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Abstract Lung cancer is the leading cause of cancer-related
deaths in the world, and one of its manifestations occurs
with the appearance of pulmonary nodules. The classifica-
tion of pulmonary nodules may be a complex task to spe-
cialists due to temporal, subjective, and qualitative aspects.
Therefore, it is important to integrate computational tools
to the early pulmonary nodule classification process, since
they have the potential to characterize objectively and quan-
titatively the lesions. In this context, the goal of this work is
to perform the classification of pulmonary nodules based on
image features of texture and margin sharpness. Computed
tomography scans were obtained from a publicly available
image database. Texture attributes were extracted from a
co-occurrence matrix obtained from the nodule volume.
Margin sharpness attributes were extracted from perpen-
dicular lines drawn over the borders on all nodule slices.
Feature selection was performed by different algorithms.
Classification was performed by several machine learn-
ing classifiers and assessed by the area under the receiver
operating characteristic curve, sensitivity, specificity, and
accuracy. Highest classification performance was obtained
by a random forest algorithm with all 48 extracted features.
However, a decision tree using only two selected features
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obtained statistically equivalent performance on sensitivity
and specificity.

Keywords Lung cancer · Pulmonary nodule · Image
classification · Pattern recognition

Introduction

Lung cancer is the most common cause of cancer-related
deaths, with a 5-year overall survival rate of only 15% [1].
The evaluation of pulmonary nodules is clinically important
because they may be an early manifestation of lung can-
cer [2]. The diagnosis of lung cancer may be a complex
task to radiologists and it presents some challenges. One of
them is to classify pulmonary nodules in diagnostic imag-
ing. Nodule classification in malignant or benign depends
on several aspects [3]: for instance, its growth rate and
change in size from two time-separated computed tomog-
raphy (CT) scans; and subjective, qualitative aspects of the
lesion, e.g., “moderate heterogeneity,” “highly spiculated,”
“large necrotic core” [4].

To aid radiologists in the diagnosis of lung cancer, it is
important to integrate the computer-based assistance into
the processes of imaging pattern recognition and pulmonary
nodule classification [5, 6]. The purpose of computer-aided
diagnosis (CAD) is to improve the accuracy and consistency
of medical image diagnosis through computational support
used as reference [7]. In particular, the automation of pat-
tern classification process may considerably reduce the time
and effort required by the analysis and, at the same time,
improve its repeatability and reliability [8].

Some works have performed computer-aided classifica-
tion of pulmonary nodules, using different classifiers and
CT image features to improve the diagnosis of lung cancer
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(“Related Works”) [1, 9–14]. However, very few have used
margin sharpness descriptors, which are important to dif-
ferentiate nodules in terms of potential malignancy because
malignant tumors grow into neighboring tissues [15]. There-
fore, pulmonary nodule classification systems based on 3D
image descriptors of margin sharpness along with tradi-
tional features, such as second-order texture [16], are still
immature and need to be more evaluated.

In this context, the goal of this work is to classify pul-
monary nodules in malignant and benign and to evaluate
margin sharpness and texture imaging features extracted
from CT scans. The proposed evaluation relies on five steps:
the development of a pulmonary nodule image database,
the extraction of 3D shape-based features of margin sharp-
ness and second-order texture attributes, the selection of the
most relevant attributes from the feature vector using dif-
ferent methods, the classification of the pulmonary nodules
in terms of potential malignancy using different estab-
lished machine learning algorithms, and the performance
assessment of the malignant-benign classification using the
well-known statistical parameters of accuracy, sensitivity,
specificity, and area under the receiver operating character-
istic curve (AUC).

The remainder of this paper is organized as follows:
“Related Works” presents related works of pattern recog-
nition on malignant-benign pulmonary nodules. “Materials
and Methods” describes the materials and methods used
in this work, including the development of the pulmonary
nodule database in “Pulmonary Nodule Database,” the
image feature extraction in “Image Feature Extraction,”
the image feature selection in “Image Feature Selection,”
the pulmonary nodule classification in “Pulmonary Nodule
Classification,” and performance evaluation details in
“Performance Evaluation.” “Results” and “Discussion”
present the results and discussion of this work, respectively.
“Conclusions” concludes this paper.

Related Works

Wu et al. used a back-propagation artificial neural network
for the classification of malignant and benign pulmonary
nodules with Lasso-type regularization to select radiological
and textural CT features. The authors used a local CT image
repository to extract the features and obtained sensitivity of
0.960, specificity of 0.800, and AUC of 0.910 [1].

Tartar et al. extracted geometric features from basic
morphological shape information and statistical attributes
from a two-dimensional principal component analysis. The
authors used a local CT image collection to extract the
features and selected the best ones with the minimum

redundancy maximum relevance method. The random forest
(RF) algorithm also was employed as classifier and obtained
classification accuracy of 0.837, sensitivity of 0.854, speci-
ficity of 0.816, and AUC of 0.908 [9].

Reeves et al. extracted morphological, density, surface
curvature, and margin gradient features from the pulmonary
nodules, and evaluated them with support vector machine
(SVM) classifiers with a polynomial kernel and with a radial
basis function kernel. The Early Lung Cancer Action Pro-
gram and the National Lung Cancer Screening Trial image
datasets were used in the experiments. Both SVM classifiers
obtained AUC of 0.772 [10].

