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Psychophysical reverse correlation reflects both
sensory and decision-making processes

Gouki Okazawa® !, Long Sha', Braden A. Purcell' & Roozbeh Kiani® 23

Goal-directed behavior depends on both sensory mechanisms that gather information from
the outside world and decision-making mechanisms that select appropriate behavior based
on that sensory information. Psychophysical reverse correlation is commonly used to quantify
how fluctuations of sensory stimuli influence behavior and is generally believed to uncover
the spatiotemporal weighting functions of sensory processes. Here we show that reverse
correlations also reflect decision-making processes and can deviate significantly from the true
sensory filters. Specifically, changes of decision bound and mechanisms of evidence inte-
gration systematically alter psychophysical reverse correlations. Similarly, trial-to-trial
variability of sensory and motor delays and decision times causes systematic distortions in
psychophysical kernels that should not be attributed to sensory mechanisms. We show that
ignoring details of the decision-making process results in misinterpretation of reverse cor-
relations, but proper use of these details turns reverse correlation into a powerful method for
studying both sensory and decision-making mechanisms.
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ccurate characterization of behavior is key to under-

standing neural computations!»2. Not only do we want to

know which behaviors arise from sensory inputs in an
environment, but also we need to understand the mechanisms
through which sensory inputs lead to behavioral outputs. Over
the past few decades, several system identification techniques
have been developed to address these needs. Among the most
commonly used techniques is psychophysical reverse
correlation®=, a technique that aims to estimate how sensory
information is weighted to guide decisions. The core idea is that
by quantifying the stimulus fluctuations that precede each choice
(i.e., reverse correlation), one can infer the spatiotemporal filter
implemented by the sensory processes (Fig. 1). It can be shown
mathematically that under the assumptions of signal detection
theory (SDT) for the decision-making process, psychophysical
reverse correlation does recover the true sensory weights®’. In
SDT, a linear filter is applied to a sensory stimulus and the
outcome is compared to a decision criterion. The result of this
comparison (higher or lower than the criterion) dictates the
choiced. If stimuli on different trials are drawn from a symmetric
distribution (e.g., Gaussian), reverse correlation will accurately
estimate the linear sensory filter of SDT by averaging the stimuli
that precede a particular choice.
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Fig. 1 Psychophysical reverse correlation has been developed to recover
sensory weights in perceptual tasks but it could also be influenced by
decision-making mechanisms. a In a typical reverse correlation experiment,
subjects receive a sequence of randomly fluctuating sensory information
and make a binary choice. Experimenters can directly observe the stimulus
and choice, but not the sensory weights and decision-making process (gray
box). When choices are made by applying a sensory filter (weighting
function) to the stimulus and comparing the result against a criterion, as
proposed by signal detection theory, psychophysical reverse correlation will
recover the sensory filter. However, it is unknown how well the analysis
generalizes to more complex decision-making mechanisms. b Reverse
correlation calculates the average stimuli preceding each choice and
subtracts the results for the two choices. The outcome is a “psychophysical
kernel.”

The technique can also be extended to the temporal domain to
recover the dynamics of the weighting function when choices are
based on filtering a sequence of observations and comparing the
results to a criterion®®. These temporal extensions resemble
spike-triggered averaging techniques, which derive spatio-
temporal receptive fields (linear kernels) of spiking neurons!0-12,
under the assumption that firing rates are determined by filtering
sensory inputs followed by application of a static nonlinearity. In
general, when a discrete outcome arises from a sequence of linear
and nonlinear computations, reverse correlation is a recom-
mended method for estimating the linear component of the
computation. How well does this recommendation work in
practice for sensory decisions?

Studies of the decision-making process over the past decade
have revealed that the simple assumptions of SDT do not ade-
quately capture the complexity of perceptual decisions. We now
know that for many decisions, subjects integrate sensory evidence
in favor of different choices, and the final decision is made when
the integrated evidence reaches a satisfactory threshold!3-1°.
Several key features of this process are absent in simple temporal
extensions of SDT. First, subjects can flexibly adjust their decision
bound within and across trials to change how much evidence to
integrate, and thereby trade off the accuracy and speed of their
decisions!”*18, Second, neural implementation of the decision-
making process relies on a competition or race between multiple
integrators, rather than reaching a decision bound in a single
integrator. Third, realistic implementations of these computations
in neural networks require taking into account biophysical con-
straints (e.g., lower limit of firing rates at zero!?~21) and network
mechanisms of integration (e.g, mutual inhibition!%?2:23).
Finally, applying theory to real experimental data requires taking
practical limitations into account. A key factor that has been
largely ignored thus far is the sensory and motor delays (non-
decision time). The sum of the non-decision time and the time
spent on integration of evidence (decision time) determine
experimentally measured reaction times (RTs)>»2°. Because the
non-decision time limits the relevant stimulus history for the
choice, it could distort the outcome of reverse correlation. How
much do these factors influence the estimation of sensory filters
with psychophysical reverse correlation? Except for scant exam-
ples in the past literature that studied basic properties of the
integration of sensory evidence (e.g., bounded or leaky accumu-
lation)1%26-28  the answer is largely unknown. A systematic
exploration is timely because mechanistic studies of sensory and
decision-making processes have become a cornerstone of modern
neuroscience and because accurate methods for quantifying the
relationship between experimental stimuli and behavior provide a
critical foundation for these investigations?.

We show that psychophysical reverse correlation deviates
qualitatively and quantitatively from sensory weights under sev-
eral variants of decision-making models. Experiments in which
stimulus-viewing duration is controlled by the experimenter often
do not allow distinguishing these variants, leaving the mechan-
istic cause of observed kernel dynamics obscure, unless special
measures are implemented (e.g., variation of stimulus durations
across trials). RT tasks, where the stimulus-viewing duration is
controlled by the subject and reaction times can be directly
measured by experimenters, offer much more leverage, especially
when a model-based approach is adopted to correct for expected
deviations of the reverse correlation from sensory weights. We
show that these deviations are not caused by the presence of a
decision bound. Rather, they emerge from the presence of vari-
able sensory and motor delays, changes of decision bound within
and across trials, lower limits for accumulated evidence, inte-
gration time constants, and mutual inhibition of competing
accumulators. Knowing about these deviations enables us to
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correct for them, when possible, and prevents false conclusions
about temporal variation of sensory weights. We demonstrate this
point in a series of experiments by showing that the mechanism
that underlies decisions predicts temporal dynamics of psycho-
physical kernels and quantitatively explains experimentally
derived kernels.

Results

Reverse correlation deviates from true sensory weights. In a
typical reverse correlation experiment, subjects observe a
sequence of noisy sensory stimuli and try to detect the presence of
a target or categorize a stimulus>27-3% (Fig. 1). The stimuli could
be a random dot kinematogram?®-27, oriented gratings or bars®31,
or any other sensory inputs that randomly vary within or across
trials along one or more stimulus attributes. The reverse corre-
lation analysis calculates the relationship between subjects’ choice
and stimulus fluctuations by averaging over the stimuli that
precede a particular choice. For two-alternative decision tasks, the
analysis yields two kernels, one for each choice. Because of
symmetry of the two choices, the kernels tend to be mirror images
of each other?”32. Therefore, it is customary to subtract the two
kernels and report the result (Fig. 1b):

K(t) = E[s(¢)|choicel] — E[s(t)|choice2], (1)
where E[s(t)|choicel] indicates the trial average of the stimulus at
time ¢ conditional on choice 1, s(¢) is the stimulus drawn from a
stochastic function with symmetric noise (e.g., Gaussian), and K
(t) is the magnitude of the psychophysical kernel at time ¢.

Psychophysical kernels are guaranteed to match the sensory
filters when decisions are made by applying a static nonlinear-
ity®7, for example, comparison to a decision criterion, as
suggested by SDT®. However, recent advances suggest that SDT
offers an incomplete characterization of the decision-making
process. In particular, many perceptual decisions depend on
integration of sensory information toward a decision
bound!3-16:28:3334 " the decision bound can vary based on
speed-accuracy tradeoff'”!3, the integration is influenced by
urgency>>37 and prior signals!®333%39 and experimentally
measured RTs consist of a combination of decision time and
non-decision time>+2>.

A simple and commonly used class of decision-making models
that takes these intricacies into account and provides a
quantitative explanation of behavior in perceptual tasks is the
drift diffusion model (DDM)13-15 and its extensions!6:18-20,22,40,

=
3
8
8 /\ +
o
Decision time for choice 1
) +B
Qo
°
t =
Sensory ® g M
input i
8
o -B
> t
%
©
_g /\ +
o

Decision time for choice 2

In DDM, weighted sensory evidence is integrated over time until
the integrated evidence (the decision variable, DV) reaches either
an upper (positive) or a lower (negative) bound (Fig. 2), where
each bound corresponds to one of the choices. We begin our
exploration with the most basic model but will focus on more
complex implementations later in the paper.

Neither the integration process nor the boundedness of the
integration per se causes a systematic deviation of psychophysical
kernels from true sensory weights. We define true sensory weights
as the weights applied to the sensory stimulus to create the
momentary evidence that will be accumulated over time for
making a decision. In Methods, we provide the mathematical
proof that in a simple DDM where decision bound and noise are
constant over time and behavioral responses are generated as
soon as the DV reaches one of the bounds (non-decision time =
0), psychophysical kernels are proportional to the sensory
weights:

(2)

where w(1) is the time-dependent weight, o? is the variance of
stimulus fluctuations, and B is the height of the decision bound.
Similar results can be obtained for unbounded DDMs (Eq. 14).
Figure 3 shows simulations that confirm our proofs. Reverse
correlation for an unbounded integration process with constant
or sinusoidally varying weights recovers the true weighting
function (Fig. 3a-c, Supplementary Fig. 1). Similarly, it yields the
true weights for a bounded DDM (Fig. 3d-e, h), regardless of the
decision-bound height.

