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Abstract
Brain injuries in the adult mammalian brain are accompanied by a fast neurogenic response inside neurogenic niches.
However, this response does not contribute to the generation of new neurons within damaged tissues like the
cerebral cortex, which are essentially non-neurogenic. This occurs because injuries create a hostile environment that
favors gliogenesis. Overexpression and sequential activation of the ADAM17/TGFα/EGFR signaling cascade are crucial
for the generation of this gliogenic/non-neurogenic environment. Here, we demonstrate that chronic local infusion of
a general metalloprotease inhibitor in areas of traumatic cortical injury in adult mice moderately increased the number
of neuroblasts around the lesion, by facilitating the survival of neuroblasts and undifferentiated progenitors, which had
migrated to the perilesional area from the subventricular zone. Next, we generated a dominant-negative version of
ADAM17 metalloprotease, consisting of a truncated protein containing only the pro-domain (ADAM17-Pro). Specific
inhibition of ADAM17 activity by ADAM17-Pro overexpression increased the generation of new neurons in vitro. Local
overexpression of ADAM17-Pro in injured cortex in vivo, mediated by lentiviral vectors, dramatically increased the
number of neuroblasts observed at the lesion 14 days after injury. Those neuroblasts were able to differentiate into
cholinergic and GABAergic neurons 28 days after injury. We conclude that ADAM17 is a putative target to develop
new therapeutic tools for the treatment of traumatic brain injury.

Introduction
Brain lesions of different etiology, including traumatic

and cerebrovascular insults, result in extensive neuronal
loss and may cause irreversible cognitive deficits, sensory-
motor alterations, or even personality disturbances1.
Although no effective treatment is currently available to

ameliorate neuronal loss, therapeutic strategies aimed
to promote endogenous neuronal replacement constitute
promising alternatives.
Central nervous system (CNS) injuries activate neural

stem cells within physiological neurogenic niches: the
dentate gyrus of the hippocampus (DG)2,3 and the sub-
ventricular zone (SVZ)4,5, facilitating the production of
undifferentiated neural progenitor cells (NPC) and neu-
roblasts, which eventually attempt to migrate towards
the site of injury. Accumulating evidence suggest that
recruitment of SVZ-derived NPC may not be the only
mechanism through which new neurons originate in
injured cortical areas. NPC residing in the cortex can
proliferate and generate new neurons in response to
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cortical injury in rodents6,7. However, neuronal replace-
ment in lesions is variable and very limited2,3,8–14, mainly
because a gliogenic environment rapidly arises within
the injured tissue, where the vast majority of NPC dif-
ferentiate into glial cells15. These, together with activated
astrocytes, microglial cells, oligodendrocyte progenitors,
and fibroblasts16,17 contribute to the formation of the
glial scar. Cells forming the glial scar secrete a complex
extracellular matrix that prevents neuronal migration
towards the injury18–20. In addition, microglial cells
activated in response to inflammation21 secrete cytokines
and other factors that impair neuronal survival22,23. The
epidermal growth factor receptor (EGFR)-activated sig-
naling pathway contributes to the generation of a glio-
genic/non-neurogenic environment around the injured
area24,25. EGFR and its ligand transforming growth factor
alpha (TGFα) are overexpressed in brain lesions together
with the metalloprotease ADAM17/TACE, which per-
forms t`he shedding of membrane-anchored TGFα
releasing the soluble factor, which activates the EGFR
pathway and leads to glial differentiation of NPC14.
Specific inhibition of ADAM17/TACE leads to neuronal
differentiation in vitro, reducing the generation of
glial cells14.
We show in here that inhibition of metalloprotease

activity in mechanical lesions of the adult-mouse primary
motor cortex facilitates neurogenesis within the lesion, by
promoting the migration and survival of neuroblasts from
neurogenic regions and by inducing the differentiation of
NPC towards the neuronal lineage. In addition, we show
that specific inhibition of ADAM17 by overexpression of
its pro-domain region26,27 highly promotes the generation
of new cholinergic neurons within this type of lesions.

