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Abstract Mammographic breast density (MBD) is the most
commonly used method to assess the volume of
fibroglandular tissue (FGT). However, MRI could provide a
clinically feasible and more accurate alternative. There were
three aims in this study: (1) to evaluate a clinically feasible
method to quantify FGTwithMRI, (2) to assess the inter-rater
agreement of MRI-based volumetric measurements and (3) to
compare them to measurements acquired using digital mam-
mography and 3D tomosynthesis. This retrospective study
examined 72 women (mean age 52.4 ± 12.3 years) with 105
disease-free breasts undergoing diagnostic 3.0-T breast MRI
and either digital mammography or tomosynthesis. Two ob-
servers analyzedMRI images for breast and FGT volumes and
FGT-% from T1-weighted images (0.7-, 2.0-, and 4.0-mm-
thick slices) using K-means clustering, data from histogram,
and active contour algorithms. Reference values were obtain-
ed with Quantra software. Inter-rater agreement for MRI mea-
surements made with 2-mm-thick slices was excellent: for
FGT-%, r = 0.994 (95% CI 0.990–0.997); for breast volume,
r = 0.985 (95% CI 0.934–0.994); and for FGT volume,
r = 0.979 (95% CI 0.958–0.989). MRI-based FGT-% corre-
lated strongly with MBD in mammography (r = 0.819–0.904,

P < 0.001) and moderately to high with MBD in
tomosynthesis (r = 0.630–0.738, P < 0.001). K-means clus-
tering-based assessments of the proportion of the
fibroglandular tissue in the breast at MRI are highly reproduc-
ible. In the future, quantitative assessment of FGT-% to com-
plement visual estimation of FGT should be performed on a
more regular basis as it provides a component which can be
incorporated into the individual’s breast cancer risk
stratification.
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Introduction

The amount of fibroglandular tissue (FGT) including epithelial
and stromal elements is an independent marker of breast cancer
risk in conjunction with age, body mass index, and genetic
predisposition [1, 2]. Traditionally, the amount of FGT has
been evaluated visually frommammograms in which mammo-
graphic breast density (MBD) describes the proportion of FGT
to fatty tissue. The Breast Imaging Reporting and Data System
(BI-RADS®) 4th edition subdivided mammographic breast
density (BD) into four quartiles [3]. However, the agreement
between radiologists is only moderate and is especially chal-
lenging in the middle two density categories [4]. The new BI-
RADS® 5th edition still categorizesMBD into four subgroups,
i.e., almost entirely fatty, scattered areas of fibroglandular den-
sity, heterogeneously dense, or extremely dense [5].
Nevertheless, it is acknowledged that there is a clear need for
further research into volume-based, reproducible percentage
cutoff points.

Quantitative assessment of the percentage area of FGT in
mammograms has been shown to associate more strongly to
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the individual’s breast cancer risk than can be achieved by
its visual assessment [6, 7]. Automated quantitative MBD
measurement methods have recently been developed [8]
and two clinically applied software programs [9, 10] are
now approved by the US Food and Drug Administration.
The two-dimensional methods may suffer from tissue over-
lap [11]. Tomosynthesis, in which multiple low-dose im-
ages are used to reconstruct a 3D model, has been postulat-
ed to define more accurately tissue structures [12]. In addi-
tion to the breast cancer risk, the MBD may be a prognostic
factor in patients with newly diagnosed breast cancer, i.e.,
one study suggested that patients with breast densities low-
er than 10% MBD have higher mortality rates than patients
with denser breasts [13].

Magnetic resonance imaging (MRI) of the breast is be-
ing increasingly exploited in clinical practice with a wide
range of clinical and screening indications [14].
Therefore, an accurate assessment of FGT as an adjunct
to clinical breast MRI would be clinically valuable. The
excellent soft tissue contrast in MRI provides clear
distinguishing between fibroglandular and fatty tissues
and allows a three-dimensional characterization of FGT
volume without tissue compression or radiation exposure
[15]. As a three-dimensional imaging modality, MRI is
not limited by tissue overlap and could thus help to esti-
mate breast cancer risk in high-risk populations [16]. The
revised fifth edition of the BI-RADS® includes a recom-
mendation to include a visual estimation of FGT with
breast MRI. The categories for assessing the amount of
FGT of breasts from MRI parallel those applied in
MBD, i.e., almost entirely fat, scattered FGT, heteroge-
neous FGT, and extreme FGT. However, subjective visual
estimation of FGT with MRI has revealed only moderate
intra-/inter-rater agreement [17, 18].