Although the proportionality in Eq. 2 may suggest that
psychophysical kernels can be successfully used to recover
spatiotemporal dynamics of sensory weights, critical limitations
prevent that in practice, as we explain below. The most common
limitation is the experimenter’s lack of knowledge about decision
time, which is caused by asynchrony between the time that the
DV reaches a decision bound (bound-crossing time or decision
time) and the subject’s report of the decision (when the choice
becomes known to the experimenter). Such asynchronies stem
from two sources: delays in neural circuitry and experimental
design.

In many experiments, subjects are exposed to the stimulus for a
duration determined by the experimenter and can report their
choice only after a Go cue. In these “fixed-duration” designs, the
exact decision time and its trial-to-trial variability are unknown to
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Fig. 2 The drift diffusion model (DDM) captures the core computations for perceptual decisions made by integration of sensory information over time. We
use variants of this model and more sophisticated extensions to explore how the decision-making mechanism influences psychophysical kernels. In DDMs,
a weighting function, w(t), is applied to the sensory inputs to generate the momentary evidence, which is integrated over time to form the decision variable
(DV). The DV fluctuates over time due to changes in the sensory stimulus and neural noise for stimulus representation and integration. As soon as the DV
reaches one of the two decision bounds (+B for choice 1 and —B for choice 2), the integration terminates and a choice is made (decision time). However,
reporting the choice happens after a temporal gap due to sensory and motor delays (non-decision time). Experimenters know about the choice after this
gap and can measure only the reaction time (the sum of decision and non-decision times) but not the decision time
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Fig. 3 Psychophysical kernels deviate from sensory weights in DDM because of incomplete knowledge about decision time. a-c Integration of evidence
per se does not preclude accurate recovery of sensory weights. For an unbounded DDM that integrates momentary evidence as long as sensory inputs are
available, the kernel matches the true sensory weights. In this simulation, the weight is stationary and fixed at 1, but similarly matching results are obtained
for any sensory weight (c; Supplementary Fig. 1). Distortion quantifies root-mean-square error between the psychophysical kernel and the true sensory
weights (Eq. 17). d-h The decision bound does not preclude accurate recovery of sensory weights. In a bounded DDM without non-decision time, RTs are
identical to decision time (d). Model simulations for RT tasks result in stimulus-aligned kernels that match sensory weights (e) and response-aligned
kernels that rise monotonically (f), as expected for termination with bound crossing. However, stimulus-aligned kernels in fixed-duration tasks show a
monotonic decrease because later stimuli are less likely to influence the choice (g). This deviation from true sensory weights is caused by early
commitment to a choice and becomes smaller as the decision bound rises (h). i-m Variability of non-decision time makes reaction time an unreliable
estimate of decision time, causing systematic deviations between psychophysical kernels and true sensory weights. After including non-decision time in
the bounded DDM, stimulus-aligned kernels in RT tasks show a monotonic decrease because the stimuli that immediately precede the choice do not
contribute to it (j). Response-aligned kernels show a peak, whose time is dependent on the distribution of non-decision times (k). Kernels for fixed-duration
tasks are not affected by non-decision time (I) but still show the decline caused by bound crossing, similar to g. Deviation of stimulus-aligned kernels in the
RT task increases with variability of non-decision time (m). Standard deviation of non-decision time is assumed to be 1/3 of its mean in these simulations.

All kernels are normalized according to Eq. 2 or Eq. 14 to allow direct comparison with the true sensory weights (see Methods)

the experimenter, and decision times are likely to be prior to the
Go cue?’4l. Because stimuli presented after the bound-crossing
time do not contribute to the choice (or contribute less),
including that period in the calculation of psychophysical kernels
leads to a progressive underestimation of sensory weights26:27:30,
causing a systematic deviation from Eq. 2 (Fig. 3g-h), compatible
with past studies*2. The diminishing kernel (Fig. 3g) correctly
characterizes the effective reduction of the influence of the
sensory stimulus on choice. However, note that from an
experimenter’s perspective, the shape of the kernel is inadequate
to tell whether the reduced influence of the stimulus is caused by
a change in sensory weights, by early termination of the decision
during stimulus viewing, by a combination of both, or by another
mechanism in the decision-making process (see below). Such a
mechanistic understanding could be achieved only if the
experimental design is enriched and a model-based approach is
adopted. Although there are successful examples of achieving
such goals?®?7, fixed-duration tasks impose significant limitations
on experimenters’ ability to determine the beginning and end of
the decision-making process (cf. ref. 41y which would be

necessary for separating sensory and decision-making mechan-
isms that shape psychophysical kernels.

Experimental designs in which subjects respond as soon as they
make their decision (RT tasks; Fig. 3e) enable measurement of
decision times and can be used to address the problem. However,
RT tasks come with their own challenges. Sensory and motor
delays are among them (Fig. 3i). Although the presence of such
delays is widely appreciated, their effect on psychophysical
kernels is unexplored. These delays effectively create a temporal
gap between bound crossing and the report of the decision,
making stimuli immediately before the report inconsequential for
the decision. Figure 3j shows that non-decision times pull down
the psychophysical kernel. These systematic reductions can cause
the illusion of nonstationarity for stationary sensory weights
(Fig. 3j, m) or distort the dynamics of time-varying weights
(Supplementary Fig. 2).

What makes the psychophysical reverse correlation especially
vulnerable to non-decision times is the variable nature of the
sensory and motor delays*>*4. A fixed non-decision time would
cause a readily detectable signature (Supplementary Fig. 3) and is
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easy to correct for by excluding the last stimulus fluctuation in
each trial that corresponds to the non-decision time. Similarly, if
the non-decision time was variable but we could know the exact
delay on each trial, we could easily discard the corresponding
period at the end of the stimulus to correct for the artificial
dynamics caused by the non-decision time. In practice, however,
the non-decision time is not a fixed number?®. Further, the
variability of non-decision time is often in the same order of
magnitude as the decision time?%344>, making it challenging to
thoroughly scrub away the effect of non-decision time just by
trimming the stimuli. A more efficient solution is to embrace the
distortion caused by the non-decision time, develop an explicit
model of both sensory and decision-making mechanisms, and
compare the model predictions with experimentally derived
kernels (see the next section).

The fixed-duration design is not affected by the non-decision
time, if there is a long enough delay between the stimulus and Go
cue or if the stimulus duration is long enough to exceed the tail of
the reaction time distribution in an equivalent RT task design
(Fig. 3l1-m). However, as mentioned above, lack of knowledge
about the beginning and end of the integration process in fixed-
duration tasks impedes mechanistic studies of kernel dynamics.

So far, we have focused on psychophysical kernels aligned to
the stimulus onset. In an RT task, the stimulus-viewing duration
varies from trial to trial and we can choose to align the kernel to
subjects’ responses. Such an alignment is informative both about
the termination mechanism of the decision-making process and
about the distribution of non-decision times. When the decision-
making process stops by reaching a decision bound, the kernel is
guaranteed to show a steep rise close to the decision time (Fig. 3f)
because stopping is conditional on a stimulus fluctuation that
takes the DV beyond the bound. This rise of the kernel does not
indicate an increase of sensory weights immediately before the
decision. Further, the magnitude of this rise is not always fixed
and depends on the decision bound and distribution of non-
decision times (see below; Supplementary Fig. 3). In the presence
of a variable non-decision time (Fig. 3k), response-aligned kernels
peak and then drop down to zero before the response. The drop
happens because the non-decision time causes later fluctuations
in the stimulus not to bear on the choice. The difference between
the peak of the kernel and the reaction time is dependent on the
mean and standard deviation of the non-decision time distribu-
tion, as well as its higher moments (Supplementary Fig. 3). Since
it is known that the distribution of non-decision times can be
quite diverse*®, the shape of the response-aligned psychophysical
kernels can provide an important clue about the distribution of
non-decision times and also verification of model-based attempts
to discover the non-decision time distribution®. Overall,
psychophysical kernels aligned to the response are influenced
by sensory weights, termination criterion of the decision, and the
non-decision time.

Experimental measurements confirm model predictions. The
results of the previous section suggest that psychophysical kernels
reflect a mixture of sensory and decision-making processes. By
embracing this complexity, one can leverage psychophysical
kernels to gain insight about both processes. The key is to develop
explicit models and compare model predictions against experi-
mentally derived kernels. Below, we highlight two experiments
designed to achieve this goal.

The first experiment is an RT version of the direction
discrimination task?%3>. On each trial, subjects viewed a random
dot stimulus and made a saccadic eye movement to one of the
two targets as soon as they were ready to report their choice
(Fig. 4a). Consistent with previous studies, accuracy improved

and RTs decreased monotonically with motion strength
(Fig. 4b-c)?0:3>. We quantified moment-to-moment fluctuations
of motion in each trial by calculating the motion energy?’-47:48
(see Methods; Supplementary Fig. 4). Figure 4d shows the average
and standard deviation of motion energies across all 0%
coherence trials and four single-trial examples. As expected,
single-trial motion energies departed from 0 with a short
latency?” and then fluctuated between positive and negative
values, which corresponded to the two motion directions
discriminated by subjects. Across all 0% coherence trials, these
fluctuations canceled each other out, resulting in a zero mean but
the standard deviation remained large, indicating short bouts of
varying motion strengths in either direction throughout the trial.
The stochastic nature of the stimulus and the known effect of
motion energy on the choice?”*34% provided an excellent
opportunity to quantify how stimulus dynamics shaped the
behavior.