Materials and methods
Reagents
GM6001 (N-[(2R)-2-(hydroxami-docarbonylmethyl)-4-

methylpentanoy]-L-tryptophan methylamide), the broad
spectrum matrix metalloprotease inhibitor, was pur-
chased from Calbiochem (San Diego, CA, USA), dissolved
in dimethyl sulfoxide (DMSO) and diluted to a final
concentration of 50 μM with sterile phosphate-buffered
saline (PBS) prior to animal administration. Restriction
enzymes were from Takara (Kusatsu, Japan). Other pro-
ducts, unless otherwise indicated, including custom-
designed primers, were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Animal subjects
Two-month-old adult male CD1 mice were used for

in vivo experiments. Seven-day postnatal (P7) CD1 mice
were used for the isolation of NPC from the SVZ. Animals
were housed under controlled conditions of temperature
(21–23 °C) and light (LD 12:12) with free access to

food (AO4 standard maintenance diet; SAFE, Épinay-
sur-Orge, France), and water. Care and handling of ani-
mals were performed according to the Guidelines of the
European Union Council (2010/63/EU), and following
the Spanish regulations (65/2012 and RD53/2013) for the
use of laboratory animals.

SVZ cell isolation and culture
NPC were obtained from the SVZ of P7 mice following

the same procedure described in ref. 28, and were cultured
in defined medium (DM), composed of Dulbecco’s mod-
ified Eagle’s medium/F-12 nutrient mixture (DMEM/
F-12) plus 1 mg/L gentamicin, 200mM glutamine, and
the B27 supplement without vitamin A (Invitrogen;
Carlsbad, CA, USA). Epidermal growth factor (EGF,
20 ng/ml) and basic fibroblast growth factor (bFGF,
10 ng/ml), both from PeproTech (Frankfurt, Germany),
were added to DM for NPC culture expansion in the form
of neurospheres, but were withdrawn from the media
for NPC differentiation experiments. Culture media and
reagents, unless otherwise indicated, were from GIBCO
(www.thermofisher.com/gibco).

Cloning of mouse ADAM17 cDNA and production of the
ADAM17-Pro mutant by site-directed mutagenesis
Total RNA was obtained from SVZ-derived NPC

cultures and ADAM17 cDNA was amplified by RT-PCR
and cloned into the pcDNA 3.3 plasmid, using the pcDNA
3.3 TOPO-TA cloning kit (Invitrogen; Carlsbad, CA,
USA). Clones were analyzed by sequencing (Secugen;
Madrid, Spain). One of the clones was chosen to subse-
quently generate the ADAM17-Pro-pcDNA 3.3 construct.
A truncated form of ADAM17 stopping at aa 227 was
engineered by site-directed mutagenesis. Mutations
were introduced with the Site-Directed Mutagenesis
Kit (Stratagene, Agilent Technologies; Santa Clara, CA,
USA) and the following 5′-phosphorylated primers:
Fw, 5′-GTG CTT CCA GGA GCG CAGC; Rw, 5′-TTT
ACA AGT ATT CTT CAA GGG GTT AGG TTC AGC.
The resulting plasmid was confirmed by sequencing
(Secugen; Madrid, Spain).

Generation of a lentiviral vector for in vivo expression
of the ADAM17-Pro construct
ADAM17-Pro was directionally subcloned into a

p-ENTR/D-TOPO vector and transferred by means of
a Gateway LR ClonaseTM II Enzyme Mix system (Invi-
trogen, CA, USA), to a lentiviral shuttle vector containing
a ZS-Green cassette, whose translation was governed
by an internal recognition sequence (IRES) facilitating
the independent co-expression of the two proteins
driven by a CMV promoter. The resulting construct,
pLenti-ADAM17-Pro-IRES-ZS-Green, was confirmed by
sequencing (Secugen, Madrid, Spain).
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To generate lentiviral particles, HEK293 cells were co-
transfected with pLenti-ADAM17-Pro-IRES-ZS-Green,
plus the pCMV-ΔR8.9, and pCMV-VSV-G vectors,
necessary to produce the viral envelope and packaging.
Transfection was performed in OPTI-MEM medium
(GIBCO; www.thermofisher.com/gibco) using poly-
ethylenimine. One hour later, this medium was sub-
stituted for DMEM supplemented with 10% fetal calf
serum (GIBCO; www.thermofisher.com/gibco). Viral
supernatants were collected from HEK293 cultures
48 and 72 h after transfection, and incubated for 30 min
with the Lenti-X concentrator reagent (Clontech;
Mountain View, CA, USA) at 4 °C; after a 50min cen-
trifugation (1500×g), the pellet was resuspended in 1ml
of PBS and treated with Lenti-X one more time. The
resulting viral particles were capable of infecting mam-
malian cells, which consequently expressed ADAM17-
Pro and the green fluorescent protein (GFP) ZS-Green
as two independent proteins. Control cells, transduced
with “empty” lentiviral particles lacking the ADAM17-Pro
sequence, expressed only ZS-Green and, thus, accounted
for the effects caused by the transduction procedure.
To measure viral titers, Jurkat cells were infected and

