. The 

standard error of the MAUC estimates was obtained using the proposed variance estimator. 

We tested the difference between the pre- and post-transfusion MAUC using the MI-nested 

permutation test in Algorithm 2. As a comparison with the MAUC method, we applied the 

existing method that evaluated the average oxygen level using the sample mean of the rSO2 

series and tested the pre-to-post-transfusion difference using the t-test. The standard error of 

the sample mean-based estimate for the average rSO2 was obtained using the block 

bootstrap approach to take into account the temporal correlations in the rSO2 series. Results 
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in Table 4 show that the majority of the infants showed significant increase in the average 

oxygen level after the transfusion. When comparing the results from the standard sample 

mean method and the proposed MAUC method, we noted major differences in estimating 

the average rSO2. Specifically, the sample mean tends to produce much higher estimate of 

the pre-transfusion rSO2 as compared with the proposed MAUC method in some subjects. 

By examining the observed rSO2 series of these subjects (Figure 3), we found they had a 

considerable amount of readings at the 15% detection limit prior to the transfusion. The 

sample mean method, which does not consider this limitation, overestimated the actual 

oxygen level in the subjects, while the proposed MAUC measure with the MI adjustment 

produced estimates that more accurately reflect the true tissue bed oxygenation. Since most 

of the infants’ rSO2 level increased following transfusion, the proportion of rSO2 

measurements occurring below the low detection limit generally decreased among the 

infants after transfusion. Therefore, the overestimation issue of the standard sample mean 

method tends to have a larger impact for an infant’s pre- transfusion oxygen level than for 

his/her post-transfusion oxygen level. This in turn leads to biased estimates of the pre- to 

post-transfusion changes based on the standard method. That is, the standard sample mean 

method tends to underestimate the pre- to post-transfusion increases in oxygen level because 

it overestimates an infant’s pre-transfusion level. The proposed MAUC method showed 

significant improvement in this issue. Across the infants who showed an increase in oxygen 

level after transfusion, the estimates of the pre- to post-transfusion changes in the rSO2 level 

was 26.9% higher on average based on the proposed MAUC method as compared with the 

standard method. We note that the standard error of the sample mean estimates was 

sometimes lower than that of the proposed MAUC estimate especially for cases when there 

were a large amount of observations at the low detection limit. This is because with the 

standard sample mean methods, any rSO2 measurements below 15% detection limit were cut 

off at 15%. Hence, its standard error estimates may underestimate the true variability of 

rSO2.

We also applied the proposed slope method to investigate the changes in the rSO2 trajectory 

after transfusion. Using the method presented in Algorithm 3, we estimated the slope of 

rSO2 trajectory for pre- and post- transfusion periods. The slope parameters and their 

standard errors are reported in Table 5. We then applied the MI-nested permutation test to 

examine the significance of the pre- to post-transfusion changes in the slope measure. In 

comparison with the proposed method, we applied the naïve approach that estimated the 

slopes by fitting linear models to the observed rSO2 measurements directly. The standard 

error of the slope statistic from the naïve approach is obtained using a bootstrap method 

where the bootstrap samples were generated based on block bootstrap resamples of the 

residuals from the fitted linear models. From results in Table 5, we find that the two methods 

generally yielded consistent results in terms of the direction of the trajectory but the 

proposed method tends to produce more statistically significant results in detecting the 

changes in the slope. In particular, for some of the subjects, e.g. subject A1, there was a clear 

improvement in the trajectory in the rSO2 after transfusion (Figure 3). However, the result 

based on the naïve slope test was not significant (p=0.269). In comparison, our proposed test 

successfully detected a highly significant increase in the slope after the transfusion (p < 

0.001). Another observation from the results is that the slope measure can provide helpful 
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complementary information on rSO2 patterns as compared with the MAUC measure. For 

example, some infants may experience a quick deterioration in the intestinal condition where 

the rSO2 level which was originally in the normal range drops significantly. Since the 

decreases in rSO2 happen in a very short time interval, the MAUC measure, which reflects 

the average rSO2, may not be alarmingly low yet for these infants. The slope estimate, on the 

other hand, can help detect this fast decreasing trajectory in oxygenation and provide timely 

warning for physicians. Furthermore, by complementing the MAUC measure with the slope 

measure, we can obtain better understanding on how the rSO2 changes after an RBC 

transfusion in preterm infants.