Experimentally derived kernels for 0% coherence trials
(Fig. 4e-f, red lines) showed a clear nonstationarity with
remarkable resemblance to the kernels expected from a DDM
with non-decision time and stationary sensory weights (Fig. 3j-k;
the delayed rise of the psychophysical kernel in Fig. 4e is inherent
to the motion energy calculation, as shown in Fig. 4d). We
quantitatively tested the hypothesis that kernel dynamics reflect
bound crossing and non-decision time by fitting the DDM to
subjects’ choices and RTs and generating a model prediction for
the psychophysical kernels. Consistent with past studies, the
distribution of RTs and choices across trials provided adequate
constraints for estimating all model parameters>-3°, evidenced by
the quantitative match between subjects’ accuracy and RTs with
model fits (data points vs. solid gray lines in Fig. 4b—c; R%, 0.97 +
0.01 for accuracy and 0.98+0.01 for RTs, mean + s.e.m. across
subjects). After estimating the model parameters, we used them to
predict the shape of the psychophysical kernel for the 0%
coherence motion energies used in the experiment. These
predicted kernels (Fig. 4e-f, solid gray lines) closely matched
the experimentally derived ones (R2, 0.57), establishing that the
dynamics of the kernels were both qualitatively and quantitatively
compatible with stationary sensory weights and a decision-
making process based on bounded accumulation of evidence.

In a second experiment, we focused on a more complex
sensory decision that required combining multiple spatial features
over time (Fig. 5a). Subjects categorized faces based on their
similarity to two prototypes. Each face was designed to have only
three informative features (eye, nose, and mouth) (Fig. 5b). On
each trial, the mean strengths (percent morph) of these three
features were similar and randomly chosen from a fixed set
spanning the morph line between the two prototypes. However,
the three features fluctuated independently along their respective
morph lines every 106.7 ms (Fig. 5¢c). All other parts of the faces
remained fixed halfway between the two prototypes and,
therefore, were uninformative. Further, each frame of the face
stimulus was quickly masked to prevent conscious perception of
fluctuations in eyes, nose, and mouth. Subjects reported the
identity of the face (closer to prototype 1 or 2) with a saccade to
one of the two targets, as soon as they were ready. The key
difference with the direction discrimination task was that instead
of one stimulus attribute that fluctuated over time (motion
energy), there were three attributes that fluctuated independently.
The three informative features could support the same or
different choices in each stimulus frame and across frames. This
task provided a richer setting to test how humans combine
multiple spatial features to make a decision.

Consistent with the simpler direction discrimination task, as
the average morph level of the three features approached one of
the prototypes, choices became both more accurate and faster
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Fig. 4 Psychophysical kernels in the direction discrimination task match predictions of a bounded DDM with non-decision time. a RT task design. Subjects
initiated each trial by fixating on a central fixation point. Two targets appeared after a short delay, followed by the random dot stimulus. When ready,
subjects indicated their perceived motion direction with a saccadic eye movement to a choice target. The net motion strength (coherence) varied from trial
to trial, but also fluctuated within trials due to the stochastic nature of the stimulus. b, € Choice accuracy increased and RTs decreased with motion
strength. Data points are averages across 13 subjects. Accuracy for 0% motion coherence is 0.5 by design and therefore not shown. Gray lines are fits of a
bounded DDM with non-decision time. Error bars denote s.e.m. across subjects. d Motion energy of example 0% coherence trials (dotted lines), and the
average (solid black line) and standard deviation (shading) of motion energy across all 0% coherence trials. Positive and negative motion energies indicate
the two opposite motion directions in the task. e, f The bounded DDM predicts psychophysical kernels (gray lines), which accurately match the dynamics
of subjects’ kernels (red lines). Because the model sensory weights are stationary, kernel dynamics in the model are caused by the decision-making process
and non-decision times. Kernels are calculated for 0% coherence trials. Shading indicates s.e.m. across subjects. All kernels are shown up to the minimum

of the median RTs across subjects

(Fig. 5d-e). The psychophysical kernels of the three features
(Fig. 5g) had rich dynamics. First, the eye kernels had larger
amplitude than the mouth and nose kernels, suggesting that
choices were more strongly influenced by fluctuations in the eye
region®?°1. Second, the stimulus-aligned kernels dropped gradu-
ally over time, and the saccade-aligned kernels showed a
characteristic peak a few hundreds of milliseconds prior to the
choice. A multi-feature integration process with stationary
weights for eyes, nose, and mouth regions could quantitatively
explain our results. For each stimulus frame, the model calculated
a weighted sum of the three features to estimate the momentary
sensory evidence and then integrated this momentary evidence
over time in a bounded diffusion model (Fig. 5f, see Methods).
Fitting the model to the choice and RT distributions provided a
quantitative match for both (Fig. 5d-e; R% 0.998 +0.001 for
accuracy and 0.98 £0.01 for RTs) and the resulting parameters
led to kernels that well matched the dynamics of experimentally
observed kernels for the three features (R2, 0.74).

Testing for temporal dynamics of sensory weights. Our
exploration of the model and fits to experimental data in the
previous sections focused largely on cases in which sensory
weights were static and the dynamics of the psychophysical kernel
were solely due to the decision-making process. However, as
discussed earlier, changes of sensory weights could also be a
major factor in shaping psychophysical kernels (Fig. 3¢, Supple-
mentary Fig. 1 and 2). In theory, a model-based approach to
understanding kernel dynamics should be able to distinguish
changes of sensory weights from decision-making processes
because of their distinct effects on the choice and RT

distributions. To test this prediction, we simulated a direction
discrimination experiment in which decisions were made by
accumulation of weighted sensory evidence toward a bound in
the presence of non-decision time and various dynamics of sen-
sory weights (Supplementary Fig. 5). Then, we used the simulated
choice and RT distributions to fit an extended DDM that allowed
temporal dynamics of sensory weights. The model recovered the
weight dynamics and accurately predicted psychophysical kernels
of the simulated experiments in each case (Supplementary Fig. 5).
A few thousand trials, similar to those available in our experi-
mental datasets, were adequate to achieve accurate fits and pre-
dictions. Therefore, there does not seem to be critical limitations
in the ability of a model-based approach to detect sensory weight
dynamics, when such dynamics are present.

Knowing about the model’s ability, we extended the DDMs
used in the previous section to explore dynamics of sensory
weights for human subjects. The extended models included linear
and quadratic terms to capture a wide variety of temporal
dynamics (Eqs. 23 and 25). The results did not support
substantial temporal dynamics of sensory weights in either task
(12 out of 13 subjects of the direction discrimination task and all
subjects of the face discrimination task showed static weights).
Overall, the addition of temporal dynamics to the weight function
did not significantly improve the fits or the match between model
and experimental psychophysical kernels (for direction discrimi-
nation, Eq. 23, f8;, —3.0 £ 1.6 across subjects, p=0.10, median,
—0.65, and f,, —2.1+2.3, p=0.36, median, 0.17; for face
discrimination, Eq. 25, §;, —0.19 £0.10, p = 0.09, median, 0.10,
and f,, 0.055+0.028, p = 0.08, median, 0.028). Because similar
models could accurately recover weight dynamics in the
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Fig. 5 Psychophysical reverse correlation in a face discrimination task with multiple informative features reveals relative weighting of features and kernel
dynamics similar to the direction discrimination task. a Task design. Subjects viewed a sequence of faces interleaved with masks and reported whether the
face identity matched one of two prototypes. They reported their choice with a saccadic eye movement to one of the two targets, as soon as ready. b Using
a custom algorithm, we designed intermediate morph images between the two prototype faces such that only three facial features (eyes, nose, and mouth)
could be informative. These features were morphed independently from one prototype (+100% morph) to another (—100% morph), enabling us to create
stimuli in which different features could be biased toward different identities. All regions outside the three informative features were set to halfway
between the prototypes and were uninformative. € The three informative features underwent subliminal fluctuations within each trial (updated with 106.7-
ms interval). The mean morph levels of the three features were similar but varied across trials. Fluctuations of the three features were independent
(Gaussian distribution with standard deviations set to 20% morph level). d, e Choice accuracy increased and RTs decreased with stimulus strength. Data
points are averages across nine subjects. Error bars are s.e.m. across subjects. Gray lines are model fits. f The DDM used to fit subjects’ choices and RTs
extends the model in Fig. 2 by assuming different sensitivity for the three informative features. Momentary evidence is a weighted average of three features
where the weights correspond to the sensitivity parameters. The momentary evidence is integrated toward a decision bound. g Psychophysical kernels
estimated from the model (gray lines) match subjects’ kernels for the three features. Shaded areas are s.e.m. across subjects

simulated data, we do not think that our observation about the Speed-accuracy tradeoff, bias, and more complex decision
experimental data is caused by a low power for detection of models. Although a simple DDM for accumulation of evidence
weight dynamics or a fundamental bias to attribute changes of captures several key aspects of behavior in sensory decisions, it
psychophysical kernels to the decision-making process. is only an abstraction for the more complex computations
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implemented by the decision-making circuitry. More complex
and nuanced models are required both to explain details of
behavior and to create biologically plausible models of integration
in a network of neurons. We use this section to explore a non-
exhaustive list of key parameters commonly used in various
implementations of evidence integration models. For clarity, we
simulate models without non-decision time to isolate the effects
of these model parameters from those of non-decision time.