the expression of ZS-Green was analyzed using a Cyto-
flex™ flow cytometer (Beckman, Indianapolis, IN) 48 h
after transduction. Cell fluorescence was analyzed, and
only viral preparations infecting more than 80% of cells
were used. The viral titer of the lentivirus solutions was
around 40×103 TU/ml for both constructs. The presence
of ADAM17-Pro mRNA in infected cells was determined
by total RNA isolation, reverse transcription, and PCR
amplification using a pair of primers (Fw, 5′-GGG CAG
AAT ATA TAA CGT AGA GCC; Rw, 5′-AGG ACT GTT
CCT ATC ACT GCA CT) that produced either a 1000-bp
amplicon when hybridizing with the wild-type endogen-
ous ADAM17 or, alternatively, a 400-bp amplicon when
hybridizing with the mutant ADAM17-Pro. This method
allowed us to detect mutant ADAM17-Pro mRNA even in
cells that endogenously expressed native ADAM17.

NPC transfection, differentiation, and
immunocytochemistry
Neurosphere cells were disaggregated and adhered onto

poly-L-ornithine-coated 1.8-mm-diameter round cover-
slips, in DM media without growth factors. Four hours
later, cells were transfected with pcDNA3.3 plasmids
containing the coding sequences for the expression of
GFP, an ADAM17-GFP chimera, or an ADAM17-Pro-
GFP chimera. Lipofectamine 2000 (Invitrogen; Carlsbad,
CA, USA) was used for transfection of these plasmids.
Cells were allowed to differentiate for 72 h, with a med-
ium change after the first 24 h to eliminate Lipofectamine.
Then, cells were fixed with 4% paraformaldehyde (PFA)
and processed for βIII-tubulin immunodetection as

previously described28. Antibodies used were: mouse anti-
βIII-tubulin (1:1000; Cell Signaling Technology, Boston,
MA, USA) and goat anti-mouse IgG labeled with Alexa-
Fluor 594 (1:5000; Invitrogen, Carlsbad, CA, USA). Total
nuclei were counterstained for 10 min with 0.1 mg/L
DAPI. Transfected cells were identified by GFP auto-
fluorescence. Transfection efficiencies were similar with
the three plasmids used. Cells positive for βIII-tubulin and
GFP were counted under a BX60 epifluorescence micro-
scope (Olympus, Hamburg, Germany), and were expres-
sed as percentage of transfected cells. Quantification was
performed in 12 predetermined visual fields per coverslip.
Experiments were repeated 3 times with triplicate sam-
ples, and results were expressed as the mean ± S.E.M.

Mechanical lesions in brain cortex
Unilateral lesions were performed in the right brain

cortex of adult mice anesthetized with an intraperitoneal
injection of a 100mg/kg ketamine and 20mg/kg xylazine
cocktail. Animals were placed in a stereotaxic frame (Kopf
Instruments), and a small craniotomy was performed at
+1.4 mm rostral and +1.5 mm lateral to Bregma. A
controlled mechanical lesion was performed in the
underlying primary motor cortex, using a manually driven
drill (0.7 mm diameter) that was allowed to penetrate 1
mm below the bone surface.

Studies describing neurogenic responses in mechanical
lesions
In order to study the time course of neurogenesis and

gliogenesis in mechanical lesions, as well as in the SVZ
and the DG of injured brains, mice were injured using the
procedure mentioned above, and were sacrificed at 3, 7, or
14 days post - injury (dpi). Mice were given three intra-
peritoneal injections of BrdU (70 mg/kg each) separated
by 3-h intervals either 1 day before sacrifice (in the 3 dpi
group) or the same day of sacrifice (7 and 14 dpi groups).
Mice were sacrificed by brain perfusion, and brains were
processed for post-mortem studies as described below.

