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Abstract Aperipherally inserted central catheter (PICC) is a
thin catheter that is inserted via arm veins and threaded near
the heart, providing intravenous access. The final catheter tip
position is always confirmed on a chest radiograph (CXR)
immediately after insertion since malpositioned PICCs can
cause potentially life-threatening complications. Although
radiologists interpret PICC tip location with high accuracy,
delays in interpretation can be significant. In this study, we
proposed a fully-automated, deep-learning system with a
cascading segmentation AI system containing two fully
convolutional neural networks for detecting a PICC line
and its tip location. A preprocessing module performed im-
age quality and dimension normalization, and a post-
processingmodule found the PICC tip accurately by pruning
false positives. Our best model, trained on 400 training cases
and selectively tuned on 50 validation cases, obtained abso-
lute distances from ground truth with a mean of 3.10 mm, a
standard deviation of 2.03mm, and a rootmean squares error

(RMSE) of 3.71 mm on 150 held-out test cases. This system
could help speed confirmation of PICC position and further
be generalized to include other types of vascular access and
therapeutic support devices.
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Introduction

Aperipherally inserted central catheter (PICC) is a thin, flexible
plastic tube that provides medium-term intravenous access.
These are inserted into arm veins and threaded through the
subclavian vein into the superior vena cava (SVC) with the
catheter tip directed inferiorly and ideally at the junction of
the SVC and right atrium (RA). Malpositioned PICCs can have
potentially serious complications such as thrombus formation
or cardiac arrhythmia [1]. As a result, PICC positioning is al-
ways confirmed with a chest radiograph (CXR) immediately
after insertion. This radiograph requires timely and accurate
interpretation by a radiologist. Although the error rate for radi-
ologists misinterpreting PICC location is likely extremely low
[2], delays in treatment initiation can be substantial—up to
176 min in a multisite comparison setting [3]—particularly
when this radiograph is one of many in a long list waiting to
be interpreted. Machine intelligence techniques, however, may
help prioritize and triage the review of radiographs to the top of
a radiologist’s queue, improvingworkflow and turnaround time
(TAT). While high sensitivity should be prioritized, adequate
specificity will be required to maintain a low false-negative rate
and avoid workflow disruption and false positives which can
lead to alarm fatigue and distrust of the system.
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Computer-aided detection (CAD) has been used to aid radi-
ologists in the interpretation of medical images and decrease
mistakes. Recently, new advances in deep-learning technology
applied to medical imaging have shown promise in improving
diagnostic accuracy and speeding image interpretation.
Examples include interstitial lung disease classification on
chest computed tomography (CT), skeletal age classification
on left hand radiographs, and brain tumor segmentation on
magnetic resonance images [4–7]. These successes have been
attributed to the ability of deep neural networks to automatical-
ly extract salient features from annotated datasets, rather than
relying on manually hand-crafted features selected by domain
experts [8]. Several attempts have been made to solve medical
challenges on CXRs, such as detecting pathologies, bone struc-
ture suppression, segmenting the lung fields, and diagnosing
pulmonary tuberculosis [9–14]. However, to the best of our
knowledge, a fully automated deep-learning approach has not
been applied to improve workflow efficiency of PICC position
confirmation process in any previous published works.

In this study, we propose a fully automated deep-learning
system for an accurate PICC tip detection. This system is
comprised of a preprocessing module for image normalization
and a cascade segmentation AI with two fully convolutional
networks (FCNs) [15] for segmenting PICC line and its tip
region of interest (ROI), followed by a post-processing mod-
ule to prune false positives that are located outside the ROI for
accurate assessment of catheter tip location.

Method

Dataset

Data Collection

IRB approval was obtained for this retrospective study. Digital
Imaging and Communications in Medicine (DICOM) images
containing PICCs were retrospectively collected from picture
archiving and communication system (PACS) archive at our
institution from 2015-01-01 to 2016-01-31. All the images
were fully de-identified for compliance with HIPAA. For this
study, only CXRs taken in an anteroposterior (AP) projection
were included in the dataset with the exclusion of other view-
points. At our institution, an AP CXR is routinely performed
immediately after the insertion of a PICC to confirm position
since AP CXRs are readily available, fast, and easy to perform
at the patient’s bedside.