First, we focus on how changes of decision bound influence the
shape of psychophysical kernels. The effect is best demonstrated
by Eq. 2 for a simple DDM, which shows the kernel is inversely
proportional to bound height. This dependence is expected
because a lower decision bound boosts the effect of stimulus
fluctuations on choice and vice versa. As a result, if subjects
increase the decision bound to improve their accuracy!®17->2,
psychophysical kernels will shrink (Supplementary Fig. 6a-b).
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Fig. 6 Psychophysical kernels are susceptible to changes of decision bound, input correlation, mutual inhibition, integration time constant, and limited
dynamic range. The figure shows extensions of DDM and systematic deviations that additional realism to the model can cause in psychophysical kernels.
Conventions are similar to Fig. 3, except that we focus only on RT tasks. Also, to isolate the effects of different model parameters from the effect of non-
decision time, we use zero non-decision time in these simulations. a-c¢ Collapsing decision bound (urgency signal) inflates the psychophysical kernel over
time. The rate of bound collapse is defined by 7;,,—the time it takes to have a 50% drop in bound height. d-f Extending DDM to a competition between
two bounded accumulators reveals that input correlation of the accumulators has only modest effects on psychophysical kernels, causing an initial
overshoot followed by an undershoot compared to true sensory weights. g-i The presence of a lower reflective bound in the accumulators causes an
opposite distortion: an initial undershoot followed by a later overshoot. j-I Balancing the effect of mutual inhibition by making the integrators leaky causes
the model to behave like a DDM, eliminating the effects of both the inhibition and leak on the psychophysical kernels (black curves in m). Any imbalance
between leak and inhibition, however, causes systematic deviations in the kernels from the true sensory weights (brown, red, and blue curves in k). See

Supplementary Fig. 8 for more examples
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Similarly, urgency signals, which push the integration process
toward the decision bound37->3, influence the kernels. Urgency is
effectively a reduction of decision bound over time (Fig. 6a) and
leads to inflation of the psychophysical kernel (Fig. 6b). The
scaling of kernels with bound height can be largely corrected by
estimating the decision bound from behavior and multiplying the
kernels by it, as we did for the results in the previous sections.

The proportionality constant in Eq. 2 also points at another
important conclusion: changes of stimulus variance, if present,
systematically distort psychophysical kernels. Larger stimulus
noise inflates the kernel and vice versa (Supplementary Fig. 6c-e).
This contrasts with the effects of internal (neural) noise for the
representation of sensory stimuli or the DV. We show in Methods
that in a bounded DDV, internal noise does not have a systematic
effect on psychophysical kernels of RT tasks (but compare to
unbounded DDM).

The presence of choice bias in the decision-making process is
another factor that can cause distortions in psychophysical
kernels. Two competing hypotheses have been suggested for
implementation of bias in the accumulation to bound models.
One hypothesis is a static change in the starting point of the
accumulation process (or an equivalent static change in decision
bounds) 4153354 which would cause an initial inflation in the
psychophysical kernels without a lasting effect (Supplementary
Fig. 7a-c). A second hypothesis is a dynamic bias signal that
pushes the DV toward one of the decision bounds and away from
the other38, This dynamic bias signal can be approximated by a
change in the drift rate of DDM, which would cause a DC offset
in the psychophysical kernels (Supplementary Fig. 7d-f).

Electrophysiological recordings from motor-planning regions
of the primate brain suggest that integration of sensory evidence
is best explained with an array of accumulators, rather than a
single integration process®”40>5=57 A class of models that
matches this observation better than the simple DDM is
competing integrators—one for each choice—that accumulate
evidence toward a bound!®1%:202340.57 Our mathematical proof
for DDM does not exactly apply to these models. However, many
of these models can be formulated as extensions of the DDM with
new parameters added to provide more flexible dynamics23. The
following parameters are worth special attention: input correla-
tion, lower reflective bound, mutual inhibition, and leak
(see Supplementary Notes for more detailed explanations).

A DDM is mathematically equivalent to two integrators that
receive perfectly anti-correlated inputs (correlation = —1) and,
consequently, are anti-correlated with each other?%23. However,
perfect anti-correlation in neural responses is not expected
because even when signal correlations are negative, noise
correlations tend to be close to zero or slightly positive®®>°,
Figure 6d-f shows that the shape of the psychophysical kernel is
only minimally affected by a wide range of input correlations.
Sizeable distortions arise only when the input correlation
approaches 0, in which case the kernel is initially inflated but
later drops below the true sensory weight (Fig. 6e and
Supplementary Fig. 8a).

A frequent feature of biologically plausible implementations of
the integration process is a lower reflective bound that limits the
lowest possible DV19-22:40 Such reflective bounds are inspired by
the observation that the spike count of neurons is limited from
below and cannot become negative. Reflective bounds cause the
psychophysical kernel to begin lower than the true sensory weight
but exceed it later (Fig. 6g-i and Supplementary Fig. 8b).
However, these distortions are small when the reflective bounds
are far enough from the starting point of the integrators.

Several models incorporate mutual inhibition either through
direct interactions between the integrators!®40 or indirectly
through intermediate inhibitory units?»%0, Mutual inhibition is

often combined with decay (leak) in the integration process
(Fig. 6j) to create richer dynamics and curtail the effects of
inhibition!%23, The balance between leak and mutual inhibition
defines whether the model implements bistable point attractor
dynamics or line attractor dynamics?®. This balance also
determines the kernel dynamics (Fig. 6j-1 and Supplementary
Fig. 8c). When mutual inhibition dominates (leak/inhibition
ratio < 1), psychophysical kernels show an early amplification but
later converge on the true sensory weights. When leak and
inhibition balance each other out, the model acts similarly to a
line attractor and the psychophysical kernels resemble those of a
DDM. Finally, when leak dominates, the integrators lose
information and psychophysical kernels systematically under-
estimate the sensory weights, especially for earlier sensory
evidence in the trial.

Interestingly, and perhaps by luck, applying these more
complex model variations to our experimental data resulted in
model parameters that closely resembled linear integration of
evidence, which is why the DDMs in the last section performed so
well. Because of this parameterization, these more sophisticated
models would produce predictions similar to the simple DDM
about the dynamics of the psychophysical kernel. However, we
note that this observation may not generalize to other experi-
ments and should, therefore, be tested for new behavioral
paradigms on a case-by-case basis.

As explained above, different parameters of decision-making
models have different and even opposing effects on the expected
shape of psychophysical kernels. As a result, a mixture of these
features can, in principle, generate a variety of kernel dynamics,
depending on their exact parameters. To illustrate this point, we
consider models with two competing integrators that have
different levels of mutual inhibition, leak, collapsing bounds,
and sensory and motor delays (Fig. 7a). For static sensory weights
over time, this class of models can generate monotonically
decreasing kernels (Fig. 7b), monotonically increasing kernels
(Fig. 7c), or kernels that exactly match the true sensory weights
(Fig. 7d), depending on the model parameterization. To under-
stand this diversity, consider, for examplem the opposing effects
of collapsing bounds (urgency) and non-decision time on the
kernels. The gradual reduction of the kernel due to non-decision
time can cancel out the increase of the kernel due to urgency.
Alternatively, one of the two effects may overpower the other one.
Complementary to the examples in Fig. 7, one can also imagine
parameterizations that would result in a flat psychophysical
kernel in the presence of nonstationary true sensory weights. The
presence of mutual inhibition and leak further complicates the
relationship of sensory weights and psychophysical kernels and
expands the space of possible dynamics for the kernels.

Discussion

A key goal of systems neuroscience is to explain behavior as a
sequence of neural computations that transform sensory inputs to
appropriate motor outputs. For perceptual decisions, this
sequence includes sensory processes that form neural repre-
sentations of a stimulus in sensory cortices and decision-making
processes that plan the best choice based on these sensory
representations. Psychophysical reverse correlation has been
originally developed to infer sensory filters that approximate
sensory processes>~. Recent studies, however, have begun to use
the technique for inferring the properties of the decision-making
process?®27:61.62 Here, we show that an isolated perspective is
vulnerable. To ensure correct interpretation of psychophysical
kernels, one has to adopt an integrative perspective that sees
psychophysical kernels as a product of both sensory and decision-
making processes.
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Fig. 7 A decision-making model that has a mixture of parameters with opposing effects on psychophysical kernels can create a diversity of kernel dynamics
for static sensory weights. a A model composed of two competing integrators that allows different ratios of leak and inhibition, collapsing decision bounds,
and non-decision times. The model also has input correlation >—1 and reflective lower bounds, but they are fixed for simplicity. b When bound collapse is
small and non-decision times are long, the kernel drops monotonically over time. ¢ When bound collapse is large and non-decision times are short, the
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We arrived at our conclusion through a systematic exploration
of how psychophysical reverse correlation is influenced by the
decision-making process and under what conditions it provides a
good approximation of sensory filters. We showed that neither
the integration of sensory evidence nor the termination of the
integration process by reaching a decision bound fundamentally
limits the recovery of sensory weights. However, nuances that are
fixtures of real experiments but often receive little attention can
be major sources of deviation between psychophysical kernels
and sensory weights. Examples include sensory and motor delays
or input correlation of competing integrators, which cause kernels
with a downward trend unrelated to sensory weights, or urgency
and lower reflective bounds, which cause upward trends in the
kernels. Previous theoretical explanations of reverse correlation
have ignored these nuances, causing confusion about what can be
gleaned from psychophysical kernels. We also showed that the
kernels are susceptible to how the integration process is imple-
mented. Bistable point attractor or line attractor dynamics,
implemented through different combinations of mutual inhibi-
tion, self-excitation, and decay of activity (leak) in neural net-
works, vyield different kernel dynamics. We conclude that
psychophysical kernels are influenced by both sensory and
decision-making processes and show how they can be used to
provide information about both types of processes.