Dilger et al. analyzed the lung parenchyma surrounding
the nodule and extracted parenchymal and nodule inten-
sity, shape, border, and texture features from images of the
National Lung Screening Trial and the Chronic Obstructive
Pulmonary Disease Genetic Epidemiology datasets. Feature
selection was performed by statistical analysis and step-
wise forward selection method. An artificial neural network
classified the pulmonary nodules with accuracy of 0.920,
sensitivity of 0.909, specificity of 0.928, and AUC of 0.935
[11].

Zhang et al. extracted intensity, texture, and gradient
CT attributes from well-circumscribed, vascularized, juxta-
pleural, and pleural-tail pulmonary nodules provided by the
Early Lung Cancer Action Program. Classification was per-
formed with a combination of SVM and probabilistic latent
semantic analysis, with a classification rate of 0.880 [12].

Kaya et al. used a weighted rule based classification
approach to distinguish pulmonary nodules presented on
the Lung Image Database Consortium images. The authors
employed ensemble classifiers of linear discriminant clas-
sifier, SVM, k-nearest neighbors (KNN), adaboost, and RF.
They extracted 2D and 3D image features of shape, size,
and texture, and selected the most relevant attributes using
a weighing and ranking method combined. Ensemble RF
obtained the highest classification accuracy of 0.849 with
sensitivity of 0.831 and specificity of 0.921 [13].

Ferreira Jr et al. extracted 3D image features of margin
sharpness and texture of pulmonary nodules provided by
the Lung Image Database Consortium. The authors selected
the most relevant attributes using a wrapper and classified
the nodules with the KNN algorithm using different val-
ues for k. Feature selection improved nodule classification
using nine nearest neighbors and texture features of inverse
difference moment at orientations 0◦ and 135◦ and correla-
tion at 90◦ with accuracy of 0.792 and AUC of 0.816 [14].
In this present work, we extended the evaluation of Ferreira
Jr et al. by employing different datasets, classifiers, feature
selection algorithms, and performance measures.
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Materials and Methods

Pulmonary Nodule Database

The Lung Image Database Consortium (LIDC) project pro-
vided the CT scans used in this work [17, 18]. A pub-
licly available pulmonary nodule database was used to
allow reproducible research and cross-validation with other
CAD method implementations through the use of a sin-
gle image resource to compare the results with the same
testbed [19].

LIDC is a reference database for the medical imaging
research community that consists of images with marked-up
annotated lesions. It has associated specialists annotations,
including nodule outlines and subjective nodule character-
istic ratings, and is now composed with 1010 patients, 1018
CT exams, and 244,527 images. LIDC required four expe-
rienced radiologists to review each image of a CT exam
and to outline lesions that they considered to be a nodule
with greatest in-plane dimension in the range 3–30 mm. Full
description of the image interpretation and reading process
of the radiologists to evaluate the lesions is available at the
original LIDC references [17, 18]. For the purposes of this
work, only the reading of the radiologist that identified the
highest number of nodules was used [19].

Each specialist was also asked to subjectively set an inte-
ger value (on a 1–5 scale) to the nodule’s likelihood of
malignancy, in which 1 is high probability to be benign, 2 is
moderate probability to be benign, 3 is indeterminate prob-
ability, 4 is moderate probability to be malignant, and 5 is
high probability to be malignant. However, pulmonary nod-
ules with likelihood of malignancy 3 were discarded due to
its indeterminate rating. For the purposes of this work, nod-
ules with likelihood of malignancy 4 and 5 were considered
malignant, and nodules with likelihood of malignancy 1 and
2 were considered benign.

Experiments were performed with two datasets (one
unbalanced and one balanced) to prevent bias to the major-
ity class (benign), and hence to improve sensitivity. The
total number of nodules of the unbalanced dataset was 1171,
which 745 of them were benign and 426 were malignant
nodules. The total number of nodules of the randomly bal-
anced dataset was 600, equally split in 300 malignant and
benign cases.

Image Feature Extraction

The pulmonary nodule feature vector was composed of 48
image attributes of texture and margin sharpness, explained
as follows.

A 3D texture analysis was applied to manually seg-
mented pulmonary nodules to extract textural features. All
nodules had lesion images segmented using the radiolo-
gist’s marks. After the segmentation, texture attributes were
extracted from the voxels using a 3D extended version of the
gray level co-occurrence matrix (GLCM). The 3D GLCM
method obtains from a single image volume: the occur-
rence probability of pairs of voxels with spacing between
them of �x, �y, and �z in the dimensions x, y, and z,
respectively, given a distance d and orientation θ . Second-
order histogram statistics are computed from the GLCM
producing the texture attributes. Texture attributes used in
this work were energy, entropy, inverse difference moment
(IDM), inertia, variance, shade, promenance, correlation,
and homogeneity, suggested by Haralick et al. [20]. The
texture feature vector was obtained by means of the calcula-
tion of the nine attributes computed from the co-occurrence
matrices in orientations 0◦, 45◦, 90◦, and 135◦, and distance
of 1 voxel. In this case, each nodule was associated with a
36-dimension texture feature vector.

A 3D margin sharpness analysis was also implemented
to characterize pulmonary nodules, in which a data statis-
tical analysis was performed by extracting attributes from
a sorted array composed of the gray level intensities of the
pixels from perpendicular lines that drew over the borders
on all nodule slices. The margin sharpness feature vector
was composed by the simple statistics attributes of differ-
ence of the two ends of the array, sum of values, sum of
squares, sum of logs, arithmetic mean, geometric mean,
population variance, sample variance, standard deviation,
Kurtosis measure, Skewness measure, and second central
moment (SCM). Therefore, each nodule is characterized as
a 12-dimension margin sharpness feature vector.