Automated observer-independent quantitative measure-
ments of FGT are therefore needed also in MRI if we are to
achieve a more standardized risk evaluation. Although
quantitative measurements are currently under extensive
research, there is however no consensus on the optimal
method to quantify FGT in MRI, with several automatic
and semi-automatic algorithms now available [19–26].
Additionally, no consensus exists on the optimal sequence
from which FGT volumes are to be determined. Dixon se-
quences were reported to show the highest correlation and
reproducibility, yet T1 sequences reported comparable ac-
curacies [27]. Nevertheless, observed proportions of FGT
in MRI have often been inconsistent when compared to
those of MBD and the reproducibility has varied, depend-
ing on which parameters are being determined [28–30]. The
aim of the present study was to develop a clinically feasible
and highly reproducible method to quantify FGTwith MRI
and to correlate these values to automatically acquired mea-
surements from digital mammography and tomosynthesis.

Materials and Methods

Study Design and Patients

Patients from local screening centers, two district hospitals,
and tertiary care centers are referred to our university hospital
for management of clinically or mammographically detected
breast lesions. All images are re-evaluated on routine basis by
specialized breast radiologists before any further manage-
ment. The study population consisted of consecutive patients
admitted to our hospital between August 2014 and May 2017
and referred for diagnostic 3.0-T breast MRI and having un-
dergone either additional full-field digital mammography or
tomosynthesis at our hospital. The additional inclusion criteria
were that at least one breast was proven to be healthy and had
not been surgically operated.

The proportion of FGTmeasured from clinical MRI exams
was compared to MBD assessed from either mammograms or
breast tomosynthesis. Volumetric breast density was deter-
mined using a K-means clustering segmentation method on
MRI and the Quantra method on mammography or
tomosynthesis. The Institutional Ethics Board approved this
retrospective study; the Chair of the Hospital District waived
the need for written informed consent from the patients.

Full-Field Digital Mammography and Digital Breast
Tomosynthesis

Mammogramswere acquired on Selenia Dimensions (Hologic
Inc., Bedford, MA, USA) full-field digital mammography sys-
tem; the same system was used to acquire the tomosynthesis
images. Quantra (version 2.1.0, Hologic Inc., Bedford, MA),
commercially available fully automated software, was used for
the estimation of volumetric breast density from raw format
mammography and tomosynthesis images [9].

The slice thickness used in the tomosynthesis images was
1 mm. The volume of the FGT is determined by referencing
each pixel’s attenuation to the attenuation of pixels that are
considered as entirely adipose tissue and the estimated MBD
is then obtained as a percentage of the FGT from the total
breast volume [30].

Breast MRI

MRI examinations were performed in the prone position with
a 7-element-phased-array coil dedicated to breast imaging
(Philips Achieva 3.0-T TX, Philips N.V., Eindhoven,
The Netherlands). The clinical structural breast MRI protocol
consists of T2-weighted and non-contrast and contrast-
enhanced three-dimensional T1-weighted sequences and
diffusion-weighted imaging as described previously [31].
Non-contrast 3D-T1-weighted MRI sequence (TR = 4.57;
TE = 2.3 ms; in-plane resolution 0.48 mm × 0.48 mm; 257
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slices; slice thickness 0.7 mm; scanning time 6 min 11 s) was
chosen for this study based on the good contrast between
adipose and fibroglandular tissues after initial tests conducted
on T1- and T2-weighted images.

Quantitative Analysis of MRI-Based Fibroglandular
Tissue Volume

T1 slices were reconstructed at different slice thicknesses
from the 3D T1-weighted dataset. The effect of slice thick-
ness on FGT measurements was assessed with three differ-
ent slice thicknesses, i.e., 0.7 mm (257 slices), 2 mm (90
slices), and 4 mm (45 slices). A flowchart of methods to
determine the breast volume (BV) and FGT is presented in
Fig. 1. Two observers blindly and independently analyzed
all cases following the steps described. First, the image
stack was cropped by delineation of breasts from the tho-
racic wall as suggested by Moon et al. [32] and was con-
ducted as follows: the medial edge was set at the middle of
the sternum and the posterior edge was set at the highest
point of the pectoral muscle. Then, the K-means clustering
technique (subsequently described) was used to classify the
T1-weighted images into three clusters. In the presence of
noise in the clustered images due to intensity inhomogene-
ity, four clusters were used. Volumes of fat, air, and the
combined volume of skin and FGT were derived from the
histogram of the clustered image stack representing the