A total of 2265 DICOM images were retrieved by querying
for the keyword BPICC^ in the report text. Multiple radio-
graphs contained images both presented in standard view as
well as edge-enhanced views to help identify support devices.
Edge-enhanced images were excluded from the dataset. Many
reports referenced non-existent or removed PICCs and

therefore were excluded. Several images did not contain the
entire thorax, were actually in postero-anterior (PA) or lateral
projection, or had extensive overlying devices which obscured
PICC tip location. After these exclusions, 600 images from
600 patients with visible PICCs were utilized for the dataset.

Data Categorization

We randomly selected 50 cases from the entire cohort for use
as a validation dataset and 150 cases for use as a test dataset.
The remaining CXRs (400 cases) were utilized to train two
FCNs for segmenting PICC line and PICC tip ROI. Using the
validation dataset, hyperparameters of the neural networks
and parameters of our post-processing module were tuned to
find the best models, and then the chosen models were eval-
uated on the test dataset.

Data Preparation

CXRs have a wide variation of appearance in pixel contrast,
internal and external artifacts, and patient positioning as pre-
sented in Fig. 1. CXRs also have varying resolutions due to
the geometry of the source, object, and detector. Our hospital
protocol is to perform AP portable radiographs with a source,
object, and detector distance of 72 in. Our input CXRs ranged
from 1734 × 1782 to 3408 × 4200 pixels with an average size
of 2777 × 3213 pixels. This variation prevents predictive
models from learning significant and invariant features of
PICCs. As a result, a preprocessing module is essential to
standardize image quality and dimensions before
convolutional neural networks (CNNs) can be trained. The
preprocessing module is explained in detail in the
BPreprocessing^ section.

As shown in Fig. 2, label maps for the two different
tasks—PICC line and PICC tip ROI segmentation—were
created for training and validation datasets (450 cases) by
manual annotation by a research assistant with subsequent
review by a board-certified radiologist (initials [MHL]).
For the purpose of performance evaluation, the correct
PICC tip locations were annotated by a radiologist (initials
[ST]) on our withheld test dataset (150 cases), as they
would be considered ground truth tip locations. The anno-
tation tasks were performed using basic ROI draw func-
tions (brush, polygon, and point) available in OsiriX [13].
The target labels and their corresponding color codes uti-
lized for the segmentation jobs are detailed with descrip-
tions of compositions for each label in Table 1.

We reformatted the annotated label maps into input labels
acceptable for two CNNs for PICC line and PICC tip ROI
segmentation, as shown in Fig. 2. The preprocessed images
and the corresponding color-coded label maps serve as input
images and their pixel-level targets for the two CNNs, respec-
tively. Object boundaries were ignored during training as the
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pixels surrounding a boundary are ambiguous and can be seg-
mented into any label because of inherent semantic overlap.
Figure 3 shows the architecture of the deep-learning system
we used in this study.

System Architecture

Preprocessing

Non-processed AP CXRs are often hazy and have low
pixel contrast which prevents CNNs from discriminating
PICC from similar appearing objects. Consequently, we
took two preprocessing steps to normalize contrast and
dimensions of input images. First, Contrast Limited
Adaptive Histogram Equalization (CLAHE) [16] was ap-
plied to achieve consistency in image contrast. Second, all
images were zero-padded to equalize their widths and
heights with preserving their aspect ratios, followed by
resizing them to 1024 × 1024 pixels. The larger image size
was based on our intuition that discriminant features of
PICC lines could be lost in image size reduction to more
conventional 256 × 256 images. Recent work [17]
achieved good segmentation performance of anatomical
organs on CXRs despite resizing to 256 × 256 pixels.
However, significant features of PICCs could possibly be
lost at that size because the widths of PICCs are less than 4
pixels in a 256 × 256 pixel image. As a result, we chose
1024 × 1024 pixels as the size is the largest one our com-
putational hardware could process.