Image Feature Selection

Feature selection process extracts a subset of image
attributes from the feature vector to improve the classifica-
tion accuracy. The main purposes of feature selection are:
(a) to reduce the dimensionality of the input data by remov-
ing irrelevant information, and (b) to improve the chances
of avoiding overfitting, whose probability increases with the
dimension of the feature space [8].

Three feature selection methods were employed in this
work: a statistical significance analysis, a correlation-based
filtering method, and a wrapper.

The statistical analysis was performed with p values to
test the statistical significance of the features across the two
classes (malignant and benign). According to Almeida et al.
[21], p ≥ 0.05 implies that the differences in the feature are
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not significant to distinguish between the two classes, 0.01
≤ p < 0.05 implies the existence of statistical significance
in the differences of the feature, and p < 0.01 implies high
significance.

The correlation-based feature selection filter searches
for subsets of features that are highly correlated with the
class while having low intercorrelation are preferred [22].
It evaluates the worth of a subset of attributes by consid-
ering the individual predictive ability of each feature along
with the degree of redundancy between them. Correlation-
based method needs to use a search method to find a local
optimum feature subset in the search space. The search
method used in this work was the best first, which searches
the space of attribute subsets by greedy hillclimbing aug-
mented with a backtracking facility [23]. Best first was
employed with a forward search, which starts with the
empty subset of attributes, to find a small subset of relevant
features.

The wrapper method evaluates attribute subsets using a
learning scheme and uses cross-validation to estimate the
accuracy of the learning scheme for a subset of attributes
[24]. In order to do that, it uses a classifier to estimate the
accuracy of the subsets and a search method. It is impor-
tant that the classifier used in the wrapper method be the
same as the classifier used in the classification process
due to the performance of the learning scheme. Therefore,
the classifier used in the wrapper method is presented in
the pulmonary nodule classification “Pulmonary Nodule
Classification,” using tenfolds to estimate the accuracy of
the subset. The search method of the wrapper was also the
best first with forward search.

Statistical analysis was performed using an unpaired
Student’s t test. Correlation and wrapper feature selection
methods were performed using a stratified tenfold cross-
validation. Therefore, after the execution of the tenfolds,
a list of attributes and their occurrences on selection is
generated. Relevance can be measured by the number of
occurrences on the cross-validation. For instance, if an
attribute is selected on tenfolds of the cross-validation, then
it may have high relevance on pulmonary nodule charac-
terization. If an attribute is not selected on any fold, then
it may have low (or none) relevance on pulmonary nod-
ule characterization, and hence may decrease classification
performance.

Pulmonary Nodule Classification

In order to classify the pulmonary nodules, we used seven
traditional machine learning algorithms, one for each differ-
ent classification method, as follows:

– ZeroR (ZR): it selects the majority class in the dataset
(independently of the feature vector) and can be used as

baseline for the experiment, which all algorithms can be
compared to;

– k-nearest neighbors (KNN): also known as instance-
based learning algorithm, it chooses the majority
class among k neighbors to classify the unknown test
instance. The Euclidean distance was used as distance
function, and the value of k was defined as 9;

– Support vector machine (SVM): a classifier that aims
to find a hyperplane that separates a dataset in discrete
classes. The SVM used a nu-support vector type with
radial basis function kernel;

– Naive Bayes (NB): a probabilistic classifier based on
Bayes’ theorem with features independence assump-
tion;

– Radial basis function (RBF): a radial basis function-
based artificial neural network. In this work, RBF
neural network training was performed by k-means
clustering to provide the radial units. The number of
clusters was defined as 2;

– J48: the Java implementation of the C4.5 decision
tree that selects more descriptive attributes using infor-
mation entropy for the classification. The confidence
factor was 0.25;

– Random forest (RF): an ensemble learning classifier
that operates by bagging ensembles of random decision
trees. The number of random trees was 100.

Performance Evaluation

Classification was performed using a stratified tenfold
cross-validation. The machine learning classifiers used dif-
ferent nodule attributes to perform the binary classification.
All nodule descriptors were previously extracted from all
database cases (“Image Feature Extraction”). Each pul-
monary nodule was characterized by four feature vectors.
The first vector has all 48 texture and margin sharpness
attributes combined. The second vector has selected fea-
tures from the statistical significance analysis with p < 0.05
(“Image Feature Selection”). The third vector has selected
attributes from the correlation-based method. The fourth
vector has selected attributes from the wrapper. The thresh-
old value for the feature occurrence on the cross-validation
was 4, hence all features that appeared at least on five-
folds of the cross-validation were used. The value of 4
was employed to exclude attributes that may have low or
none relevance on distinguishing pulmonary nodules. All
attributes were normalized in a range from 0 to 1.

In order to assess the efficiency of the pulmonary nod-
ule classification, the following statistical parameters were
used: accuracy, sensitivity, specificity, and area under the
receiver operating characteristic (ROC) curve (AUC). Accu-
racy refers to the proportion of correctly classified instances
(1). Sensitivity refers to the proportion of positives that are
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correctly classified as such Eq. 2. Specificity refers to the
proportion of negatives that are correctly classified as such
Eq. 3. The ROC curve is defined as a plot of test sensitivity
as the y coordinate versus its 1-specificity or false-positive
rate as the x coordinate, and the AUC is the area under the
ROC curve [25].

Accuracy = TP + TN

TP + TN + FP + FN
, (1)

Sensitivity = TP

TP + FN
, (2)

Specificity = TN

TN + FP
, (3)

where TP, TN, FP, and FN are the numbers of true pos-
itives, true negatives, false positives, and false negatives,
respectively.