6 Conclusions

In this study, we propose a new approach to analyse the mesenteric oxygenation response to 

red blood cell transfusion (RBC) in preterm infants. Our proposed approach addresses 

several limiations inherent in mesenteric NIRS monitoring including wide fluctuation in 

mesenteric signals, signal dropout and low limit of detection of the device. Compared with 

the standard methods currently applied to mesenteric NIRS measurements, the proposed 

methods demonstrate improved accuracy and increased power to detect RBC- related 

changes in mesenteric oxygenation in preterm infants. This approach has utility in assessing 

not only the response to RBC transfusion, but also other exposures such as feeding, anemia, 

and cardiovascular status on mesenteric oxygenation. Given the stability of NIRS montioring 

of other tissues beds such as cerebral oxygenation, our approach may not be as useful in the 

non-mesenteric setting. In addition, future prospective studies are needed to determine how 

the changes detected in rSO2 relate to important clinical outcomes in preterm infants such as 

necrotizing enterocolitis.
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Figure 1. 
Simulation results for testing the changes in mean rSO2 levels between pre- and post-

transfusion using the proposed test for MAUC and the standard t-test. (a) We compared type 

I error rate at various alpha levels when there was no difference in the mean rSO2 level 

between pre- and post-transfusion periods. The proposed test had a type I error that was 

closer to the nominal level. (b) We compared the power of the tests for detecting the 

differences in mean rSO2 levels when alpha ¼ 0.05. The proposed test demonstrated much 

higher power as compared with the standard t-test.
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Figure 2. 
Simulation results for testing the changes in the slope between pre- and post-transfusion 

using the proposed slope test and the standard slope test based on linear regression modeling 

of the rSO2 measurements. (a) We compared type I error rate at various alpha levels when 

there was no difference in the rSO2 slope between pre- and post-transfusion periods. The 

proposed test had type I errors that were closer to the nominal levels. (b) We compared the 

power of the tests for detecting the differences in rSO2 slopes between pre- and post-

transfusion period. The proposed test demonstrated higher power as compared with the 

standard slope test.
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Figure 3. 
Observed pre- to post-transfusion rSO2 series and the estimated underlying smooth functions 

for selected individual preterm infants from Emory NIRS study. The red dots are rSO2 

measurements occurring at the low detection limit of 15%.
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Table 1.

Simulation studies for estimating the mean rSO2 level at pre- and post-transfusion period based on the sample 

mean method and the proposed MAUC method.

True value Detection
Limit
percentage

MAUC method Sample mean method

BIAS (SD) BIAS (SD)

Simulation Case 1

 Pre-trans. Mean rSO2 17.709 30%  0.017 (0.213)  2.553 (0.312)

 Post-trans. Mean rSO2 17.709 30% −0.016 (0.242)  2.496 (0.371)

 Difference (post–pre)  0 −0.032 (0.302) −0.057 (0.487)

Simulation Case 2

 Pre-trans. Mean rSO2 17.709 30% −0.031 (0.217)  2.483 (0.336)

 Post-trans. Mean rSO2 20.724 10% −0.034 (0.158)  1.233 (0.291)

 Difference (post–pre)  3.015 −0.003 (0.270) −1.250 (0.452)

Simulation Case 3

 Pre-trans. Mean rSO2 15.062 50% −0.003 (0.258)  3.742 (0.393)

 Post-trans. Mean rSO2 20.724 10% −0.051 (0.170)  1.208 (0.266)

 Difference (post–pre)  5.662 −0.048 (0.310) −2.535 (0.452)
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Table 2.

Simulation studies for estimating the slope of rSO2 series at pre- and post transfusion based on the naïve slope 

estimate and the proposed slope estimate.