Cascade Segmentation AI: Fully Convolutional Networks

We proposed a cascade architecture of segmentation AI sys-
tem with two CNNs for segmenting PICC line and its tip ROI
as shown in Fig. 3. We chose FCNs among different types of
CNNs for three main reasons. FCNs process images and labels
in one forward pass for pixel wise segmentations from any-
sized input images, allowing us to use 1024 × 1024 pixel
images. Using FCNs also allows us to utilize transfer learning
by importing a pre-trained model such as ImageNet [18] and
accelerate the loss convergence function to a global optimum
even when using a small dataset. Moreover, as explained by
Long et al. [15], FCN intentionally fuses different levels of
layers for the purpose of combining coarse-grained and fine-
grained features extracted from earlier and later layers, thus
achieving accurate segmentation results thanks to the exploita-
tion of local and global context. Lastly, FCNs can be trained end
to end, pixels to pixels with input images and their pixel wise
target labels and then be deployed whole-image-at-a-time [15].

Prior work in image classification has used a patch-based
approach [19, 20] which requires redundant pixel wise classi-
fications using multiple small patches for each pixel. Our FCN
approach outperforms patches because it only performs one
forward computation. Unmodified FCNs contain only FCN-
32s, FCN-16s, and FCN-8s architectures that fuse and
upsample coarse-grained and fine-grained features at granu-
larity of 32, 16, and 8 pixels, respectively [15]. However, we
have experimented with finer grained FCN architectures,
FCN-4s and FCN-2s, in order to find the optimal granularity
of FCN for accurate PICC tip detection.

Fig. 1 Examples of non-processed chest radiographs to demonstrate the wide variation of image quality. This includes radiographs with a low pixel
contrast, b high pixel contrast, c internal and external artifacts, and d patient rotation
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Fig. 2 Input data examples of preprocessed images, ground truth labels,
and superimposed images for segmentation of a PICC line and b PICC tip
ROI. Seven different semantic labels, including PICC, ECG, lines,

threads, tubes, objects, and background, were defined for PICC line
segmentation. PICC tip ROI segmentation requires binary labels
containing background and PICC tip ROI

Table 1 Description of labels
and color codes used for PICC
line and PICC tip ROI
segmentation

Label Color codes Description

PICC line segmentation

Background

PICC

0 (black)

1 (red)

Any pixels that any labels are not assigned to

PICC lines

ECG 2 (green) ECG cables

Lines 3 (dark yellow) Any line-shaped objects excluding PICC and ECG

Threads 4 (blue) Surgical sutures and staples, used for closing surgical incisions

Tubes 5 (purple) Any tube-shaped objects

Objects 6 (dark cyan) Any foreign structures, such as pacemaker devices, simulators,
catheter hubs, and ECG electrodes

PICC tip ROI segmentation

Background 0 (black) Any pixels that any labels are not assigned to

PICC tip ROI 1 (dark orange) Subregion of the lung zone excluding the subphrenic areas
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Post-processing

After generating a segmented region of PICC line from PICC-
FCN, the system passes it to the post-processing module.

Bone edges and other dense linear structures can be errone-
ously detected as potential false positives. By using a proba-
bilistic Hough line transform algorithm [21], false positives
that are distant from the predicted PICC regions are excluded.

Fig. 3 Overview of our proposed fully automated deep-learning system
for PICC tip detection. The system consists of a preprocessing module
and a cascade segmentation AI containing FCNs for PICC line

segmentation FCN (PICC-FCN) and for PICC tip ROI segmentation
FCN (PTR-FCN), followed by a post-processing module

Fig. 4 Overview of proposed
post-processing module for
pruning false positives using an
optimized Hough line transform
algorithm and finding the PICC
tip location within the selection
ROI predicted by PTR-FCN
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As shown in Fig. 4, the algorithm effectively merged the sig-
nificant nearby contours to generate a smoothly curved PICC
line trajectory. Our validation dataset facilitated finding opti-
mal combinations of parameters for better algorithmic perfor-
mance—minimum length of line (minLineLength), maximum
allowed gap between line segments for a single line
(maxLineGap), and minimum vote count for a line to be
formed (minVotingNum). After iterative attempts, using
values of minVotingNum = 50, minLineLength = 30, and
maxLineGap = 50 provided the best accuracy. After filtering
out falsely predicted PICC regions, the catheter tip location
can then be computed by simply finding the point with the
largest y value inside the PICC tip ROI where the tip is sup-
posed to be located. Final outputs created by our proposed
system are shown as a superimposed image with PICC line
and its tip location (Fig. 4).