Results

Table 1 presents the results of the feature selection by
the statistical significance analysis, the correlation-based
method, and the wrapper described in “Image Feature
Selection.” Statistical significance analysis was performed
for each feature independently. Correlation-based feature
selection was performed once for each dataset, since it does
not rely on a specific classifier. Feature selection by the
wrapper method was performed once for each dataset and
classifier, except for the ZeroR, because it does not use
imaging attributes to perform pulmonary nodule classifica-
tion.

In “Experimental Results with the Unbalanced Dataset,”
Table 2 presents the results of classification efficiency using
the unbalanced dataset, and Fig. 1a–d illustrates its diag-
nostic performance using ROC curves. In “Experimental
Results with the Balanced Dataset,” Table 3 presents
the results of classification efficiency using the balanced
dataset, and Fig. 2a–d illustrates the diagnostic performance
using ROC curves. Sensitivity and specificity values in
Tables 2 and 3 are related to the point in the ROC curve
that presents highest accuracy. A performance compari-
son between the two datasets is presented in “Perfomance
Comparison Based on Datasets.’’

Experimental Results with the Unbalanced Dataset

All classifiers presented higher performance in compari-
son to the baseline ZeroR (ZR) on the unbalanced dataset,
independently of the set of attributes used. Lowest clas-
sification performance was obtained by the radial basis
function (RBF) neural network with all attributes, but higher

than the baseline. Random forest (RF) classifier obtained
highest performance with the feature vector presenting all
attributes. Figure 1a illustrates the diagnostic performance
of the classifiers with all the extracted features using ROC
curves.

Classification performance was not improved by select-
ing only the statistically significant attributes in comparison
to all features combined. RF obtained highest classification
performance on this scenario, but no statistically significant
difference was identified in comparison to the performance
of the complete feature vector (95% confidence interval—
consider this confidence level for the remainder of the
statistical analysis). Figure 1b illustrates the diagnostic per-
formance of the classifiers with the statistically significant
attributes.

Selecting the attributes by the correlation method also
did not improve classification efficiency with the majority
of classifiers. However, RBF classification accuracy with
those 17 selected attributes increased 5 percentage points
in comparison to the complete feature vector, with statis-
tically significant difference on sensitivity between them.
J48 accuracy and AUC on this scenario obtained a mean
increase of three percentage points in comparison to all fea-
tures combined, but no statistically significant difference
was identified. Figure 1c illustrates the diagnostic perfor-
mance of the classifiers with the selected attributes by the
correlation-based method.

Selecting the attributes by the wrapper improved classifi-
cation performance (accuracy or AUC) with the majority of
classifiers. Highest differences on accuracy, in comparison
to the complete feature vector, were obtained by RBF (using
12 features) and Naive Bayes (NB, using 10 attributes)
with a mean increase of seven percentage points for both
classifiers and statistically significant differences on sensi-
tivity and specificity. RF and k-nearest neighbors (KNN)
classifiers with six and three selected attributes, respec-
tively, obtained highest classification performance on this
scenario, but no statistically significant differences between
them and in comparison to the complete feature vectors.
Figure 1d illustrates the diagnostic performance of the
classifiers with the selected attributes by the wrapper.

Experimental Results with the Balanced Dataset

All classifiers presented higher performance in comparison
to the baseline ZeroR on the balanced dataset, indepen-
dently of the subset of attributes used. Lowest classifica-
tion performance was obtained by the SVM with selected
attributes by correlation with AUC of 0.627, but higher than
the baseline with AUC of 0.500.

RF obtained highest diagnostic performance with AUC
of 0.846, and the SVM obtained highest classification
accuracy with 0.777 and the feature vector presenting all
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Table 1 Statistical
significance of the features and
attribute occurrences on feature
selection using the
correlation-based method and
classifiers wrappers

Attribute p value Correlation KNN SVM NB RBF J48 RF

Difference of two ends 0.3367 10 | 10 0 | 10 10 | 10 8 | 10 10 | 10 8 | 10 10 | 10