Making the interpretation of psychophysical reverse correla-
tion dependent on the decision-making process is likely to face
opposition because of the historical influence of SDT® and the
fact that under the assumptions of SDT, reverse correlation
matches the true sensory weights. However, we note that this
match is misleading. In particular, SDT explains the dynamics of
psychophysical kernels by simplifying the decision-making pro-
cess and shifting its complexity to the sensory processes. This
shift is inaccurate both because it depends on unsubstantiated
sensory processes and because it ignores the known complexity in
the decision-making process. The perspective offered by SDT is
also insufficient because it fails to explain changes of psycho-
physical kernels that stem from flexibility of the decision-making
process. For example, setting the speed and accuracy of choi-
ces!718 or adjustment of behavior following feedback®>%3 often
depends on rapid alterations in the decision-making process.
These alterations also change psychophysical kernels, as
explained in Results. The integrative framework proposed here
would correctly identify the source of changes, whereas SDT
would have to misattribute them to changes of sensory weights.

Proper partitioning of the contribution of sensory and
decision-making processes enables testing hypotheses about
neural mechanisms of behavior. We provide key signatures of
psychophysical kernels for a variety of different mechanisms and
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implementations. Matching these signatures to the patterns
observed in an experiment enables hypothesis formation. To
quantitatively test those hypotheses, one can implement com-
putational models of sensory and decision-making processes, fit
them to some aspect of behavior, and then generate predictions
about another aspect of behavior. For example, by fitting the
DDM to the distribution of choices and RTs, we could accurately
predict the dynamics of psychophysical kernels in our experi-
ments. Further, our mathematical proofs and simulations provide
a comprehensive framework for predicting changes of psycho-
physical kernels under various experimental manipulations. For
example, when a manipulation leads to improved accuracy, one
can use our method to distinguish two potential sources of the
improved performance: increased sensitivity (e.g., attentional
mechanisms) or changes of decision bound (speed-accuracy
tradeoff). Whereas increased sensitivity is expected to increase the
magnitude of the psychophysical kernel, increased decision
bound or reduced urgency is expected to reduce the kernel
magnitude. Such contrasting predictions highlight the ability of
psychophysical reverse correlation to separate models that may
not be easily distinguished by more conventional measurements,
including changes in psychometric function or its derivatives
such as overall accuracy.

However, psychophysical kernels on their own are inadequate
to determine the nuances of sensory and decision-making pro-
cesses. Multiple mechanisms influence the reverse correlation and
mixtures of mechanisms can generate complex dynamics or even
flat kernels, complicating model-free interpretations of experi-
mentally derived kernels. (See Supplementary Discussion.) To
reduce interpretational errors, one should always assess psycho-
physical kernels in conjunction with the choice and RT dis-
tributions. Mechanisms that have a similar effect on
psychophysical kernels often have contrasting effects on choices
and RTs. For example, variability of non-decision times, input
correlation, and mutual inhibition can all lead to stimulus-aligned
kernels that shrink with time. However, as shown in Supple-
mentary Fig. 9a, these three mechanisms (i) have different effects
on the shape of the tail of RT distribution, (ii) make different
predictions about accuracy for the same sensitivity function, and
(iii) differ in the exact shape of the psychophysical kernels (note
the small but detectable, qualitative and quantitative differences
in the dynamics of the kernels). The combination of these sig-
natures enables separation of different mechanisms. A similar
contrast in kernel dynamics and RT and choice distributions
exists for dropping bounds and reflective bounds, which both
cause an inflation of psychophysical kernels over time. Along the
same lines, when combinations of different mechanisms with
opposing effects lead to a flat kernel (e.g., Fig. 7d), the distribution
of RT and choice is often different compared to when the kernel
is flat because none of those mechanisms contribute to the
decision-making process or a different combination of para-
meters flattens the kernel (Supplementary Fig. 9b). A three-
pronged approach based on the shape of the kernel, and RT and
choice distributions makes a powerful technique for uncovering
the mechanisms that shape behavior.

In light of our results, past studies that relied on psychophy-
sical reverse correlation can teach us more than most of them
were designed for. It is still valid to interpret psychophysical
kernels as the best approximation of a linear-nonlinear model,
such as SDT, to the behavior. However, it is important to keep in
mind that such an interpretation is about effective associations
between sensory information and choice®*, which should not be
confused with the spatiotemporal filters that shape sensory
representations, or the readout of sensory representations to form
the evidence used in the decision-making process. It is also
important to note that these effective associations do change

under various conditions that do not change sensory repre-
sentations (e.g., changes of decision bound), while the model-
based approach suggested here is likely to recover the true
dynamics of sensory weights. The results of our paper do not
refute careful use of psychophysical reverse correlation in past
studies. Rather, we try to elevate psychophysical reverse correla-
tion from a technique that reveals only effective associations of
stimulus and choice to a technique that reveals the inner working
of the sensory and decision-making processes that underlie the
choice.

Methods

Overview. We examine how well psychophysical reverse correlation recovers
sensory weights in perceptual tasks where decisions are based on accumulation of
sensory information!3-1>19, First, we prove that the core computations for inte-
gration of evidence or termination of the decision-making process on based on a
decision bound do not cause any deviation of psychophysical kernels from true
sensory weights. Then, we demonstrate that non-decision times, urgency, reflective
bounds, and interactions between accumulators are substantial sources of devia-
tion. Finally, we show how one can accurately interpret the complexity of psy-
chophysical kernels by explicit modeling of both sensory and decision-making
processes.

Psychophysical reverse correlation for bounded accumulation. DDMs are
commonly used to approximate integration of evidence in two-alternative sensory
decisions'3-15, In these models, a weighting function is applied to momentary
sensory evidence and the result is integrated over time until the integrated evidence
(the DV) reaches either an upper (positive) or a lower (negative) bound. Each
bound corresponds to one of the choices. The sensory weighting function is
assumed constant in some experiments such as direction discrimination of random
dots where sensory neurons show more or less constant activity proportional to
stimulus strength throughout the stimulus presentation period®®. However, the
exact form of the weighting function is usually unknown in most experiments and
could change dynamically depending on context. We prove below that in the
absence of sensory and motor delays, reverse correlation accurately recovers the
weights applied to sensory evidence in a DDM.

In a reaction time task, where subjects report their choices as soon as ready, the
psychophysical kernel is

K(t) = E[S(t)‘clrzt} - E[S(t)‘c%zt}v ®)

where Ch.., indicates all trials in which choice i is made at times equal or larger
than #, and E[s(t)|Ci,] is the average stimulus at time ¢ conditional on the choice
being made at a later time (7> ¢). The intuition for this formulation is that a trial
contributes to the calculation of the kernel at time ¢ only if the choice on that trial is
not recorded by the experimenter before ¢. For an unbiased decision maker and a
stimulus distribution symmetric around zero, E[s(t)|C}.,] = —E[s(t)|C},],
leading to K(t) = 2E[s(t)|ClL,]. Therefore, we need to calculate only one of the
two conditional averages.
In a DDM, the choice is made through integration of sensory evidence:

t

()= [ Twtr)s o) + o), ()

0

where v,(t) indicates the DV on trial i at time ¢, w(7) is the weight applied on the
stimulus at times 7 < t, s,(7) are stimuli sampled from a Gaussian distribution with
mean 0 and variance of, and #,(1) represents internal (neural) noise for the
representation of sensory and integration processes. We assume that the internal
noise does not bias the representation and can be approximated with a Gaussian
distribution with mean 0 and variance o2.

Because integration continues until v,fz) reaches one of the two bounds (+B or
-B),

E[s()|Chsy] = 3, si(0p(5(8)|Cry)
= Zi Si(t)/ /P(Si(t)‘vi(t)‘, i’]i(t), Cszt)P(Vi(t)7 ni(t)‘c}rgt)d"d’/]ﬂ
"D

()
where the integration domain D is [—B,+B]. Using Bayes rule and by plugging
Eq. 5 in Eq. 3, we get

2
K0 = ey S st0p(s) | [ p(Chadst)-n0m0)p (50 m0) v
T>t
= D

(6)
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where p(Cl,[s;(), vi(t), #;(t)) is the probability of reaching the upper bound after
time ¢, when the decision maker observes stimulus s/(f) and has an existing decision
variable v,(#). This bound-crossing probability has an analytical solution in DDM!°.
Note that after observing stimulus s,(t), the distance of the accumulated evidence
from the upper bound is y; = B—(w(t)s;(t)+v,(t)+#(t)), and the distance from the
lower bound is y, = B+(w(t)s;(t)+vi(t)+n,(t)). Because s(t) and #(t) have zero
mean, the overall drift is zero and the bound-crossing probability is

P(Chads (w0 (0) = A

B+ (W(t)si(t) +vi(t) + ’7;'([))
2B '

Therefore, Eq. 6 can be written as

1 (B + w(t) ffP( (1), (1)) dvdr+
K(1) :mZis( ” (vi(t) + (1) )p(v,( ) 1,(t))dvdn
P(C1>r)
mzisi<f>p<si(t))<s+si<r>w<r>>7

®)

where p(Crs,) is the combined probability of reaching either of the two decision
bounds after time . The second equality in Eq. 8 stems from two equations. First,

/[ o

because for a neutral stimulus, the DV is symmetrically distributed around the

starting point. Second,
[ oo

because f p(v;(t))dv reflects the total probability of the DV between the decision
bounds at?, and because this unabsorbed probability mass is guaranteed to be fully
absorbed by the decision bounds in finite time T > ¢°°

For an unbiased decision-making process and a stimulus with zero mean
p(Crs) =2p(Cl,)- As a result, Eq. 8 simplifies to

K(t) = 2 [BY, s0p(si(0) + w(6) 3, si(0p(s1))]-

)+ 1,(6)p(vi(8), () dvdy = 0 )

t))dvdn = p(Crx,) (10)

(11)

For a Gaussian stimulus with zero mean, )_;s;(t)p(s;(t)) = 0 and
si(1)p(si(£)) = % Therefore,

This equation, which we highlight in Results (Eq. 2), shows that the result of
psychophysical reverse correlation is proportional to the sensory weights. The
proportionality constant is ZB , which explains how reverse correlation is modulated
by properties of the stimulus (stimulus variance) and parameters of the decision-
making process (decision bound). Eq. 2 also shows that psychophysical kernels are
independent of internal noise in a DDM. Internal noise does not cause a systematic
deviation in estimated kernels, although it could affect the confidence interval of
the estimated kernels in real experiments, where a limited number of trials are
available for measuring the kernels.