Training

We fine-tuned the FCNmodels after initializing themwith pre-
trained models retrieved from FCN GitHub [22]. We used a
minibatch stochastic gradient descent with momentum 0.9 and
a minibatch size of four images. Hyperparameters need to be
carefully chosen for a stable convergence to the global opti-
mum when input images are high-resolution (1024 × 1024
pixels). We empirically noticed that using a learning rate of
10−10 and a weight decay of 10−12 enabled a stable conver-
gence of training and validation loss for our application. All
experiments were run on a Devbox (NVIDIA Corp, Santa

Clara, CA) containing four TITAN X graphics processing
units (GPUs) with 12GB of memory per GPU [23], and with
Nvidia deep-learning frameworks, including Nvidia-Caffe
(0.15.14) and Nvidia DIGITS (5.1).

Model Selection

The best performing FCN models were identified by using
Dice similarity coefficient (DSC) results on our validation
dataset by increasing granularities of FCN fusions—FCN-
32s, FCN-16s, FCN-8s, FCN-4s, and FCN-2s. For PICC tip
ROI segmentation FCN (PTR-FCN), FCN-16s model was se-
lected since it achieved the best performance (DSC = 0.968)
among the five FCNmodels. For PICC line segmentation FCN
(PICC-FCN), the best FCN models were selected for each
FCN model based on its DSC results on the validation dataset.
Subsequently, we made comparisons between the entire sys-
tems with different FCN models using absolute distance mea-
surements of tip locations on our held-out test dataset.

Results

Performance

Absolute distance measurement for final performance of
our proposed algorithm in this study is visually described
in Fig. 5a. Performance comparisons between different
models are present with values of mean and standard

Fig. 5 Visual description of a absolute distance measurement between
predicted and ground truth PICC tip locations and b performance
comparisons between PICC line segmentation FCN (PICC-FCN)

without and with PICC tip ROI segmentation FCN (PTR-FCN) and
post-processing module. Distance values are measured in mm for both
of mean ± SD and root mean square error (RMSE)

398 J Digit Imaging (2018) 31:393–402



deviation (mean ± SD) and root mean square error (RMSE)
for absolute distances in Fig. 5b. Results are expressed in
millimeters based on radiographic pixel spacing using an
SID of 72 in. (1 pixel = 0.125 mm). Absolute distances
between predicted and ground truth PICC tip locations
using only the PICC line segmentation FCN (PICC-FCN)
ranged from 28.98 to 78.68 mm (second row in Fig. 5b).
Overlaying the PICC tip ROI segmentation FCN (PTR-
FCN) system resulted in improved algorithm performance
with absolute distances ranging from 3.10 to 23.23 mm
(third row in Fig. 5b). Combining the cascade segmentation
AIs (PICC-FCN-8s and PTR-FCN-16s) followed by the
post-processing module achieved the shortest absolute dis-
tances on the test dataset, with a mean of 3.10 mm, a stan-
dard deviation of 2.03 mm, and a RMSE of 3.71 mm.

Deployment Time

Our proposed PICC tip detection system was performed using
a single TITAN X GPU for deployment. The best performing

system (PICC-FCN-8s + PTR-FCN-16s + PP) took 198 s for
testing 150 cases in total. The execution time corresponds to
1.32 s per image, with the following breakdown: 0.22 s of
preprocessing, 0.56 s of PICC-FCN, 0.53 s of PTR-FCN,
and 0.01 s of post-processing per image.

Image Annotations with Other Labels

Multiple examples of output images from our PICC-FCN-8s
model are detailed in Fig. 6. All images in Fig. 6 highlight the
trajectories of the PICCs in red. Images in each column reveal
the general cases of annotating multiple external objects, in-
cluding PICCs, ECGs, electrodes, surgical sutures, and med-
ical devices, each highlighted in different colors (ECG in
green, objects in dark cyan, and sutures in blue).