number of pixels with different gray scale tones. Skin and
FGT volumes were distinguished by measuring the volume
of the skin and the air surrounding breast with an active
contour method. Since the volume of air was known, skin
volume could be calculated by subtracting air volume from
the measured volume of the skin and air. Finally, FGT vol-
ume was determined by subtracting skin volume from the
volume of skin + FGT cluster. FGT-%, analogous to mam-
mographic density, is the percentage ratio between FGT
volume and total BV. The time needed to cluster and seg-
ment one breast is heavily dependent on the capabilities of
the hardware and somewhat affected by the size of the
breast. Processing time with our method is feasible for clin-
ical purposes and similar to those reported in studies using
fully automated algorithms [22, 23].

K-Means Clustering Method

K-means segmentation technique [33] was used initially to
label all MR voxels by using the ImageJ (version 1.47,
Wayne Rasband, National Institutes of Health, Bethesda,
MD, USA) with a K-means clustering plug-in (ij-Plugins
Toolkit), thus segmenting breasts into three or four clusters
depending on the amount of signal intensity inhomogeneity
in MR images [34, 35]. This method is an unsupervised algo-
rithm that assigns each voxel to a cluster (e.g., adipose tissue)
based on its grayscale intensity (Fig. 2c, h). MRI image stack
slices were interpreted as a 3D image. This process translates
the partial volume effects in the image, which occurs when
multiple tissues contribute to a single voxel, making it difficult
to distinguish tissue edges. The clustering plug-in is based on
a validated K-means++ algorithm [36]. However, this type of
clustering cannot differentiate between skin and
fibroglandular tissue as those share similar grayscale intensi-
ties and are therefore assigned to the same cluster. This prob-
lemwas circumvented using active contour segmentation after
initial K-means clustering.

Active Contour Method

Differentiation of the skin and FGTclusters was accomplished
using the ITK-SnAP 3.2 software [37]. The separation of the
skin and FGT is crucial, as the amount of skin can be substan-
tial [38]. In our study, the FGT-% without skin exclusion was
two times bigger (median = 2.06, range 1.19–6.60) than
FGT-% with skin exclusion. This software displays structural
images simultaneously in three different planes and allows
semi-automatic segmentation and volume rendering of 3D
medical images using an active contour algorithm (Fig. 2d,
i). The algorithm implements two extensively applied 3D ac-
tive contour segmentation methods (geodesic active contours
and region competition contours) that derive an estimate of the
structure of interest and represent it by one or more contours.

T1W images

Cropping

K-means
clustering +
histogram

Ac�ve contour
segmenta�on

Fat voxel count
FGT+skin voxel

count
Air voxel count

Fat voxel count
FGT voxel count
Skin voxel count

Air+skin
voxel
count

Fig. 1 Flowchart of presented method
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After the K-means clustering, the intensity values of clusters
can be thresholded instead of image intensities. When mea-
suring the desired cluster volume, an upper threshold of
1.0070 was set so that the intensity (1.000) of the cluster
consisting of the skin and FGT was below the threshold.
Due to this threshold, the algorithm would segment all struc-
tures with intensity below 1.0070, the whole air cluster (inten-
sity 0.000) and the neighboring cluster consisting of the skin
and FGT. FGTwould not be segmented, because adipose tis-
sue acts as a barrier due to its intensity (2.000) that exceeds the
threshold. Therefore, only volume of air with skin is segment-
ed. Air volume is already known from histogram and skin
volume can be calculated as (air + skin volume) − (air vol-
ume). The same threshold value was used for every case in
order to avoid observer-related biases. All the cases had iden-
tical outcome after clustering; therefore, air was always
assigned in black cluster, skin, and FGT in gray cluster and
fat in white cluster. All clustering outcomes where fat cluster’s
intensity is not between air cluster’s and skin + FGT cluster’s
intensity could be used in segmenting, then the threshold is set
so that the fat cluster is not segmented. The computers used for
this study were equipped with Intel Core i7-4770 3.40-GHz
CPUs, NVIDIA Quadro K2000 GPUs, and 16 GB of RAM.