Sum of values < 0.0001 0 | 0 0 | 0 7 | 5 2 | 1 9 | 0 2 | 0 3 | 1

Sum of squares < 0.0001 0 | 1 1 | 1 6 | 7 0 | 2 0 | 1 3 | 0 6 | 0

Sum of logs < 0.0001 0 | 0 0 | 2 3 | 5 7 | 0 0 | 0 2 | 1 4 | 3

Arithmetic mean 0.2876 10 | 1 0 | 0 10 | 6 6 | 6 8 | 9 1 | 0 4 | 3

Geometric mean 0.0073 0 | 0 0 | 0 6 | 3 8 | 5 0 | 3 2 | 0 2 | 2

Population variance 0.6129 2 | 1 0 | 2 5 | 2 7 | 5 1 | 0 1 | 1 1 | 1

Sample variance 0.6491 4 | 3 0 | 1 3 | 3 8 | 4 3 | 0 1 | 0 4 | 3

Standard deviation 0.6491 0 | 0 0 | 0 4 | 4 5 | 5 2 | 1 0 | 0 0 | 4

Kurtosis measure < 0.0001 10 | 10 0 | 3 1 | 5 1 | 8 4 | 6 1 | 0 8 | 3

Skewness measure < 0.0001 6 | 3 0 | 0 3 | 5 3 | 8 10 | 2 2 | 1 3 | 2

SCM < 0.0001 0 | 1 0 | 3 2 | 1 0 | 0 0 | 0 0 | 0 1 | 0

Energy at 0◦ 0.1215 0 | 0 0 | 0 1 | 0 3 | 5 1 | 1 1 | 1 1 | 1

Entropy at 0◦ < 0.0001 8 | 3 2 | 0 3 | 2 0 | 0 0 | 0 1 | 1 0 | 7

Inertia at 0◦ < 0.0001 10 | 10 0 | 9 5 | 5 8 | 0 8 | 9 1 | 0 2 | 3

Homogeneity at 0◦ < 0.0001 0 | 0 2 | 1 4 | 1 0 | 0 0 | 0 2 | 1 0 | 4

Correlation at 0◦ < 0.0001 0 | 0 1 | 0 3 | 3 3 | 5 0 | 0 1 | 0 0 | 2

Shade at 0◦ < 0.0001 0 | 0 3 | 0 0 | 1 0 | 0 0 | 0 2 | 2 3 | 0

Promenance at 0◦ < 0.0001 10 | 4 4 | 0 0 | 2 0 | 0 0 | 0 0 | 0 1 | 0

Variance at 0◦ < 0.0001 0 | 0 2 | 0 1 | 0 0 | 0 2 | 3 1 | 0 0 | 0

IDM at 0◦ < 0.0001 9 | 3 5 | 5 3 | 4 0 | 0 6 | 0 3 | 3 5 | 3

Energy at 45◦ 0.0017 6 | 1 0 | 0 2 | 0 4 | 0 2 | 0 1 | 0 0 | 1

Entropy at 45◦ < 0.0001 0 | 0 0 | 0 1 | 2 0 | 0 0 | 0 0 | 2 2 | 5

Inertia at 45◦ < 0.0001 6 | 1 0 | 5 3 | 1 0 | 1 7 | 5 3 | 0 5 | 4

Homogeneity at 45◦ < 0.0001 0 | 0 1 | 0 3 | 1 0 | 0 0 | 0 0 | 2 1 | 1

Correlation at 45◦ < 0.0001 0 | 0 0 | 0 3 | 5 2 | 0 0 | 0 0 | 0 0 | 3

Shade at 45◦ < 0.0001 0 | 0 2 | 0 1 | 2 0 | 0 0 | 0 1 | 0 2 | 0

Promenance at 45◦ < 0.0001 4 | 0 0 | 0 1 | 1 0 | 0 0 | 0 0 | 0 0 | 1

Variance at 45◦ < 0.0001 0 | 0 0 | 0 0 | 1 0 | 0 0 | 0 0 | 1 2 | 2

IDM at 45◦ < 0.0001 10 | 5 3 | 0 1 | 3 0 | 0 3 | 0 2 | 0 3 | 1

Energy at 90◦ 0.0424 0 | 2 0 | 0 0 | 6 2 | 5 4 | 5 1 | 3 3 | 0

Entropy at 90◦ < 0.0001 2 | 0 1 | 0 2 | 1 0 | 0 0 | 0 1 | 0 1 | 2

Inertia at 90◦ < 0,0001 1 | 1 0 | 2 1 | 5 1 | 6 7 | 4 0 | 3 0 | 0

Homogeneity at 90◦ < 0.0001 0 | 0 1 | 0 1 | 3 0 | 0 0 | 0 1 | 0 1 | 0

Correlation at 90◦ < 0.0001 0 | 0 5 | 0 1 | 4 7 | 5 5 | 1 0 | 1 2 | 4

Shade at 90◦ < 0.0001 0 | 0 0 | 0 0 | 3 0 | 0 0 | 0 0 | 2 1 | 0

Promenance at 90◦ < 0.0001 10 | 10 0 | 0 1 | 0 0 | 0 0 | 0 1 | 0 1 | 0

Variance at 90◦ < 0.0001 0 | 3 0 | 0 1 | 3 0 | 0 1 | 1 5 | 1 1 | 3

IDM at 90◦ < 0.0001 9 | 8 1 | 3 1 | 4 0 | 0 5 | 0 0 | 0 1 | 1

Energy at 135◦ 0.0030 10 | 3 0 | 0 0 | 0 6 | 8 10 | 3 1 | 2 0 | 2

Entropy at 135◦ < 0.0001 0 | 0 0 | 0 1 | 3 0 | 0 0 | 0 1 | 1 0 | 1

Inertia at 135◦ < 0.0001 8 | 5 0 | 7 4 | 5 2 | 0 8 | 4 3 | 1 0 | 3

Homogeneity at 135◦ < 0.0001 0 | 2 0 | 1 4 | 4 0 | 0 0 | 0 2 | 2 2 | 3

Correlation at 135◦ < 0.0001 0 | 0 0 | 0 2 | 5 2 | 0 0 | 0 0 | 0 3 | 0

Shade at 135◦ < 0.0001 0 | 0 2 | 0 1 | 2 0 | 0 0 | 0 1 | 0 0 | 2

Promenance at 135◦ < 0.0001 10 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | 0 1 | 0

Variance at 135◦ < 0.0001 0 | 0 0 | 0 2 | 2 0 | 0 0 | 0 1 | 0 1 | 1

IDM at 135◦ < 0.0001 8 | 5 6 | 2 1 | 5 0 | 0 4 | 0 3 | 7 5 | 4

Occurrences are displayed in pairs x | y, where x and y correspond to the number of occurrences of an
attribute on the tenfold cross-validation using the unbalanced and the balanced datasets, respectively



J Digit Imaging (2018) 31:451–463 457

Table 2 Classification results
with the unbalanced dataset ZR KNN SVM NB RBF J48 RF