Mislabeled Cases

Figure 7 presents example output images for cases where the
algorithm was completely incorrect. The images in the first

Fig. 6 Representative result images with annotations of PICC, ECG, internal and external objects, and surgical sutures produced by PTR-PICC in
different colors
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two columns demonstrate that our proposed algorithm can
identify cases non-existent or partially visualized PICC cases.
The images in the last two columns reveal examples of poor
algorithmic performance where false predictions of PICCs
occur within the predicted PICC tip ROI. PICCs are challeng-
ing to localize when occluded by other similar appearing ob-
jects (Fig. 7c) and bone edges (Fig. 7d), causing occasional
false positives or negatives.

Discussion

We have developed a fully-automated system for performing
PICC line detection and localizing the catheter tip on CXRs
using a cascade segmentation AI system with two fully
convolutional networks and preprocessing and post-
processing modules at a fast deployment time (< 1.3 s per
image). We found that using intermediate granularity (FCN-
8s and FCN-16s) for segmenting both the PICC trajectory and
its tip ROI performed better than using highly granular fully
convolutional networks (FCN-2s and FCN-4s). The finer-
grained networks probably confuse PICCs with other similar
objects when only examining four pixels at a time.
Intermediate granularity may have had optimal performance
because the width of the typical PICC ranges from 8 to 16
pixels when CXRs were resized to 1024 × 1024 pixels. By
combining only hierarchical features at different layers of
granularity of 8 to 16 pixels, we may have inadvertently

helped the network focus by forcing it to look at objects at a
given size range. Much as a forest can be lost for the trees,
optimal granularity may prove to be analogous to telling the
network how big of a forest to expect.

Data augmentation using random mirroring and image ro-
tation from − 30 to 30° in 5° increments did not provide a
noticeable improvement in performance. Our suspicion is that
the dataset already representatively contains many similar
PICC appearances because PICCs can be inserted on the left
or right sides, or the PICC courses along variable trajectories.
Non-linear transformations may be able to help neural net-
works learn more discriminative features from objects with
deformed shapes and appearances; however, this investigation
is beyond the scope of this work and will be addressed in
future directions.

Clinical Applications and Future Directions

Chest radiography performed for PICC tip detection is a fre-
quent exam in the care of sick patients, and it is among the
mundane but necessary tasks required in clinical care. Our
proposed system can identify a PICC tip’s location in approx-
imately 1.3 s and could help accelerate the recognition of
malpositioned catheters.

Our initial intent was to develop a deep-learning system for
PICC detection. However, as part of training the models to
distinguish PICC from non-PICC, we used many other object
labels rather than collapsing all non-PICC objects into a single
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label. This allows us to further expand the system to identify
all lines and tubes frequently used in the clinical setting with-
out having to redesign the system. Future directions will re-
quire querying the PACS database for sufficient cases for each
of the other classes and annotating those images appropriately
so we can independently test the algorithm’s performance for
each additional class.

Limitations

While the algorithms have great potential to improve
workflow efficiency, there are important limitations. The sys-
tem often confuses PICCs with bone edges, especially around
ribs. This confusion can be reduced by expanding the seman-
tic annotation classes by creating a rib label, passing the new
label to the CNNs so theymay learn significant features of ribs
and their edges, allowing PICCs to be differentiated from bone
edges. Performance may also be impaired by linear medical
objects. However, ECG cables, external objects, and surgical
sutures were well represented in the dataset—120 for ECG, 60
for objects, and 54 for sutures—and therefore are not confused
with PICCs (Fig. 6.) We can also train the system to distin-
guish metal objects from PICC. Another inherent limitation is
that most pixels in a CXR derive from the background class
[24]. The resulting class imbalance always occurs even de-
spite additional training data. In order to combat the imbalance
problem, class frequency weights can be incorporated into the
loss function [17] or data augmentation on non-background
samples could be performed [25, 26].

Conclusion

We have proposed a deep-learning system to automatically
detect the course and tip location of PICCs. The mean predict-
ed location of the PICC tip is 3.10 mm from ground truth with
a standard deviation of 2.03 mm and a root mean square error
of 3.71 mm. Mean deployment time is only 1.31 s per image
when our system is deployed on a single GPU. The system is
generalizable to include other types of vascular access and
therapeutic support devices, although the system’s efficacy
for classification of these objects has not been fully tested in
this initial work. It is our hope that this system can help im-
prove patient safety by reducing turnaround time and speeding
interpretation of radiographs.
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