Statistical Analysis

Continuous variables are presented as means ± standard devi-
ations (SD) and categorical variables as absolute values and
percentages. The information from the MRI volumetric mea-
surements of both the observers was used to assess the inter-
observer agreement. The interobserver agreement was tested

using the intra-class correlation (ICC) test. Otherwise, only the
data from one randomly assigned observer was used. The
Spearman correlation coefficient was used to analyze the cor-
relation of breast and FGT volumes in the MRI and MBD
measurements in mammography and tomosynthesis. The ef-
fect of slice thickness on MRI volumetric measurements was
evaluated via the Spearman correlation coefficient. Statistical
significance was set at p < 0.05. Data was analyzed using
SPSS software (IBM SPSS Statistics for Windows, Version
22.0. Armonk, NY: IBM Corp).

Results

A total of 72 women (mean age 52.4 ± 12.3) were included in
this study. All MRI examinations (n = 72) were performed
within 4 months of the mammography or the tomosynthesis
assessment. Twenty-nine patients (39 breasts) underwent
tomosynthesis and 43 patients (66 breasts) underwent digital
mammography. Unilateral breast malignancies were diag-
nosed in 39 patients.

Inter-rater agreement was tested using 2-mm-thick slices
and proved to be excellent for MRI-based BVs (ICC 0.985,
95% CI 0.934–0.994), FGT volumes (ICC 0.979, 95% CI
0.958–0.989), and FGT-% values (ICC 0.994, 95% CI
0.990–0.997). Processing time varied from 6 to 13 min de-
pending on slice thickness and breast size.

Intertechnique reproducibility is shown in Tables 1, 2, 3,
and 4 and in Fig. 3. Moderate to excellent correlations
(r = 0.659–0.967, P < 0.001) were achieved between MRI-
based measurements and digital mammography for all

Fig. 2 Breast imaged with different modalities and in different steps of
workflow. Mammogram from FFDM (CC view) (a), T1-W image (b), K-
means clustered image (3 clusters) (c), active contours segmented image
(d), Representation of different tissues measured (e), mammogram from

DBT (MLO view) (f), T1-W image (g), K-means clustered image (4
clusters) (h), active contours segmented image (i), representation of
different tissues measured (j)
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parameters. When the MRI-based measurements were com-
pared to tomosynthesis, the BVs showed excellent correla-
tions (r = 0.866–0.959, P < 0.001). Regarding the FGT-%s
and volumes, correlations were moderate to high (r = 0.528–
0.778, P < 0.001). Comparison of earlier and present study is
presented in Table 5.

We evaluated our method using three different slice thick-
nesses: 0.7 mm (257 slices), 2 mm (90 slices), and 4 mm (45
slices). Measures correlated strongly with each other;
r = 0.962–0.994 for BVs, r = 0.916–0.932 for FGT volumes,
and r = 0.942–0.968 for FGT-%. The possibility of loss of fine
structures of breasts by examining thicker slices proved to
have no impact or only a minor effect on the measurements.

For MRI, the skin volumes were separately measured and
the ratios between skin volumes and total breast volumes were
calculated. The percentage of skin volume ranged between
2.74 and 35.2% with a mean value of 9.3%.

Discussion

The key finding of the present study was that our MRI-based
method to assess FGT volumes and proportions achieved high
interobserver reproducibility and convincing correlations to
mammographic breast density measurements when using 4-
mm-thickMRI slices. Our method also represents a novel way
to measure skin as an independent tissue type, which may lead
to a more accurate assessment of breast composition and this,
in our opinion, reflects a more reliable volumetric measure-
ment. To the best of our knowledge, no results concerning
volumetric skin segmentation using active contour segmenta-
tion have been published.

At present, there is no consensus on the best technique to
perform a quantitative breast tissue analysis with MRI.
Compared to automatic programs, manual segmentation is
more time-consuming, requires training, and is subject to

Table 2 Intertechnique
reproducibility between 3D
mammography and MRI with
different slice thicknesses as
estimated by Spearman
correlation coefficients and P
values between fibroglandular
tissue volumes, total breast
volumes, fibroglandular tissue
percentages, and breast densities

FGT volume
(r (95% CI))

Total breast
volume (r (95% CI))

Mammographic breast
density or FGT-% (r (95% CI))

MRI 4-mm slice vs:

MLO (N = 55) 0.682* (0.509–0.802) 0.936* (0.893–0.962) 0.864* (0.777–0.918)

CC (N = 49) 0.777* (0.635–0.868) 0.900* (0.829–0.951) 0.819* (0.699–0.894)