All features Accuracy 0.636 0.763 0.773 0.703 0.691 0.753 0.800

Sensitivity 0.000 0.596 0.493 0.244 0.209 0.617 0.702

Specificity 1.000 0.859 0.933 0.965 0.966 0.831 0.856

AUC 0.496 0.827 0.713 0.769 0.695 0.735 0.858

Features Accuracy 0.636 0.756 0.774 0.702 0.683 0.762 0.786

selected by Sensitivity 0.000 0.563 0.491 0.242 0.350 0.636 0.685

statistics Specificity 1.000 0.866 0.936 0.965 0.874 0.834 0.843

AUC 0.496 0.794 0.713 0.749 0.702 0.747 0.847

Features Accuracy 0.636 0.766 0.765 0.703 0.740 0.777 0.781

selected by Sensitivity 0.000 0.559 0.495 0.223 0.392 0.650 0.655

correlation Specificity 1.000 0.885 0.919 0.977 0.940 0.850 0.854

AUC 0.496 0.811 0.707 0.778 0.709 0.771 0.846

Features Accuracy 0.636 0.792 0.784 0.769 0.761 0.786 0.788

selected by Sensitivity 0.000 0.664 0.531 0.502 0.505 0.575 0.662

wrapper Specificity 1.000 0.866 0.929 0.921 0.907 0.906 0.860

AUC 0.496 0.816 0.730 0.792 0.752 0.710 0.843

Italicized values are the highest for each row

Fig. 1 ROC curves for diagnostic performance of the classifiers using the unbalanced dataset
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Table 3 Classification results
with the balanced dataset ZR KNN SVM NB RBF J48 RF

All features Accuracy 0.500 0.738 0.777 0.608 0.635 0.688 0.760

Sensitivity 1.000 0.663 0.700 0.247 0.643 0.680 0.750

Specificity 0.000 0.813 0.853 0.970 0.627 0.697 0.770

AUC 0.500 0.806 0.777 0.734 0.685 0.720 0.856

Features Accuracy 0.500 0.727 0.747 0.605 0.608 0.720 0.760

selected by Sensitivity 1.000 0.683 0.677 0.240 0.593 0.707 0.780

statistics Specificity 0.000 0.770 0.817 0.970 0.623 0.733 0.740

AUC 0.500 0.791 0.747 0.711 0.667 0.747 0.856

Features Accuracy 0.500 0.748 0.627 0.610 0.698 0.717 0.728

selected by Sensitivity 1.000 0.703 0.643 0.247 0.497 0.660 0.733

correlation Specificity 0.000 0.793 0.610 0.973 0.900 0.773 0.723

AUC 0.500 0.820 0.627 0.765 0.736 0.746 0.819

Features Accuracy 0.500 0.738 0.773 0.692 0.747 0.758 0.747

selected by Sensitivity 1.000 0.687 0.697 0.607 0.600 0.693 0.753

wrapper Specificity 0.000 0.790 0.850 0.777 0.893 0.823 0.740

AUC 0.500 0.796 0.773 0.752 0.784 0.751 0.809

Italicized values are the highest for each row

Fig. 2 ROC curves for diagnostic performance of the classifiers using the balanced dataset
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attributes. No statistically significant difference was identi-
fied on RF and SVM classification performances. Figure 2a
illustrates the diagnostic performance of the classifiers with
all the extracted features and the balanced dataset.

Classification efficiency was not improved by selecting
only the statistically significant attributes in comparison to
all features combined. J48 classification performance with
those 42 selected attributes increased in comparison to the
complete feature vector, but no statistically significant dif-
ference was identified. RF obtained highest classification
performance on this scenario, but no statistically signifi-
cant difference was identified in comparison to all features
combined and to the J48 performance. Figure 2b illus-
trates the diagnostic performance of the classifiers with the
statistically significant attributes.

Selecting the attributes by the correlation method
improved classification performance with the majority of
classifiers. RBF classification with those eight selected
attributes was improved in comparison to the complete fea-
ture vector, with statistically significant difference on both
sensitivity and specificity. However, no statistically signif-
icant difference was identified on the performances of the
KNN, NB, and J48 classifiers with this scenario. Figure 2c
illustrates the diagnostic performance of the classifiers with
the selected attributes by the correlation-based method.

Selecting the attributes by the wrapper improved diag-
nostic performance with the majority of classifiers. NB
classification with 13 attributes was improved, with sta-
tistically significant differences on both sensitivity and
specificity. RBF with six attributes and J48 with two
attributes improved classification performance, with statis-
tically significant difference on specificity with both classi-
fiers. Figure 2d illustrates the diagnostic performance of the
classifiers with the selected attributes by the wrapper.

Performance Comparison Based on Datasets

Statistically significant improvements on sensitivity, which
is important on malignant vs. benign classification problems
[25], were identified on several scenarios when balancing
the number of cases in the database (Table 4).

RBF with all features combined obtained highest sensi-
tivity improvement with a mean increase of 43 percentage

Table 4 Occurrence of statistically significant difference on sensitiv-
ity using the datasets

KNN SVM NB RBF J48 RF

All features combined X X

Features selected by statistics X X X

Features selected by correlation X X

Features selected by wrapper X X

points in comparison to the unbalanced dataset. RF and NB
were the only classifiers that did not present statistically
significant improvement on sensitivity with any subset of
features. SVM presented statistically significant difference
on sensitivity with all subsets of features.

