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Computational characterization 
and identification of human 
polycystic ovary syndrome genes
Xing-Zhong Zhang1, Yan-Li Pang3, Xian Wang1 & Yan-Hui Li2

Human polycystic ovary syndrome (PCOS) is a highly heritable disease regulated by genetic and 
environmental factors. Identifying PCOS genes is time consuming and costly in wet-lab. Developing an 
algorithm to predict PCOS candidates will be helpful. In this study, for the first time, we systematically 
analyzed properties of human PCOS genes. Compared with genes not yet known to be involved in 
PCOS regulation, known PCOS genes display distinguishing characteristics: (i) they tend to be located 
at network center; (ii) they tend to interact with each other; (iii) they tend to enrich in certain biological 
processes. Based on these features, we developed a machine-learning algorithm to predict new PCOS 
genes. 233 PCOS candidates were predicted with a posterior probability >0.9. Evidence supporting 7 of 
the top 10 predictions has been found.

Polycystic ovary syndrome (PCOS) is a highly complex disorder that affects 6–10% of women of reproductive 
age1. It is a major cause of anovulatory infertility and increases the risk for insulin resistance, obesity, cardiovas-
cular disease and psychosocial disorders2,3. Studies have shown that PCOS is regulated by the subtle interaction 
of genes and environmental factors4–6.

To identify PCOS genes, reverse genetics like microarray studies have profiled whole-genome gene expression 
in a number of PCOS tissues, including ovary7,8 and adipose9. Genome-wide association study (GWAS) is used 
to identify regions of the genome that harbor variants associated with disease risk or quantitative traits10–12. For 
computational methods, a group once reconstructed transcription factor-microRNA synergistic regulatory net-
work, and they considered the nodes with highest degree as PCOS candidate genes13. Another group constructed 
a protein-protein interaction (PPI) subnetwork and selected the top hubs (both high degree and betweenness) as 
PCOS candidates14. However, both works lack rigorous statistics to evaluate the accuracy of the prediction. To our 
knowledge, no efficient algorithm has been developed to predict PCOS genes. In fact, bioinformatics algorithms 
have been successfully developed to infer candidate genes in other fields15–18, and these could be introduced to 
PCOS research.

In this work, we developed a method to identify distinguishing properties of PCOS genes and subsequently used 
them to predict new candidates. We firstly systematically compared the computational characteristics of two groups 
of genes: known PCOS genes versus the remaining genes in the genome (called non-PCOS genes hereafter). We 
examined each set of the genes in network topological features and functional annotations. Then, we singled out the 
features with significant difference between PCOS and non-PCOS genes by Kolmogorov–Smirnov (KS) test. We 
employed support vector machine (SVM) with liner function as the classifier. Finally, with a posterior probability 
>0.9, 233 new PCOS genes were predicted. Literature supporting 7 of the top 10 predictions has been found.

Results
PCOS genes tend to have higher degrees.  For a protein, its degree is defined as the number of direct 
interaction genes. According to network theory, a protein with more direct interaction neighbors (higher degree) 
might be more important to the network19. Based on PPI network downloaded from OPHID20, we counted the 
number of direct interaction neighbors for each gene, and found that PCOS genes tend to have higher degrees than 
non-PCOS genes. The average degrees for PCOS genes and non-PCOS genes are 41.81 and 22.48, respectively (see 
Table 1). The cumulative frequency distribution curves of degrees for PCOS genes shift to the right compared with 
that of non-PCOS genes (Fig. 1A). There is significant difference between them, with P = 4.2E-13 by KS test.
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To validate the results, we also analyzed degrees of PCOSDB genes or PCOSKB genes separately. The average 
degree of PCOSDB genes is 50.54 while that from PCOSKB equals to 38.60, which are all significantly higher than 
that of non-PCOS genes. These results were listed in Table 1.

PCOS genes tend to enrich at global network center.  Genes with high degrees might locate at globally 
or locally central position, while only those located globally are more likely to be evolutionarily conserved21. To dis-
tinguish the different locations, we calculated K-core for each gene. The K-core gradually displays the backbone of a 
network by iteratively deleting genes with a degree lower than K, remaining genes in the subnetwork with a degree 
higher than K. If a gene has a high K-core, then it is more likely to be located at global center. We found that PCOS 
genes have an average K-core of 16.78, whereas the average K-core of non-PCOS genes is only 11.66 (Table 1). KS 
test showed that there is significant difference, with P = 1.7E-10. The cumulative frequency distribution of K-core 
values for PCOS genes and non-PCOS genes are shown in Fig. 1B. And from the other two datasets, we obtained 
similar results, indicating that the high K-core of PCOS genes is data independent (Table 1).