AVG (N = 38) 0.807* (0.657–0.895) 0.967* (0.937–0.982) 0.873* (0.768–0.932)

MRI 2-mm slice vs:

MLO (N = 55) 0.659* (0.478–0.786) 0.928* (0.880–0.957) 0.884* (0.809–0.930)

CC (N = 49) 0.753* (0.599–0.853) 0.861* (0.766–0.919) 0.863* (0.769–0.920)

AVG (N = 38) 0.761* (0.584–0.869) 0.933* (0.874–0.964) 0.904* (0.822–0.949)

MRI 0.7-mm slice vs:

MLO (N = 55) 0.674* (0.498–0.796) 0.939* (0.898–0.964) 0.868* (0.784–0.921)

CC (N = 49) 0.811* (0.687–0.889) 0.894* (0.819–0.939) 0.856* (0.758–0.916)

AVG (N = 38) 0.793* (0.635–0.887) 0.964* (0.932–0.981) 0.871* (0.765–0.931)

MLO, mediolateral oblique view; CC, craniocaudal view; AVG, averaged measurements; FGT, fibroglandular
tissue; FGT-%, fibroglandular tissue percentage

*P < 0.001

Table 1 Fibroglandular tissue
volumes, total breast volumes,
fibroglandular tissue percentages,
and breast densities (mean ±
standard deviation) measured from
patients (n= 43, 66 breasts) imaged
with 3D digital mammography and
T1-weighted 3D MRI (3.0-T,
Philips Achieva TX)

FGT volume (cm3) Total breast
volume (cm3)

Mammographic breast
density or FGT-% (%)

MRI (N = 66)

4-mm slice 88 ± 60 742 ± 402 17.3 ± 15.7

2-mm slice 87 ± 65 755 ± 402 17.0 ± 15.9

0.7-mm slice 88 ± 60 741 ± 400 17.1 ± 15.5

Mammography

MLO (N = 55) 112 ± 71 801 ± 456 16.9 ± 8.9

CC (N = 49) 111 ± 67 747 ± 365 16.2 ± 9.0

AVG (N = 38) 107 ± 69 740 ± 392 16.3 ± 8.0

MLO, mediolateral oblique view; CC, craniocaudal view; AVG, averaged measurements; FGT, fibroglandular
tissue; FGT-%, fibroglandular tissue percentage
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observer-biased interpretation. The clinical feasibility of quan-
titative semi-automatic MRI techniques depends on the accu-
racy and robustness of the breast segmentation. Accordingly, a
wide variety of MRI segmentation techniques exist and sev-
eral methods have been proposed as being best for the assess-
ment of breast volume and FGT volume. Klifa et al. andWang
et al. have evaluated a fuzzy c-means (FCM)-based method
[15, 30], and Kang et al. have used a K-means clustering
method [21] while Nie et al. proposed a two-step method,
firstly locating the skin border and lungs by a FCM algorithm
and subsequently applying an adaptive FCM algorithm to ex-
tract the FGT [20]. A deep-learning method has also been
developed for breast and FGT segmenting from MRI in order
to outperform existing methods relying on atlases, template
matching, or edge and surface detection [39]. The thickness of
MR image slices varies between studies and could be a factor
contributing to different results. In our study, high agreement
of FGT-%, BV, and FGT between slice thicknesses was noted.

Due to faster active contour segmenting, thicker slices may be
advocated over thin slice thicknesses.

Even though our study had a small sample size, statistically
significant results regarding inter-rater agreement were
achieved. Our method proved to have a high inter-rater corre-
lation between all measurements (ICC 0.979–0.997). Van der
Waal et al. compared visual agreement of BI-RADS assess-
ment between readers and agreement between automated
MBD software. Agreement of visual evaluation of BI-RADS
categories from mammograms (kappa score 0.80–0.84) has
slightly lower reliability than that of our method. Differences
between commercial automatic MBD assessing software
Quantra and Volpara are even greater with ICC of 0.64 (95%
CI − 0.07–0.88) and 0.55 (95% CI 0.24–0.72) when compar-
ing estimates of percent dense volume and absolute dense
volume, respectively [40].