RF with all attributes combined and the unbalanced
dataset obtained highest classification performance over-
all scenarios with AUC of 0.858. However, no statistically
significant differences on sensitivity and specificity were
identified in comparison to some combination scenarios of
classifiers, features selected by the wrapper method, and
dataset employed. Table 5 and Fig. 3 present sensitivity,
specificity, and ROC curves for some of those combination
scenarios (most relevant ones according to high efficiency
and small number of selected features by the wrapper
method) of classification.

Discussion

Computer recognition of medical image patterns is impor-
tant in that it can assist the clinical decision process of
distinguishing pulmonary nodules according to their malig-
nancy [1, 9, 12]. However, it depends on extracting image
features to characterize the pulmonary nodules, selecting the
most relevant attributes to better discriminate the lesions,
and on an efficient machine learning algorithm that can use
those relevant features to classify malignant and benign pul-
monary nodules. In this work, we aimed to recognize CT
image features of second-order texture, which is traditional
and relevant to scientific literature [4, 11, 13], and mar-
gin sharpness, which is important in diagnosing lung cancer
nodules [15] and has less dependence of the radiologist’s
ground truth mark of the nodule border.

Regarding to the results obtained from the experiments,
balancing the number of cases of each class in the database
partially solved the problem of low sensitivity of some
classification scenarios using the unbalanced dataset, as
“Performance Comparison Based on Datasets” presented.
Therefore, in some cases, it is advisable to employ a bal-
anced database for training and classification purposes; for
instance, with SVM using any set of features of margin
sharpness and texture (Table 4).

The selection of statistically significant features did not
present neither relevant performance improvement, nor rele-
vant dimensionality reduction of the feature space. Only six
features were excluded from the feature vector (difference
of two ends, arithmetic mean, population variance, sample
variance, standard deviation, and energy at 0◦), which rep-
resented a reduction of 13% of the feature space. Therefore,
the attribute selection by statistical analysis of each feature
apparently did not present any classification relevance for
computational or diagnostic purposes.
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Table 5 Classification
scenarios with no statistically
significant difference identified
on sensitivity and specificity
(95% confidence intervals)

Number of features Classifier Dataset Sensitivity Specificity

48 RF Unbalanced (0.656, 0.744) (0.829, 0.880)

6 RF Unbalanced (0.615, 0.706) (0.833, 0.884)

5 KNN Balanced (0.630, 0.738) (0.739, 0.834)

3 KNN Unbalanced (0.617, 0.709) (0.839, 0.889)

2 J48 Balanced (0.637, 0.744) (0.774, 0.864)

However, correlation and wrapper methods were able
to improve classification performance in several scenarios,
or at least, reduce the dimensionality of the feature space.
For instance, correlation method selected 17 features using
the unbalanced dataset (difference of two ends, arithmetic
mean, kurtosis measure, skewness measure, entropy at 0◦,
inertia at 0◦, promenance at 0◦, IDM at 0◦, energy at 45◦,
inertia at 45◦, IDM at 45◦, promenance at 90◦, IDM at
90◦, energy at 135◦, inertia at 135◦, promenance at 135◦,
and IDM at 135◦), which corresponded a reduction of 65%
of the feature space, and eight features using the balanced
dataset (difference of two ends, kurtosis measure, inertia at
0◦, IDM at 45◦, promenance at 90◦, IDM at 90◦, inertia at
135◦, and IDM at 135◦), which corresponded a reduction of
83% of the feature space. Moreover, those selected features
with the RBF neural network increased classification per-
formance with a mean increase of five and three percentage
points on accuracy and AUC, respectively, in comparison to
the complete feature vector for both datasets, with statisti-
cally significant difference on sensitivity for both datasets
and on specificity for the balanced one.

Furthermore, since the wrapper needs to use a classifier
to perform the feature selection, each classifier used in this
work selected a different subset of features. For instance,
Naive Bayes wrapper selected 13 features using the bal-
anced dataset (difference of two ends, arithmetic mean, geo-
metric mean, population variance, standard deviation, kurto-
sis measure, skewness measure, energy at 0◦, correlation at

0◦, energy at 90◦, inertia at 90◦, correlation at 90◦, and energy
at 135◦) and ten features using the unbalanced dataset (dif-
ference of two ends, sum of logs, arithmetic mean, geometric
mean, population variance, sample variance, standard devi-
ation, inertia at 0◦, correlation at 90◦, and energy at 135◦),
and obtained a mean increase of seven and two percentage
points on accuracy and AUC, respectively, in comparison
to the complete feature vector, with statistically significant
differences on sensitivity and specificity on both datasets.

Highest number of attributes selected by a wrapper was
obtained by SVM using the balanced dataset of 14 features
(difference of two ends, sum of values, sum of squares,
sum of logs, arithmetic mean, kurtosis measure, skewness
measure, inertia at 0◦, correlation at 45◦, energy at 90◦, iner-
tia at 90◦, inertia at 135◦, correlation at 135◦, and IDM at
135◦), which corresponded a reduction of 71% of the fea-
ture space, and no statistically significant differences on
sensitivity and specificity were obtained in comparison to
the complete feature vector. Lowest number of attributes
selected by a wrapper was obtained by the decision tree J48
using both datasets of two features (difference of two ends
and IDM at 135◦ for the balanced dataset, and difference of
two ends and variance at 90◦ for the unbalanced dataset),
which corresponded a reduction of 96% of the feature
space, and statistically significant difference on specificity
in comparison to the complete feature vector.