Betweenness is another frequently used measure of network centrality, which counts the number of shortest 
paths between two other genes that go through a gene of interest. Therefore, a gene with a high betweenness could 
be considered as a bottleneck node in the network22. The results showed that PCOS genes had significantly higher 
connectivity along the shortest path between two genes than that of non-PCOS genes, with the average between-
nesses are 34,463 and 17,278 (P = 1.4E-17 by KS test; Table 1 and Fig. 1C). And as shown in Table 1, PCOS genes 
have similar average betweenness from the other two datasets.

PCOS genes tend to interact with each other.  Genes function through interaction with each other in 
signaling pathways, therefore, we reason that direct interaction neighbors of PCOS genes might also tend to be 
PCOS genes. To test this, for each gene, we calculated the 1st PCOS ratio, which is defined as a ratio of the number 
of PCOS genes that it directly interacts to its degree. For example, IGF1 (P05019) and IGF2 (P01344) have 16 and 
21 direct interaction genes, respectively, and 9 and 12 of which are PCOS genes. The 1st PCOS ratio for IGF1 and 
IGF2 are 0.5625 = 9/16 and 0.5714 = 12/21. The cumulative frequency distribution of 1st PCOS ratios for PCOS 
genes and non-PCOS genes are shown in Fig. 1D. As shown in Table 1, the PCOS genes have an average 1st PCOS 
ratio of 0.11, which is significant higher than 0.04 for that of non-PCOS genes (P = 3.0E-48; KS test).

Meanwhile, for each gene, we also calculated the 2nd PCOS ratio, which is defined as the number of PCOS 
genes that belong to its 2-step interaction genes divided by the number of all its 2-step interaction genes. We 
found that PCOS genes have an average 2nd PCOS ratio of 0.04, which is significantly higher than 0.03, the value 
for that of non-PCOS genes, P = 6.0E-20 by KS test. There results could be found in Table 1 and Fig. 1E.

GO functional enrichment.  As reported, genes associated with the same disease are often functionally 
related18,23. To examine whether PCOS genes tend to take part in some biological processes, a log-odds score was 
computed for each GO term to compare the frequency at which PCOS genes and non-PCOS genes were anno-
tated to it. The distributions of log-odds scores have a significant difference between PCOS genes and non-PCOS 
genes (P = 2.1E-66; KS test), indicating that PCOS genes tend to enrich in some biological processes.

No ovulation is a major diagnostic criterion for PCOS2. As shown in Supplementary Table S1, “GO:0022602 
ovulation cycle process” is enriched with PCOS genes. Steroid hormone plays an important role in ovarian devel-
opment and ovulation process. Consistently, “GO:0042446 hormone biosynthetic process” is enriched. Meanwhile, 
“GO:0045940 positive regulation of steroid metabolic process” is significantly enriched with a log-odds score of 
3.57, because steroid is a precursor for steroid hormone. These results indicate dysregulation of steroid hormone 
might be one major cause of PCOS. PCOS is a complex metabolic disease, and insulin resistance is another etiol-
ogy1. Thus, GO terms associated with regulation of plasma glucose are enriched, such as “GO:0048009 insulin-like 
growth factor receptor signaling pathway” and “GO:0010828 positive regulation of glucose transport”.