The proposed slope method The naïve slope method

True values BIAS (SE) BIAS (SE)

Simulation Case 1

 Pre-trans. Slope rSO2  0 −0.08 (6.03) −0.82 (8.7)

 Post-trans. Slope rSO2  0  0.24 (6.74) −1.14 (10.22)

 Difference (post–pre)  0  0.16 (9.45) −0.32 (12.52)

Simulation Case 2

 Pre-trans. Slope rSO2  0 −0.55 (6.51) −1.48 (9.54)

 Post-trans. Slope rSO2  5 −0.66 (5.26) −4.88 (8.69)

 Difference (post–pre)  5 −0.12 (8.49) −3.39 (12.82)

Simulation Case 3

 Pre-trans. Slope rSO2  −5  0.38 (5.62)  2.71 (9.80)

 Post-trans. Slope rSO2  5 −0.51 (6.49) −1.64 (9.07)

 Difference (post–pre)  10 −0.90 (8.61) −4.35 (14.04)

Note: The slope values, bias and SE are on the scale of 10−3.
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Table 3.

Simulation studies for standard error estimators for MAUC and Slope statistics.

MAUC SE estimator Slope SE estimator

MAUC
Monto
Carlo SD The proposed SE Slope

Monto
Carlo SD The proposed SE

17.709 0.511 0.509 (0.042) 0 0.012 0.012 (0.001)

19.166 0.508 0.534 (0.041) 0.001 0.012 0.013 (0.001)

Note: The slope values, its SE and SD are on the scale of 10−3.
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Table 4.

The average rSO2 level in pre- to post-transfusion periods based on the sample mean method and the proposed 

MAUC method for infants from the Emory NIRS study.

The sample mean method The proposed MAUC method

Subject
a Pre-tran.

(SE)
Post-tran.
(SE)

Pre- to
post- change p-Value

b Pre-tran
(SE)

Post-tran.
(SE)

Pre- to
post- change p-Value

c

A1 15.69 (0.64) 52.44 (1.18) 3.68 <0.001 8.86 (0.93) 52.18 (2.07) 43.32 <0.001

A2 15.75 (0.63) 27.66 (1.00) 11.90 <0.001 9.38 (0.86) 25.46 (1.04) 16.08 <0.001

B1 17.11 (0.76) 16.04 (0.67) −1.07 0.021 11.97 (1.17) 8.98 (0.55) −2.99 <0.001

B2 23.79 (1.06) 42.13 (0.69) 18.34 <0.001 21.46 (1.60) 41.02 (0.46) 20.56 <0.001

C1 15.56 (0.56) 17.08 (0.48) 1.53 <0.001 8.55 (0.75) 11.65 (0.45) 3.09 <0.001

C2 40.84 (1.01) 49.08 (0.75) 8.25 <0.001 40.66 (1.19) 49.11 (0.55) 8.45 <0.001

D 46.17 (1.03) 35.32 (0.84) −10.85 <0.001 46.03 (1.63) 34.63 (0.91) −11.40 <0.001

E 16.07 (0.59) 22.99 (0.74) 6.93 <0.001 9.61 (1.26) 20.22 (0.88) 10.61 <0.001

F1 44.30 (0.86) 44.16 (1.11) −0.14 0.838 44.38 (1.06) 43.20 (1.50) −1.18 0.005

F2 36.65 (1.05) 49.38 (0.65) 12.73 <0.001 36.64 (0.88) 49.40 (0.49) 12.76 <0.001

G 17.64 (0.77) 19.80 (0.74) 2.16 <0.001 12.30 (1.07) 15.43 (0.62) 3.12 <0.001

H 62.04 (1.85) 50.58 (0.97) −11.46 <0.001 61.81 (3.27) 50.45 (0.88) −11.36 <0.001

I 42.93 (0.94) 51.55 (0.78) 8.62 <0.001 42.91 (0.93) 51.47 (0.75) 8.56 <0.001

J 15.25 (0.39) 29.84 (1.03) 14.60 <0.001 7.73 (0.55) 27.87 (1.13) 20.14 <0.001

K 46.32 (1.65) 56.25 (0.78) 9.93 <0.001 46.23 (2.61) 55.96 (0.63) 9.73 <0.001

L 26.59 (1.09) 32.30 (0.84) 5.71 <0.001 25.90 (1.36) 31.77 (0.71) 5.87 <0.001

M 64.55 (1.37) 18.92 (0.82) −45.63 <0.001 64.29 (2.06) 13.82 (0.89) −50.47 <0.001

N 45.36 (0.93) 43.76 (0.67) −1.59 <0.001 45.16 (0.70) 43.64 (0.44) −1.52 <0.001

a
Different letters in the Subject list corresponding to different infants. For an infant who received multiple transfusions, a numeric value is added 

after a subject’s letter ID to denote different transfusions (e.g. A1 and A2 corresponding to NIRS data from the first and second transfusion from 
subject A).