Despite the fact that the wrapper is able to reduce
the dimensionality more effectively than the correlation

Fig. 3 ROC curves of relevant
classification scenarios with no
statistically significant
difference identified on
sensitivity and specificity.
Scenarios are presented with the
number of features + classifier
+ dataset used
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method, the former takes much more time than the latter to
perform feature selection. This happens because, for each
feature subset examined by the wrapper, a training model is
built for each of the tenfolds of the cross-validation. There-
fore, for some classifier wrappers, it takes several hours to
select the most relevant attributes out of the 48 extracted
features, while the correlation method selects them in just a
few seconds.

As stated before, the RF algorithm with all 48 com-
bined features and the unbalanced dataset obtained highest
classification efficiency overall scenarios. However, the J48
decision tree using the balanced dataset and only two fea-
tures selected by the wrapper (difference of two ends and
IDM at 135◦), which corresponded a reduction of 96% of
the feature space, obtained equivalent classification per-
formance with no statistically significant differences on
sensitivity and specificity, despite the higher AUC of RF in
comparison to J48 (0.858 vs. 0.751, Fig. 3).

Besides the attributes of difference of two ends and IDM
at 135◦ selected by the J48 wrapper with the balanced
dataset, we also highlight the attribute of IDM at 0◦ as rel-
evant to distinguish the pulmonary nodules as malignant or
benign, due to its occurrence on the other three classifica-
tion scenarios that did not present statistically significant
difference in comparison to the scenario that presented high-
est classification efficiency (48 + RF + unbalanced dataset,
Table 5).

Results from the RF with the unbalanced dataset are
promising when comparing to the results found in litera-
ture with different image features and datasets (Table 6)
[1, 9–14]. RF obtained higher AUC in comparison to the
Reeves et al. and Ferreira Jr et al., higher specificity than
the approaches of Wu et al. and Tartar et al., and at least
equivalent accuracy than Ferreira Jr et al. “Related Works”
presents details from those works.

Furthermore, quantifying the margin sharpness and tex-
ture of the pulmonary nodules differently may increase clas-
sification performance, for instance, with Levman and Mar-
tel attribute of margin sharpness [15], Tamura features for

texture characterization [26], or by wavelet transforms and
fractal dimension analysis [27, 28]. Attribute weighing and
principal components analysis may also enhance the perfor-
mance of the pulmonary nodule classification by updating
the feature weights or filtering the noise attributes [23, 29].
For last, classification performance may be improved by
employing a more robust learning algorithm to classify the
pulmonary nodules, e.g., using deep convolutional neural
networks [30].

One limitation of this work is the lack of clinical diag-
nosis to be used as gold standard for benign and malignant
pulmonary nodules. LIDC has a limited number of lesions
with final diagnosis, either by biopsy, surgical resection,
review of radiological images to show two years of stable
nodule or progression/response [18]. In this work, we prior-
itized a high number of cases for the analysis, and hence, we
used only the radiological evaluation as gold standard (like-
lihood of malignancy in a 1–5 scale), as other studies also
used this approach [13, 14, 29]. However, it is important
to perform further experiments to validate the results and
findings of this work with the clinically proven pulmonary
nodules.

Other limitation of this work is the lack of association
between the image features and histopathological subtype of
the malignant lesions and other clinical outcomes (process
known as radiomics [4]). Therefore, further investigation is
necessary to assist specialists with, not only the diagnosis,
but also the prognosis of lung cancer.

Conclusions

This paper presented the malignant-vs-benign classifica-
tion of pulmonary nodules based on imaging features of
margin sharpness and second-order texture in CT scans.
Classification was performed with a publicly available pul-
monary nodule image database, which enabled reproducible
research and cross-validation between others researchers
and CAD methods. The selection of the most relevant

Table 6 Comparison on
random forest classification
efficiency (using the
unbalanced dataset) with the
literature

Proposal Accuracy Sensitivity Specificity AUC

Wu et al. [1] – 0.960 0.800 0.910

Tartar et al. [9] 0.837 0.854 0.816 0.908

Reeves et al. [10] – – – 0.772

Dilger et al. [11] 0.920 0.909 0.928 0.935

Zhang et al. [12] 0.880 – – –

Kaya et al. [13] 0.849 0.831 0.921 –

Ferreira Jr et al. [14] 0.792 – – 0.816

48 combined features 0.800 0.702 0.856 0.858

6 selected features 0.788 0.662 0.860 0.843
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attributes from the feature vector used different feature
selection methods, and the classification of the pulmonary
nodules was performed in terms of potential malignancy,
with different machine learning algorithms to find the best
approach to identify image patterns in pulmonary nodules.

All extracted features combined with the RF classifier
and an unbalanced dataset for training presented highest
classification performance and promising results for future
works. However, the J48 decision tree with only two fea-
tures (difference of highest and lowest gray level inten-
sities from perpendicular lines of the nodule, and inverse
difference moment computed from the 135◦ gray level co-
occurrence matrix) selected by a wrapper is a low cost com-
putational solution for a possible end-user CAD software,
with statistically equivalent performance in comparison to
the RF. Therefore, the first scenario may be a better solution
for diagnostic purposes, while the second scenario is more
appropriate to reduce computational costs that the complete
feature vector may introduce to a pulmonary nodule classifi-
cation software. Furthermore, texture and margin sharpness
image features and decision-tree-based classifiers present
potential to predict malignancy of pulmonary nodules.

Further experiments need to be performed in terms of
evaluation and in clinical practice as a CAD tool to radiol-
ogists. Our pulmonary nodule feature vector is in a devel-
oping stage, and we aim at improving its efficiency on
characterization and classification in order to improve the
diagnosis of lung cancer.
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