Previously, the various MRI segmentation methods have
been compared to the performance of mammography and

Table 4 Intertechnique
reproducibility between
tomosynthesis and MRI with
different slice thicknesses as
estimated by Spearman
correlation coefficients and P
values of total breast volumes,
fibroglandular tissue volumes,
fibroglandular tissue percentages,
and breast densities

FGT volume
(r (95% CI))

Total breast volume
(r (95% CI))

Mammographic breast
density or FGT-% (r (95% CI))

MRI 4-mm slice vs:

MLO (N = 35) 0.630* (0.376–0.796) 0.948* (0.899–0.973) 0.738* (0.537–0.859)

CC (N = 36) 0.778* (0.604–0.881) 0.936* (0.878–0.967) 0.719* (0.512–0.847)

AVG (N = 33) 0.736* (0.526–0.861) 0.945* (0.891–0.972) 0.752* (0.551–0.870)

MRI 2-mm slice vs:

MLO (N = 35) 0.528* (0.506–0.848) 0.904* (0.817–0.950) 0.685* (0.456–0.829)

CC (N = 36) 0.718* (0.510–0.846) 0.866* (0.752–0.929) 0.712* (0.501–0.843)

AVG (N = 33) 0.683* (0.444–0.831) 0.885* (0.779–0.942) 0.723* (0.506–0.854)

MRI 0.7-mm slice vs:

MLO (N = 35) 0.570* (0.293–0.759) 0.959* (0.920–0.979) 0.655* (0.412–0.811)

CC (N = 36) 0.695* (0.475–0.833) 0.926* (0.859–0.961) 0.630* (0.381–0.794)

AVG (N = 33) 0.680* (0.440–0.829) 0.940* (0.881–0.970) 0.650* (0.395–0.812)

MLO, mediolateral oblique view; CC, craniocaudal view; AVG, averaged measurements; FGT, fibroglandular
tissue; FGT-%, fibroglandular tissue percentage

*P < 0.001

Table 3 Fibroglandular tissue
volumes, total breast volumes,
fibroglandular tissue percentages,
and breast densities (mean ±
standard deviation) measured
from patients (n = 29, 39 breasts)
imaged with tomosynthesis and
MRI with different slice
thicknesses

FGT volume
(cm3)

Total breast
volume (cm3)

Mammographic breast
density or FGT-% (%)

MRI (N = 39)

4-mm slice 86 ± 60 756 ± 425 13.4 ± 8.4

2-mm slice 80 ± 60 707 ± 426 13.1 ± 8.9

0.7-mm slice 94 ± 66 740 ± 418 14.4 ± 8.6

Tomosynthesis

MLO (N = 35) 126 ± 92 862 ± 506 16.6 ± 8.2

CC (N = 36) 106 ± 76 821 ± 438 14.6 ± 7.6

AVG (N = 33) 119 ± 83 862 ± 464 15.0 ± 7.4

MLO, mediolateral oblique view; CC, craniocaudal view; AVG, averaged measurements; FGT, fibroglandular
tissue; FGT-%, fibroglandular tissue percentage
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tomosynthesis in the assessment of quantitative breast factors
(Table 5). Although different procedures (e.g., segmenting)
are mostly done using computer algorithms, some operator
inputs are still required, such as delineating breast from the
image or selection of seed points for the region growing tool.
However, even though there has been extensive research con-
ducted on the intertechnique reproducibility between MRI,
mammography, and tomosynthesis, the inter-rater agreements
have rarely been reported (Table 5). In one publication, 11
cases were evaluated with an FCM-based segmentation algo-
rithm and the average standard deviation of MRI-FGT-% be-
tween observers was reported to be 3.9% [20]. In another
study, the breasts were imaged and segmented automatically
before and after the administration of intravenous contrast
medium. The correlation between these pre- and post-
contrast breast density quantifications ranged between
r = 0.98 and 0.99 [18]. Our results demonstrate that the
MRI-based breast volumes, FGT volumes, and FGT-% values
are highly reproducible. Even though the suggested semi-
automatic method requires user input, its influence on the
results is minimal.

We observed an excellent correlation between MRI and
full-field digital mammography in agreement with previously
published data (Table 5). In the earlier studies comparing
MRI-based and mammographic measurements, correlations
between FGT-% and MBD were in the range 0.71–0.94, be-
tween breast volumes 0.94–0.99 and between FGT volumes,

they varied between 0.61–0.91 (Table 5). However, we noted
that our correlations between tomosynthesis and MRI were
slightly lower than those of between mammography and
MRI. This contrasts with the studies of Tagliafico et al. and
Pertuz et al. who achieved better correlations between
tomosynthesis and MRI than between digital mammography
and MRI [28, 41]. The difference between MBD from stan-
dard dose and synthetic mammograms was evaluated by
Conant et al., and an average of 1.7% higher breast density
was noted for synthetic mammograms over normal dose
mammograms [42].

