Skip to main content
. 2017 Oct 18;31(4):451–463. doi: 10.1007/s10278-017-0029-8

Table 2.

Classification results with the unbalanced dataset

ZR KNN SVM NB RBF J48 RF
All features Accuracy 0.636 0.763 0.773 0.703 0.691 0.753 0.800
Sensitivity 0.000 0.596 0.493 0.244 0.209 0.617 0.702
Specificity 1.000 0.859 0.933 0.965 0.966 0.831 0.856
AUC 0.496 0.827 0.713 0.769 0.695 0.735 0.858
Features Accuracy 0.636 0.756 0.774 0.702 0.683 0.762 0.786
selected by Sensitivity 0.000 0.563 0.491 0.242 0.350 0.636 0.685
statistics Specificity 1.000 0.866 0.936 0.965 0.874 0.834 0.843
AUC 0.496 0.794 0.713 0.749 0.702 0.747 0.847
Features Accuracy 0.636 0.766 0.765 0.703 0.740 0.777 0.781
selected by Sensitivity 0.000 0.559 0.495 0.223 0.392 0.650 0.655
correlation Specificity 1.000 0.885 0.919 0.977 0.940 0.850 0.854
AUC 0.496 0.811 0.707 0.778 0.709 0.771 0.846
Features Accuracy 0.636 0.792 0.784 0.769 0.761 0.786 0.788
selected by Sensitivity 0.000 0.664 0.531 0.502 0.505 0.575 0.662
wrapper Specificity 1.000 0.866 0.929 0.921 0.907 0.906 0.860
AUC 0.496 0.816 0.730 0.792 0.752 0.710 0.843

Italicized values are the highest for each row