Based on Eq. 2, the outcome of psychophysical reverse correlation is expected to
change if the decision bound is not constant. For example, urgency in the decision-
making process is often equivalent to a drop in the decision bound3>37-53, which
should lead to a gradual increase of the reverse correlation kernel even in the
absence of changes in sensory weights (Fig. 6a—c). Note that we define urgency as
an additive signal for competing accumulation processes, which under certain
conditions (e.g., anti-correlated input to the accumulators) can be translated to
collapsing bounds in the DDM. This is different from the alternative definition of
urgency based on gain in the accumulation process>®*%, which cannot be easily
translated to a bound change in DDM.

The proof above holds only if the choice can be recorded as soon as the
decision-making process terminates. In practice, one has to take into account
sensory and motor delays that postpone initiation of action. These delays imply
that the stimuli presented immediately before the behavioral response do not
influence the choice’. As a result, the psychophysical kernel drops to zero prior to
the choice. Due to trial-to-trial variability of these delays, it is not possible to know
purely based on behavior, which part of the stimulus did or did not contribute on
any individual trial, but on average, one can expect a descending trend in a
psychophysical kernel close to the time of the response (Fig. 3i-m).

In addition to the bound height and non-decision time, other factors can cause
deviation of psychophysical kernels from sensory weights. DDM is a simplified
model of the more complex computations implemented by the neural circuit that
underlies the choice. In the simplest case, one should consider an array of
accumulators that interact and compete with each other?>204, forcing us to
consider correlation between accumulators, mutual inhibition, and leak which can
cause systematic deviations in the kernels (Figs. 6d-f, 6j-1). Further, real neurons
do not accommodate negative firing rates. A lower reflective bound in each
accumulator can introduce additional systematic biases in the kernel (Fig. 6g-i). A
closed-form, mathematical solution for the psychophysical kernel in the presence
of all these factors is complex and beyond the scope of this paper. Therefore, we use
simulations to explore the parameter space of different model variations and
demonstrate how different factors change the kernel (see “Model simulation”
below).

Psychophysical reverse correlation for unbounded accumulation. If decisions
in a fixed-duration task are made by unbounded integration of evidence, psy-
chophysical kernels will correctly reflect the dynamics of sensory weights

(Fig. 3a—c, Supplementary Fig. 1). The proof is as follows. If integration begins with
stimulus onset and continues for the whole stimulus duration, T;, the DV at the
end of the stimulus in trial i will be

TS.
v(T,) = / [w(r)s;(7) + n;(7)]dr. (12)
0

If the sensory input, s(t), is drawn from a Gaussian dlsmbutlon w1th mean 0 and
variance o2, ¥(T;) will have a mean of 0 and variance 02, = T, U'l + o2 j w(r)dr.
The model selects choice 1 for the positive DV and choice 2 for the negatlve DV.
Therefore, the psychophysical kernel will be

K(t) =E[S(t)| (T)>0] — E[s(t)|v(T)<0]
2E[s(t)|v(T,)>0]
Z H(1)p(si (1) [v(
p(v(T{ 52 si(Op(si(1)p(v(T
= oy Sis(p(s Uj N(x, [w(t)
=43 5(O)p(s: (1) @(w(t)s; () /01r)

=4 [ pR(w(0)5/ s

T,)>0)
$)>01s;(1))
; (13)

5i(t), 011 )dx

where ®(x) is the cumulative distribution function of a standard normal prob-
ability density function with mean 0 and standard deviation 1. The last equality in
the equation is due to the ii.d. property of s(t) within and across trials.

The kernel equation can be further simplified as

+oo

=4 / sp(s)@(w(t)s/ oy )ds

—00

K(¢)

40%w(t)
2m[w(t)’o? + a2, ]

40?

~ El

V210

w(t)

where the approximation in the last line is based on w(t)*0? < ¢2,, which is
usually true unless stimulus durations are very short.

Based on Eq. 14, the kernel is proportional to the sensory weight function, and
the constant of proportionality scales with stimulus variance (¢2), similar to Eq. 2
for bounded accumulation.

However, note that the kernel is inversely proportional to 6,0, which is a
function of the stimulus duration. Dependence of kernels on stimulus duration
calls for caution in interpretation of results when a mixture of stimulus durations
are used in an experiment. The kernel for each stimulus duration is scaled
differently, inducing artificial dynamics in the average kernel across all durations.

Even when stimulus durations are the same across trials, subjects can begin
integration at variable times across trials and commit to a choice at different times
during stimulus viewing, causing temporal dynamics in the kernel that do not
reflect the true dynamics of sensory weights (see Results and Discussion for a more
detailed explanation).

Model simulation. We simulated four different classes of bounded accumulation
models: (i) DDM without non-decision time, (ii) DDM with non-decision
time!%124, (iii) DDM with non-decision time and urgency'$3%>%, and (iv) com-
peting accumulators with different input correlation, reflective bound, mutual
inhibition, and leak!6-19-20.2340,57,

12 | (2018)9:3479 | DOI: 10.1038/541467-018-05797-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

For each class and parameter combination, 10° trials were simulated to obtain
an accurate estimation of the psychophysical kernel. Sensory input for each trial
was a sequence of independent draws from a Gaussian distribution with mean 0
and o, = 1. This input was multiplied with a weight function, w(t), which could be
constant (Figs. 3, 6, 7, Supplementary Fig. 3, 6-9) or vary over time
(Supplementary Fig. 1-2, 5). This weight function dictated the significance that
each sample played in shaping the decision. The outcome (termed momentary
evidence) was passed to each integration model to calculate the DV and generate a
choice for each trial. As explained above, the presence or absence of internal noise
did not bear strongly on the measured kernels in RT tasks, as long as enough trials
were available for the measurement. We calculated psychophysical kernels based
on the simulated choices and sensory stimuli according to Eq. 3 and compared the
results against the weight function used in the simulation (Figs. 3, 6, 7,
Supplementary Fig. 1-2, 6-9).

Drift diffusion models. In these models, momentary evidence was integrated over
time until the DV reached a lower bound (—B) or an upper bound (+B), which
corresponded to the two choices. For models without non-decision time, integra-
tion stopped immediately and a choice was registered after the bound crossing. For
models with non-decision time, the integration process stopped after bound
crossing but the choice was registered after a random time, drawn from a Gaussian
distribution. The stimuli presented between bound crossing and the choice were
included in the calculation of psychophysical kernels to emulate realistic experi-
mental conditions, where experimenters do not know the exact non-decision time
on each trial. The mean and standard deviation of the distribution of non-decision
time in Fig. 3j-1 and Supplementary Fig. 2 were 300 ms and 100 ms, respectively,
compatible with past studies?#343>45, In Fig. 3m, the mean varied between 0 and
800 ms, and the standard deviation was equal to 1/3 of the mean. In Supplementary
Fig. 3, we tested the effects of different means, variance, and skewness of the non-
decision time distribution on the measured psychophysical kernels.

For DDMs with urgency, we reduced the decision bound according to a
hyperbolic function:

t

Bit)=b—u,,——,
® u"“t+rl/2

(15)

where b is the initial bound height, u., is the asymptotic reduction in bound
height, and 7y, is the time to reach 50% of the reduction. We set b = 60, u.. = 60,
and 77/, =400 ms for Fig. 6b. In Fig. 6¢, 71/, varied while the other model
parameters were kept constant.

For the simulation of fixed-duration tasks (Figs. 3b, g, |, Supplementary Fig. 1),
we incorporated past experimental observations that the decision-making process
could effectively stop before the termination of the stimulus?’:4!. Stimulus
durations were 1 s on all trials. The full stimulus duration was used for the
calculation of the psychophysical kernel to reflect the standard practice and
experimenters’ lack of knowledge about the exact time of the decision on each trial.

Competing accumulator models. DDM is a low-parameter model and by design
lacks the sophistication of a biologically plausible neural network that implements
the integration process?>¢7-%8. A more biologically plausibility alternative is a
model with a bank of accumulators (integrators) that interact and compete with
each other. For a two-alternative decision, the simplest instantiation of such a
model has two accumulators, each integrating sensory evidence in favor of one of
the two choices'®2%. The model reaches a decision when one of the accumulators
crosses its bound. In addition to the DDM parameters (bound height and non-
decision time), the competing accumulator model has the following parameters
(see Eq. 16):

1. Input correlation (p) determines the correlation between sensory inputs of
the two accumulators. The inputs are explained by a two-dimensional Gaussian
P
1
the combined variance of weighted stimulus noise and internal noise.