b
The p-value of the pre- to post-transfusion change was derived from the t-test.

c
The p-value of the pre- to post-transfusion change was derived from the MI nested permutation test.
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Table 5.

Pre- to post-transfusion changes in the rSO2 temporal trajectory based on the naïve slope estimate and the 

proposed slope estimate.

Subject
a

The naïve slope method The proposed slope method

Pre-tran.
(SE)

Post-tran.
(SE)

Pre- to
post- change p-Value

b Pre-tran.
(SE)

Post-tran.
(SE)

Pre- to
post-change p-Value

c

A1 −0.549 (0.298) 0.849 (0.035) 1.398 0.269 −0.419 (0.813) 0.857 (0.035) 1.276 <0.001

A2 0.210 (0.167) −0.073 (0.040) −0.283 0.570 0.333 (0.408) −0.068 (0.045) −0.401 <0.001

B1 0.357 (0.718) 0.061 (0.019) −0.296 0.641 0.656 (1.496) 0.082 (0.023) −0.574 0.684

B2 −0.923 (0.415) −0.026 (0.020) 0.897 0.000 −1.486 (0.640) −0.038 (0.020) 1.448 <0.001

C1 −0.190 (0.196) −0.051 (0.013) 0.139 0.466 −0.447 (0.400) −0.106 (0.019) 0.341 0.004

C2 0.377 (0.397) −0.002 (0.018) −0.379 0.038 0.349 (0.419) −0.017 (0.023) −0.366 <0.001

D −3.207 (0.278) −0.166 (0.039) 3.041 0.000 −3.129 (0.272) −0.196 (0.034) 2.933 <0.001

E −2.054 (0.853) 0.025 (0.028) 2.079 0.317 −2.930 (2.475) 0.020 (0.040) 2.951 <0.001

F1 0.731 (0.327) −0.130 (0.072) −0.861 0.012 0.823 (0.403) −0.142 (0.069) −0.965 <0.001

F2 −0.101 (0.593) 0.057 (0.022) 0.158 0.736 −0.051 (0.621) 0.055 (0.022) 0.106 0.622

G 0.656 (0.312) −0.076 (0.019) −0.732 0.000 0.882 (0.448) −0.111 (0.028) −0.992 <0.001

H −3.848 (0.567) 0.030 (0.035) 3.878 0.000 −3.717 (0.660) 0.015 (0.036) 3.732 <0.001

I 0.631 (0.238) −0.104 (0.030) −0.735 0.000 0.671 (0.262) −0.097 (0.030) −0.768 <0.001

J −0.100 (0.104) −0.136 (0.035) −0.036 0.946 −0.141 (0.272) −0.165 (0.045) −0.024 0.218

K −33.429 (4.16) 0.037 (0.032) 33.466 0.000 −33.426 (3.99) 0.029 (0.024) 33.454 <0.001

L −3.267 (0.270) 0.153 (0.019) 3.420 0.000 −3.663 (0.320) 0.146 (0.028) 3.810 <0.001

M −8.247 (4.272) 0.158 (0.022) 8.405 0.011 −7.790 (4.381) 0.240 (0.030) 8.030 <0.001

N 1.933 (0.430) −0.024 (0.024) −1.957 0.000 1.843 (0.395) −0.033 (0.025) −1.876 <0.001

Note: The scale of the slope estimate and its SE is on 10−3.

a
Different letters in the Subject list corresponding to different infants. For an infant who received multiple transfusions, a numeric value is added 

after a subject’s letter ID to denote different transfusions.

b
The p-value of the pre- to post-transfusion change was derived from t-test.

c
The p-value of the pre- to post-transfusion change was derived from the MI nested permutation test.
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