Dataset Class Size Degree K-Core Betweenness 1st PCOS Ratio 2nd PCOS Ratio

Total

PCOS 306 41.81 16.78 34463 0.11 0.04

Non-PCOS 16676 22.48 11.66 17278 0.04 0.03

P value 4.2E-13 1.7E-10 1.4E-17 3.0E-48 6.0E-20

PCOSDB

PCOS 185 50.54 18.78 40177 0.10 0.03

Non-PCOS 16676 22.48 11.66 17278 0.02 0.02

P value 1.5E-12 5.2E-10 2.0E-12 2.0E-36 1.3E-09

PCOSKB

PCOS 226 38.60 15.43 33614 0.09 0.04

Non-PCOS 16676 22.48 11.66 17278 0.03 0.02

P value 2.6E-07 9.1E-07 5.3E-12 1.5E-32 1.1E-20

Table 1.  Network Characteristics of PCOS Genes. “Total” indicates all the PCOS genes covered by either 
PCOSDB or PCOSKB. “Non-PCOS” indicates the remaining genes. The degree of a gene is defined as the 
number of its direct interaction genes. A K-core of a network can be obtained by recursively deleting genes 
with a degree lower than K, until the remaining genes in subnetwork have a degree higher than K. Betweenness 
counts the number of times that a gene is on the shortest path between two other genes. 1st PCOS ratio is 
defined as the ratio of the number of PCOS genes that it direct interacts to its degree. 2nd PCOS ratio is defined 
as the ratio of the number of PCOS genes that belong to 2nd interaction genes to its number of 2nd interaction 
genes. The P values were calculated by KS test. PCOS represents polycystic ovary syndrome.
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The performance of the classifier.  To model all above features, we tested different classifiers, K-nearest 
neighbor (KNN), decision tree and SVM with different kernel functions. As described in the Materials and meth-
ods, 306 PCOS genes downloaded from PCOSDB and PCOSKB were used as positive samples, and 306 negative 
genes were randomly sampled from the non-PCOS genes. Since random sampling might introduce bias, we sam-
pled 1001 negative datasets and combined each negative dataset with the positive dataset to train the classifier. 
The median value of 1001 results was used to evaluate the performance of different classifiers. As shown in the 
Table 2, we found SVM (liner) achieved the best performance, with precision = 0.81, recall = 0.71, F1 = 0.75, and 
AUC = 0.80. Thus, it was chosen as the final classifier and used for real application. To show the variances intro-
duced by sampling, the boxplots of the 1001 training results (precisions, recalls, F1s, and AUCs) with SVM (liner) 
are given in Supplementary Figure S1. The ROC curves of SVM (liner) could be found in Fig. 2.

Besides cross-validation, we also tested the classifier with independent datasets. Firstly, we used the 226 
PCOSKB genes as positive samples and took the 185 PCOSDB genes as test samples. We randomly selected 226 
genes from non-PCOS ones as negative samples to train the classifier. After repeating 1001 times, we employed 
the model with median AUC value to predict the PCOSDB genes. Of the 79 PCOSDB genes (excluding the ones 
in the PCOSKB), 53, 32 and 15 genes were recalled with a posterior probability higher than 0.5, 0.8 and 0.9, 
respectively. This also showed the algorithm is helpful.

Real application.  To predict new PCOS candidate genes, we took the 306 PCOS genes from PCOSDB and 
PCOSKB as positive samples. And the genes in the dataset that got median AUC value of the 1001 randomly 
selected datasets were taken as negative samples. After training the classifier, we found that 13,681 unknown 
genes could be predicted by the algorithm. With a posterior probability higher than 0.9, 233 genes were predicted 
as PCOS genes (Supplementary Table S2). The top 25 genes are listed in Table 3.

To validate our predictions, we searched literature in PubMed and found evidence for 7, 10 and 14 of the 
top 10, 20 and 50 genes, respectively. For example, As shown in Supplementary Table S3, CTNNB1 is predicted 
as PCOS gene with a posterior probability = 0.9993. A significant reduction of the expression of CTNNB1 was 
reported in granulosa cells from patients with PCOS compared with control group24. For another example, 

Figure 1.  Cumulative frequency distributions of network features of PCOS genes and non-PCOS genes. The 
PCOS genes tend to have higher degree (A), K-core (B), betweenness (C), 1st PCOS ratio (D), and 2nd PCOS 
ratio (E) than that of non-PCOS genes. The cumulative frequency of different features is 100% for PCOS genes 
and non-PCOS genes. PCOS represents polycystic ovary syndrome.



www.nature.com/scientificreports/

4SCIenTIfIC RePOrtS |  (2018) 8:12949  | DOI:10.1038/s41598-018-31110-4

SMAD3 is predicted as PCOS gene with a posterior probability = 0.9979. Allele rs11031006-G in SMAD3 was 
reported to be associated with lower PCOS risk25.

Discussion
In this work, we systematically investigated properties of PCOS genes and then developed an algorithm to predict 
new PCOS genes by integrating network characteristics and GO functional characteristics. Different from GWAS 
and other genetic methods, this work opens a new avenue to infer PCOS candidates.