2. The second parameter is a reflective bound (R) that defines a lower limit for
the DV of each accumulator.

3. The third parameter is the strength of inhibitory interactions between the
accumulators (I). This mutual inhibition is widely assumed to be a key component
of biological circuits of decision-making and a key factor in shaping neuronal
response dynamics'??2. When I>0, the strength of mutual inhibition for
accumulators 1 and 2 at time ¢ is Iv,(f) and Iv;(t), respectively, where v; and v, are
the DVs of the two accumulators. Because the magnitude of inhibition is
proportional to the accumulated evidence, even small I can have dramatic effects
on the decision-making process.

4. The fourth model parameter is “leakage” in the integration process (L). In the
absence of mutual inhibition, the leak makes the model behave as an
Ornstein-Uhlenbeck process®, causing the DVs to decay faster as they get farther
from their starting point. In the presence of mutual inhibition, the balance of leak
and inhibition creates a variety of attractor dynamics. When the leak and inhibition
parameters are equal (L = I), the difference of the DVs of the two accumulators
implements a DDM: a line attractor that reflects the accumulated difference of

st . . . 1
distribution with mean 0 and covariance matrix y = < >a§, where 02 reflects

momentary evidence of the two accumulators?>. When mutual inhibition exceeds
leak (L <I), a saddle point emerges in the state space of the model, which
exponentially amplifies small initial differences of the DV’ of the two accumulators
over time. This amplification boosts the effect of early stimulus fluctuations on the
decision!®. Conversely, when the leak parameter exceeds mutual inhibition (L > I),
a point attractor emerges in the state space, causing differences in the DVs of the
two accumulators to decay over time. This decay reduces the effect of early
stimulus fluctuations on the choice.

The equation that governs our simulations of competing accumulator models in
Figs. 6, 7, and Supplementary Fig. 8 is

d[vl] = (w(t)S(t) 7L[V1] 71[%} +VO(L+I)>dt+dW

V2 V2 V1
v1(0) = v,(0) = v,

(16)

where dv denotes the change in v over a small time interval d¢, L is the leak term, I
is the mutual inhibition, and v, is the starting point of DVs. S(t) is a vector that
represents the sensory inputs to the two accumulators. For the simulations in
Figs. 6, 7, and Supplementary Fig. 8, we assumed that two accumulators were

driven in opposite directions by the input stimuli, that is S(t) = [ 522) ] .dWisa
2D Gaussian noise term with mean 0 and covariance &dt, where £ = (;, /1 >afl.
We adjusted p’ to achieve a desired input correlation (p) as defined above. v; and v,
started at vo. vo(L+I) created a stable point at v,. The DVs were subjected to two
nonlinearities: a lower reflective bound (R) and an upper absorbing bound (B).

Figure 6e-f demonstrates distortions in the psychophysical kernels for different
input correlations (p was set to —0.2 in Fig. 6e and varied between —1 and 0 in
Fig. 6f; B=30,R=—c,I1=0,L =0, 031 =1, and vy, = 0). In the absence of a lower
reflective bound, inhibition, or leak, the model became mathematically equivalent
to a DDM whenever p = —1. In Fig. 6h-i, we tested the effect of a lower reflective
bound (R was set to —10 in Fig. 6h and varied between —20 and 0 in Fig. 6i; p =
—1,B=30,I=0,L=0, 03 = 0, and v, = 0). Figure 6k-1 shows how the balance of
leak and mutual inhibition distorted psychophysical kernels. For these simulations,
we kept L+ = 0.006 and systematically changed the ratio L/I between 0.5 and 2 (p
=-1,B=60,R=0, 0'3 =0, and v = 30). We also show the shape of the kernel
in the absence of a leak (brown lines, I was set to 0.003). For these simulations, the
lower reflective bound was set to 0 to ensure that negative DV's in one accumulator
did not excite the other accumulator. To best isolate the effect of individual
parameters of the model, we set the non-decision time and urgency to zero in
Fig. 6d-1. Figure 7 shows the effect that conjunctions of different parameters have
on the psychophysical kernel. The standard deviation of non-decision time was set
to 1/3 of its mean in this figure.

Comparison of model kernels and sensory weights. For each model, we cal-

culated the psychophysical kernel as explained by Eq. 3. To directly compare the
kernels with the sensory weights implemented in the model, we divided the kernels
zg‘z ) For models with dynamic bounds (Figs. 6a—c,

by the scaling factor of Eq. 2 <

7), we used the average bound height from the stimulus onset to the median RT to
calculate the scaling factor. For unbounded models (Fig. 3a—c), we used the scaling

factor in Eq. 14 ( \/;—';im). After scaling the kernels and making them comparable to

the sensory weights, we quantified the difference between the stimulus-aligned
weight and kernel functions using root-mean-square error:

(17)

distortion = \/Tim ZZ] (w(t) — K(1))?,

where T, is the stimulus duration in simulations of fixed-duration tasks or the
median RT in simulations of RT tasks.

Overview of psychophysical tests. We performed two experiments to test our
model predictions: direction discrimination with random dots, and a novel face
discrimination task. All subjects were naive to the purpose of the experiments and
provided informed written consent before participation. All procedures were
approved by the Institutional Review Board at New York University. Throughout
the experiments, subjects were seated in an adjustable chair in a semi-dark room
with chin and forehead supported before a CRT display monitor (refresh rate 75
Hz, viewing distance 52-57 cm). Stimulus presentation was controlled with Psy-
chophysics Toolbox® and Matlab. Eye movements were monitored using a high-
speed infrared camera (Eyelink, SR-Research, Ontario). Gaze positions were
recorded at 1 kHz.

Direction discrimination task. Thirteen human subjects performed an RT version
of the direction discrimination task with random dots?%*435, Data from six sub-

jects have been previously reported in Kiani et al.20 and data from the remaining
subjects have been reported in Purcell and Kiani®. Both studies used a similar trial
structure. Subjects initiated each trial by fixating a small red point at the center of
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the screen (FP, 0.3° diameter). After a variable delay, two targets appeared on the
screen, indicating the two possible motion directions. Following another random
delay, the dynamic random dots stimulus appeared within a 5-7° circular aperture
centered on the FP. The stimulus consisted of three independent sets of moving
dots shown in consecutive frames. Each set of dots was shown for one video frame
and then replotted three video frames later (At = 40 ms; density, 16.7 dots/deg?/s).
When replotted, a subset of dots were offset from their original location (speed, 5°/
s), while the remaining dots were placed randomly within the aperture. The per-
centage of coherently displaced dots determined the strength of motion. On each
trial, motion strength was randomly chosen from one of six possible values: 0%,
3.2%, 6.4%, 12.8%, 25.6%, and 51.2% coherence. Subjects reported their perceived
direction of motion with a saccadic eye movement to the choice target in the
direction of motion. Once the motion stimulus appeared, subjects were free to
indicate their choice at any time. RT was recorded as the difference between the
time of motion onset and eye movement initiation. For the calculation of psy-
chophysical kernels, motion energy of the random dot stimulus was calculated for
each trial over time (see below).

Face discrimination task. Nine human subjects performed a novel experiment
designed to test our model predictions for more complex decisions on multi-
dimensional sensory stimuli. Subjects reported the identity of a face on each trial as
soon as they were ready (Fig. 5a). The stimuli in the experiment were drawn from
morph continuums between photographs of faces from the MacBrain Face Sti-
mulus Set”? (http://www.macbrain.org/resources.htm). For the illustrations in
Fig. 5, we used morphed images of two of the authors to avoid copyright issues. We
developed a custom algorithm that morphed different facial features (regions of the
stimulus) independently between two prototype faces. Our algorithm started with
97 manually defined anchor points on each face and morphed one face into
another by linear interpolation of the positions of anchor points and textures inside
the tessellated triangles defined by the anchor points. The result was a perceptually
seamless transformation of the geometry and internal features from one face to
another. The anchor points also enabled us to morph different regions of the faces
independently. We focused on three key features (eyes, nose, and mouth) and
created independent series of morphs for them. The faces that were used in the task
were composed of different morph levels of these three features. Anything outside
those features was set to the halfway morph between the prototypes. The infor-
mativeness of the three features (stimulus strength) was defined based on the
mixture of prototypes, spanning from —100% when the feature was identical to
prototype 1 to +100% when it was identical to prototype 2 (Fig. 5b). At the middle
of the morph line (0% morph), the feature was equally shaped by the two
prototypes.

By varying the three features independently, we could study spatial integration
through creating ambiguous stimuli in which different features could support
different choices. We could also study temporal integration of features by varying
the three discriminating features within each trial (Fig. 5¢). The three
discriminating features for each stimulus frame were drawn from independent
Gaussian distributions. The mean and standard deviation of these distributions
were equal and fixed within each trial, but the means varied randomly from trial to
trial. We tested seven mean stimulus strengths (=50, —30, —14, 0, +14, +30, and
+50% morph level). The standard deviation was 20% morph level. Sampled values
that fell outside the range [—100% + 100%] (0.18% of samples) were replaced with
new samples inside the range.

Changes of the stimulus within a trial were implemented in a subliminal fashion
such that subjects could not consciously perceive variation of facial features and yet
their choices were influenced by these variations. We achieved this goal using a
sequence of stimuli and masks within each trial. The stimuli were morphed faces
with a particular combination of the three discriminating features. The masks were
created by phase randomization of the intermediate face between the two
prototypes. For the majority of subjects (7/9), each stimulus was shown without a
mask for one monitor frame (13.3 ms). Then, it gradually faded out over the next
seven frames as a mask stimulus faded in. For these frames, the mask and the
stimulus were linearly combined, pixel-by-pixel, according to a half-cosine
function, such that in the last frame, the weight of the mask was 1 and the weight of
the stimulus was 0. Immediately afterward, a new stimulus frame with a new
combination of informative features was shown, followed by another cycle of
masking, and so on. For a minority of subjects (2/9), we replaced the half-cosine
function for the transition of a stimulus and mask with a full cosine function,
where each eight-frame cycle started with a mask, transitioned to an unmasked
stimulus in frame 5, and transitioned back to a full mask by the beginning of the
next cycle. We did not observe any noticeable difference in the results of the two
presentation methods and pooled their data. The masks ensured that subjects did
not perceive minor changes in key features over time within a trial. In debriefings
following each experiment, all subjects noted that they saw one face in each trial
but the face was covered with various masks over time.