Differences in qualitative breast factors can be in part
caused by the skin. The skin and FGT have similar signal
intensities in MRI which complicates reliable FGT-% mea-
surements. Only few studies have reported results of skin seg-
mentation. Nie et al. studied the effect of skin removal on
breast density measurement and suggested that the percentage
of the skin volume ranged between 5.0 and 15.2% [38]. In our
study, a range of 2.7–35.2% (mean 9.3%) was found. The
method applied here could measure the skin separately by
using active contour segmentation without any significant
skin volume leakage into the FGT volume through the nipple
area. In many other studies, the skin has been directly seg-
mented as a part of Bbreast^ or adipose tissue, but not sepa-
rately segmented [22, 23, 41]. Mammographic density mea-
surement software compensates routinely for the penetration
through the skin in order to eliminate the impact that the skin

Fig. 3 Scatterplots of FGT-%s and mammographic breast densities
measured with mammography and tomosynthesis. In upper row, MRI
FGT-% vs MBD from mammography. In lower row, MRI FGT-% vs
MBD from tomosynthesis. Square, measurement with 4.0-mm slices;

cross, measurement with 2.0-mm slices; circle, measurement with 0.7-
mm slices; dotted line, regression line for 4.0-mm slices; dashed line,
regression line for 2.0-mm slices; straight line, regression line for 0.7-
mm slices
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has on the estimate of fibroglandular tissue volume and there-
fore we believe that future developments in volumetric mea-
surements should always include skin segmentation protocol.
We obtained excellent reproducibility and significant correla-
tions with digital mammography and thus our results empha-
size the importance of excluding skin reliably from FGT.
Differences between the mammographic and MRI measure-
ments may be due to difficulties in delineating the breast from
subcutaneous fat tissue in the chest wall at MRI or in position-
ing of the breasts in mammograms [11].

The difference between the mammographic, tomosynthesis,
and MRI-based FGT measurements may also be related to
differences in breast content especially in mammographically
dense breasts, where the projected results of mammography are
more dependent on parenchymal patterns than on volume and
therefore do not reflect the composition of tissue as well as
MRI [16, 19]. Also, mammography is a two-dimensional im-
aging modality, and therefore suffers from tissue-overlapping
and cannot accurately differentiate between overlapping fatty
and fibroglandular tissues. The position of the patient and the
degree of compression may increase the inaccuracies [43].
Klifa et al. (2010) speculated that breasts with very little FGT
(i.e., fatty breasts) display a greater tendency to under- or over-
estimate real fibroglandular regions due to the difficulty of
segmenting very thin fibroglandular regions within the adipose
tissue [16]. In our study population, the majority of patients had
low or very low density breasts which may have exerted some
influence on our correlations.

Our study has several limitations. First, our patient pop-
ulation is relatively small. Being a tertiary referral hospital,
most of the patients were referred with the complete mam-
mographic evaluation already done at other institutions.
Our study population consists chiefly of patients who had
to undergo repeated examinations according to the recom-
mendation of specialized breast radiologists to re-evaluate
additional mammographic findings. The patient sample
consists of symptomatic patients with relatively non-
dense breasts and is not representative of a normal screen-
ing population. Second, the lack of a golden standard as a
reference for breast density and FGT volume analysis hin-
ders the detection of systematic errors. According to our
clinical practice, the patients underwent either digital
mammography or tomosynthesis, but not both, in order to
minimize their exposure to radiation. Nevertheless, our re-
sults achieved statistical significance, indicating that the
hypothesis is applicable and tested method is feasible.

In conclusion, the MRI-based assessment of the proportion
of fibroglandular tissue of the breast, including skin segmen-
tation described in the present study, is highly reproducible
and has potential to be utilized in assessment of FGT-% in
clinical practice and scientific studies. In the future, a quanti-
tative assessment of FGT-% to complement the visual estima-
tion of FGTshould be performed on a more regular basis since

this technique reveals a component which can be included in
the individual patient’s breast cancer risk stratification.

Compliance with Ethical Standards The Institutional Ethics Board
approved this retrospective study; the Chair of the Hospital District
waived the need for written informed consent from the patients.
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