Previously, two methods have been reported to infer PCOS genes13,14. One used degree as feature13 and the 
other used both degree and betweenness as features14. In this work, besides degree and betweenness, we consid-
ered more network topological features like K-core, 1st PCOS ratio and 2nd PCOS ratio. And we integrated GO 
functional annotations to the algorithm. More important, our method is a supervised machine-learning algo-
rithm, with rigorous statistics to evaluate the performance. And each predicted gene has a probability to evaluate 
the reliability of the prediction.

According to PCOSDB and PCOSKB, both IGF1 and IGF2 are PCOS genes. And in the PPI network, we 
found that most of their direct interaction neighbours are also PCOS genes. In addition, gene set enrichment 
analysis showed that IGF receptor signalling pathway (GO:0048009) is statistically enriched by PCOS genes, in 
which 18 of the 36 annotated genes are PCOS genes. And 12 of the rest 18 genes were predicted as PCOS candi-
dates by our algorithm. These results are consistent with recent researches that IGF signalling pathways might 
play an important role in PCOS regulation26–28.

It is known that PCOS is a highly heritable (70%) disease29. However, to date, only one gene named PCOS1 
has been collected to online Mendelian inheritance in man database30. The PCOS genes analyzed in this work are 
downloaded from PCOSDB or PCOSKB. They are in fact PCOS-causing genes or PCOS-associated genes, since 
the causal relationships might need further confirmation by physiological studies. Here, we called them PCOS 
genes on one hand for short, on the other hand to highlight the importance of genetic background.

In this work, we defined 306 PCOS genes as positive samples and sampled 306 negative samples from the rest 
genes (13,681 = 13,987−306). We trained SVM model and evaluated classification performance with an equal 
number of positives and negatives, which has been widely adopted in previous studies16,17,23. However, as men-
tioned by Myers et al.31, we should carefully interpret the results based on this method, because it is achieved 
under the assumption that the number of positives to the number of negatives equals to 1:1 in real application 
domain. Notably, it would also be improper if all remaining genes were selected as negatives. Because there might 
be not-yet-identified PCOS genes in negative samples, which might seriously underestimate the classifier.

Notably, current PPI data is far from perfect. They usually contain a number of false positive interactions and 
even more false negatives. Thus, some limitations are inevitable. For example, the degree of a protein might be 
related to the number of researches on it. And K-core, 1st and 2nd PCOS ratios might be indirectly related to 
such research bias. We think, with the improvement of PPI data quality, these problems could be solved and our 
approach could be more effective.

Classifier Precision Recall F1 AUC

KNN (K = 7) 0.77 0.69 0.73 0.78

Decision tree 0.76 0.74 0.75 0.79

SVM (liner) 0.81 0.71 0.75 0.80

SVM (polynomial d = 3) 0.49 0.73 0.58 0.57

SVM (RBF) 0.79 0.68 0.73 0.79

Table 2.  The Classification Performance of Different Classifiers. SVM (linear), SVM (polynomial d = 3) and 
SVM (RBF) means the kernel function of SVM is linear, polynomial, and radial basis function, respectively.

Figure 2.  The ROC curve of SVM (liner). SVM (liner) achieved the best classification performance using 
network and GO functional features.
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Materials and Methods
Data source.  The PPI data were downloaded from the Online Predicted Human Interaction Database 
(OPHID; http://ophid.utoronto.ca/ophidv2.204/)20. After deleting self-interactions and redundant interac-
tions, the final PPI network covers a total of 16,982 proteins and 193,949 edges. Two lists of PCOS genes were 
downloaded from the Polycystic Ovary Syndrome Database (PCOSDB; http://www.pcosdb.net/)32 and the 
KnowledgeBase on Polycystic Ovary Syndrome (PCOSKB; http://pcoskb.bicnirrh.res.in)33, with 208 and 241 
genes, respectively. 185 of the 208 PCOSDB genes, and 226 of the 241 PCOSKB genes were covered by the OPHID 
network. We combined the PCOSDB genes and the PCOSKB genes and got 306 PCOS genes in total. The func-
tional annotations of gene products were obtained from gene ontology (GO) http://www. geneontology.org34. The 
source codes could be downloaded from Github: https://github.com/Heyuanshan/PCOS-genes-prediction.git.

Network topological features.  The network features analyzed in this work, i.e., degree, K-core, between-
ness and PCOS ratios (1st and 2nd), are defined in Table 4. They were computed by an R package, igraph35.