Analysis of behavioral data. Due to the stochastic nature of the random dot
motion stimuli, the strength of motion of a stimulus with a fixed coherence fluc-
tuated from one frame to another. We quantified these stimulus fluctuations by
calculating motion energy?’. Details are described elsewhere?’. Briefly, we used two
pairs of spatiotemporal filters, each selective for one of the two motion directions

discriminated by the subject. Each direction-selective filter was formed by sum-
mation of two space-time separable filters. The spatial filters were even and odd
symmetric fourth-order Cauchy functions:

fi(x,y) = cos*(a) cos(4a) exp<7%),

- (19)
£,(x,y) = cos*(a) sin(4a) exp (— m) ,
where « = tan™'(x/0.35) and w, = 0.05. The two temporal filters were
&1(1) = (601" exp(—601) [ — 255, )

% (1) = (601)exp(~601)[ 4 — |

The two pairs of direction-selective filter were constructed by combining the
two spatial filters with the two temporal filters: fig+f.g, and f,g1—f1g> were
selective for one motion direction, whereas fig1—f>¢, and f,g1+fig, were selective
for the opposite direction. The parameters of Eq. 18 and Eq. 19 were chosen to (i)
match spatial and temporal band-pass properties of MT neurons, (ii) to maximize
selectivity of the directional filters for the speed of coherent motion in the stimulus
(5°/s), and (iii) to reproduce the width of direction-selectivity tuning curves of MT
neurons. We convolved the 3D spatiotemporal pattern of the stimulus in each trial
with these four filters, squared the results, and then summed them for each pair of
filters to measure local motion energies at each stimulus subregion over time. The
local energies were summated across space and subtracted from the energy of the
opposing pair of filters to obtain fluctuations of the net motion energy in one
direction over time.

Average motion energies increased linearly with stimulus coherence
(Supplementary Fig. 4b). However, the lag in the temporal filters caused the effect
of stimulus fluctuations to show up in the motion energies with ~50-ms delay
(Fig. 4d and Supplementary Fig. 4a), as shown before?”47.

For the direction discrimination task, we used motion energies of 0% coherence
trials to perform reverse correlation (Eq. 3) on the responses of human subjects
(3389 trials). In Fig. 4e-f, we first computed each subject’s psychophysical kernel
and then averaged the kernels across subjects. Each subject’s stimulus- and
response-aligned kernels were calculated up to the subject’s median RT, ensuring
that at least half of trials contributed to the calculations. When averaged across
subjects, the kernels were shown up to the shortest median RT. For the response-
aligned kernels (Fig. 4f), we rounded the RT to the onset of the last stimulus frame
on the monitor. The temporal resolution of kernels (13.3 ms) was dictated by the
refresh rate of the monitor (75 Hz).

For the face discrimination task, we used fluctuations of eyes, nose, and mouth
morph levels in the 0% morph trials to calculate psychophysical kernels of
individual features (Fig. 5¢) (3530 trials). Similar conventions to the direction
discrimination task were used for averaging kernels across subjects and plotting
them, except that because of the longer stimulus frame durations in the face
discrimination task (106.7 ms), the kernels were temporally coarser.

We did not perform any smoothing of the psychophysical kernels of the two
tasks to avoid obscuring their dynamics.

Fitting models to behavioral data and predicting psychophysical kernels. We
used a simple DDM to fit subjects’ choices and RTs in the direction discrimination
task in order to predict their psychophysical kernels. The model had four degrees of
freedom: decision-bound height (B), mean non-decision time (Tj), standard

deviation of non-decision time (UTO>’ and a sensitivity parameter (y). The sensi-

tivity parameter determined the mean of momentary evidence (4 = yC) conferred
by a motion stimulus with coherence C. The bound height and sensitivity were in
units of the standard deviation of the momentary evidence per unit time (o,),
which we set to 1. This formulation of DDM, which has been used widely in the
past, directly maps to the formulation presented earlier in Methods:

w(t) =y,

20
o, =yl +o. (20)

The probability of crossing the upper and lower decision bounds at each
decision time was calculated by solving the Fokker-Planck equation:%¢
op(v,t) 0 0

FYR *5#+0-5ﬁ05 p(v,t),

(21)

where p(v,t) is the probability density of the DVs at different times. The
boundary conditions were

=g

p(v,0) =&(v),

p(£B,t) =0, @2)

=

where 8(v) denotes a delta function. The first condition enforced that the DV
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always started at 0 and the second condition guaranteed that the accumulation
terminated when the DV reached one of the bounds. RT distributions for each
choice were obtained by convolving the distribution of bound crossing times with
the distribution of non-decision times (Fig. 2).

We fit model parameters by maximizing the likelihood of the joint distribution
of the observed choices and RTs in the experiment. For a set of parameters, the
model predicted a distribution of RTs for each possible choice for the stimulus
strength used in each trial. These distributions were used to calculate the log-
likelihood of the observed choice and RT on single trials. These log-likelihoods
were summed across trials to search for the best set of model parameters that
maximized this sum. The model parameters were fit separately for each subject. To
avoid local maxima, we repeated the fits from 10 random initial points and chose
the parameters that maximized the likelihood function. Figure 4b-c shows the
average fits across subjects. The high quality of fits for individual subjects and the
average subject indicated that the DDM provided an adequate explanation for the
computations underlying behavior in the direction discrimination task. Compatible
with past studies, adding urgency to the model, or replacing the DDM with a
competing accumulator model did not fundamentally change the fits because the
parameterization of these more complex models stayed in a regime that
approximated the line attractor dynamics of the DDM?2023,

To test if a time-varying weighting function provided a better fit to the
behavioral results, we modified Eq. 20 by adding linear and quadratic temporal
modulations to the drift rate:

p(t) = yx (1L + Byt +B,t%) (23)

where 8 and f3, are additional degrees of freedom in the model.

We used the best model parameters that fit the RT and choice distributions to
predict subjects’ psychophysical kernels. We use the term prediction because
moment-to-moment fluctuations of motion energies were not used to fit the model
parameters and the fitting procedure did not create any explicit link between these
fluctuations in the stimuli used in the experiments and single-trial choices and RTs.
Using the model parameters, we predicted choices and RTs for 10° simulated trials
with 0% motion coherence and calculated motion energy kernels for the model
choices. Because the sensitivity parameter of the model was calculated for motion
coherence, we first divided motion energies by the slope of the line that related
average motion coherence to the average motion energy (Supplementary Fig. 4).
This division converted motion energy fluctuations within a trial into equivalent
stimulus coherence fluctuations, which were directly passed to the model to
generate a choice and a reaction time for each simulated trial. We used these
choices and RTs to calculate the model prediction for the kernels and
superimposed them on subjects” kernels (Fig. 4e-f).

For the face discrimination task, we extended the simple DDM explained above
to include three different sensitivity parameters for the three facial features (y, for
eyes, y,, for nose, and y,, for mouth), increasing the total number of parameters to 6
(the other parameters were B, Ty, and OTO)- The mean momentary evidence at each
time in a trial was

H(E) = Yese(t) + Vusu () + VS (), (24)

where s,(1), s,,(), and s,,,(t) were the morph levels of eyes, nose, and mouth at time ¢
on the trial. Note that u(f) is a time-varying drift rate based on the exact
fluctuations of stimulus strengths on individual trials, unlike the drift rate in the
model for the direction discrimination task. Our goal was to obtain the relative
sensitivity for the three informative facial features. Because the average morph
levels of the three features were identical in each trial, using the average morph to
derive the drift rate would have made the three sensitivity parameters redundant.
The fitting procedure to subjects’ choices and RTs was as explained for the
direction discrimination task, except that we used Eq. 24 to include a time-varying
drift rate, u(t). Also, note that because we used the exact stimulus fluctuations in
the Fokker-Plank equation, o; was excluded from the definition of noise

2 _ 2 . .
(GL, =0, = 1>‘ The model parameters were fit separately for each subject using

the maximum-likelihood procedure explained above.

To test if a time-varying weighting function provided a better fit to the
behavioral results, we modified Eq. 24 to allow linear and quadratic temporal
modulations to the drift rate, similar to what we did for Eq. 23:

() = (750(8) 4 V82 (8) + V5 (8)) % (14 Byt + B,%) (25)

The procedure for deriving the model kernels of the face discrimination task was
similar to that for the direction discrimination task. We simulated 10° trials with
0% morph and passed the fluctuations of the three informative features to get
model choices and RTs for individual trials. We then used these choices to calculate
the model kernels for the three features and superimposed the result on subjects’
psychophysical kernels for comparison (Fig. 5g). Because we used the stimulus
fluctuations for fitting the model parameters, the kernels derived from the model
were not pure predictions, unlike the direction discrimination task. However, note
that the model kernels were not directly fit to match the data either. They were
calculated based on an independent set of simulated 0% morph trials, making the
comparison in Fig. 5g informative.

Code availability. The custom code for data analysis and models is available from
the corresponding author upon request.

Data availability. The data are available from the corresponding author upon
request.
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