Log-odds score.  We defined the log-odds score to describe the relative frequency with which a GO biologi-
cal process was used to annotate PCOS or non-PCOS genes. The formula for calculation is as follows:

− − =





+ + 




m a n a
m n

Log odds score log ( )/( )
/0 0

m0 is the number of PCOS genes; n0 is the total number of genes in human genome; m is the number of PCOS 
genes annotated to a GO term; and n is the total number of human genes annotated to the GO term. a (a = 1) is 
a correction factor. To avoid bias, we only used the GO terms annotated with more than 5 genes (n ≥ 5). If a gene 
annotated to a GO term with a high log-odds score, then the gene is more likely a PCOS gene. If a gene is anno-
tated to several GO terms, the log-odds scores of these GO terms were summed to reflect its total associations to 
PCOS.

Kolmogorov–Smirnov test.  The Kolmogorov-Smirnov test is a useful nonparametric statistical method 
for comparing two samples through quantifying a distance between the empirical distribution functions of them. 
In this work, we used two sample KS test to compare the network features and functional annotations between 
PCOS genes and non-PCOS genes.

Symbol Name Posterior Probability

CTNNB1 catenin beta 1 0.99932

THBS1 thrombospondin 1 0.99864

IFNG interferon gamma 0.99794

SMAD3 SMAD family member 3 0.99736

WNT5A Wnt family member 5 A 0.99694

EGFR epidermal growth factor receptor 0.9964

HIF1A hypoxia inducible factor 1 subunit alpha 0.99623

SRC SRC proto-oncogene, non-receptor tyrosine kinase 0.99614

ENG endoglin 0.99536

NOG noggin 0.99505

SIRT1 sirtuin 1 0.99498

PTEN phosphatase and tensin homolog 0.99429

SHH sonic hedgehog 0.9936

CAV1 caveolin 1 0.9934

SMAD4 SMAD family member 4 0.99129

GREM1 gremlin 1, DAN family BMP antagonist 0.9893

BMP10 bone morphogenetic protein 10 0.9886

GDF5 growth differentiation factor 5 0.98854

FGA fibrinogen alpha chain 0.98846

GATA3 GATA binding protein 3 0.98752

TGFBR3 transforming growth factor beta receptor 3 0.98745

JAK2 Janus kinase 2 0.98715

LYN LYN proto-oncogene, Src family tyrosine kinase 0.98662

NOTCH1 notch 1 0.98624

LGALS9 galectin 9 0.98621

Table 3.  Top 25 Predicted PCOS Genes. Posterior probability is given by SVM to evaluate the reliability of the 
prediction. SVM represents support vector machine.

http://ophid.utoronto.ca/ophidv2.204/
http://www.pcosdb.net/
http://pcoskb.bicnirrh.res.in
https://github.com/Heyuanshan/PCOS-genes-prediction.git
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Classifiers.  We tested different classifiers to predict PCOS genes: K-nearest neighbor (KNN), decision tree 
and SVM with different kernel functions. KNN and decision tree were employed from MATLAB, and SVM were 
employed from LIBSVM3.2236. As shown in the Results, SVM with linear kernel achieved the best performance. 
The parameter c was optimized and set at 1. For each predicted gene, LIBSVM gives a posterior probability to 
evaluate its reliability37. If a gene gets a larger posterior probability, then it is more likely a PCOS gene.

Positive and negative samples.  The 306 PCOS genes obtained from PCOSDB and PCOSKB were used 
as positive samples. We randomly selected 306 genes from the rest of the human genome as the negative samples. 
This method has frequently been used to predict disease genes16,17,23. To avoid sampling bias, we sampled 1001 
times of the negative datasets of 306 genes, and combined each negative dataset with the positive dataset to train 
the classifier.

Classifier evaluation.  As in previous works18, we used 5-fold cross-validation to evaluate the classifier, in 
which 20 percent of the whole data were left out as the test data and the remaining (80 percent) as the training 
data. Precision, recall, F1 score, and area under curve (AUC) were used as the measures to evaluate the classifi-
cation performance. For each test dataset, we counted the numbers of true positives (TP), false negatives (FN), 
true negatives (TN) and false positives (FP). The formulas for calculating precision, recall, and F1 score were as 
following:

=
+

=
+

=
∗ ∗

+
Precision TP

TP FP
Recall TP

TP FN
F Precision Recall

Precision Recall
, , 1 2 ,

Because we sampled 1001 negative datasets, and combined each negative dataset with the positive dataset to 
train the classifier, we got 1001 training results. We used the median of the 1001 values of precisions, recalls, F1s, 
and AUCs as the final results.
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