GM6001 infusions
In the same surgical acts in which cortical lesions were

performed, the animals were prepared for chronic infu-
sions of either GM6001 or vehicle, applied locally in the
lesion. For this, Alzet osmotic mini-pumps (Charles River
Spain; Barcelona, Spain, www.criver.com) were implanted
subcutaneously in 24 animals and connected to infusion
cannulas (brain kit II, Alzet) whose tips were placed 0.5
mm deep into the lesion, allowing a continuous delivering
of either a 50-µM solution of GM6001 in PBS (containing
0.4% DMSO) or vehicle. Treatments lasted either for
14 dpi (Alzet 1002) or for 28 dpi (Alzet 1004). In addition,
all these mice received three intraperitoneal injections (70
mg/kg each) of the thymidine analog bromodeoxyuridine
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(BrdU) on day 14. Each BrdU dose was separated from the
next by a 3-h-time interval, and animals were sacrificed 3
h after the last BrdU dose within the same day.
Thus, brain studies were performed at two different

time points: 14 and 28 dpi. The two groups of animals
receiving a continuous treatment during 14 days (vehicle;
n= 6 and GM6001-treated mice; n= 6) were sacrificed
on day 14 and received three BrdU injections on the day
of sacrifice. They were named as c14 dpi (letter c indicates
continuous treatment; 14 indicates the duration of the
treatment). The other two groups of animals receiving a
continuous treatment during 28 days (vehicle; n= 6 and
GM6001-treated mice; n= 6) were sacrificed on day 28,
roughly 14 days after the three BrdU pulses administered
on day 14. These were named as c14+14 dpi (letter c
indicates continuous treatment; 14+14 indicates the
duration of the treatment before and after BrdU
administration).
In a different set of experiments, aimed to study the

migration of progenitors from neurogenic regions
towards the injured area, mice received BrdU injections 6,
5, and 4 days before the injury was performed. On the day
of injury, animals were implanted osmotic minipumps to
allow the continuous delivering of a 50-µM solution of
GM6001 or vehicle, until they were sacrificed 14 dpi (see
scheme in Fig. 3). This paradigm allowed for substantial
clearance of BrdU from the mouse body before per-
forming the cortical lesions and, therefore, it allowed
BrdU labeling of NPC in the SVZ but not locally in the
injured tissue. These mice (vehicle; n= 6 and GM6001-
treated; n= 6) were sacrificed on day 14 after injury and
were named as 6+14 dpi.

Local lentiviral transductions
In a separate set of experiments, mice (n= 36) were

mechanically injured in the cortex as explained before and
were injected, locally in the lesion, with lentiviruses car-
rying either the dominant-negative ADAM17-Pro cDNA
in combination with ZS-Green cDNA or the ZS-Green
cDNA alone. mRNA expression was driven by a CMV
promoter and coordinated synthesis of both proteins
(ADAM17-Pro and ZsGreen) was controlled by an IRES
element. The viral titer of the lentivirus solutions was
40 × 103 TU/ml for both constructs. 1 μl of this lentivirus
solution was injected at the lesion site to induce the
expression, of ADAM17-Pro (the prodomain form of
ADAM17; n= 12) and ZS-Green. Control mice were
injected either with 1 µl of the “empty” (ZS-Green alone)
lentiviral vector solution (which only induced the
expression of ZS-Green in infected cells and accounted
for any effect caused by transduction; n= 12) or with
vehicle (PBS; n= 12). For local administration, a 10-µl
Hamilton syringe (0.485-mm internal diameter) was
placed in the stereotaxic frame and used to deliver 1 µl of

the lentiviral preparations or vehicle into the lesion area,
at a speed of 0.1 µl/min; afterwards, the syringe was left in
place for other 10min before removal.
After these local single injections, mice were divided

further into two experimental groups. The first group
received, on day 14 post-lesion, three intraperitoneal
injections of BrdU (70 mg/kg each) separated by 3-h
intervals, and were sacrificed 3 h after the last BrdU dose
within the same day This group was named as s14 dpi
(letter s indicates single injection and 14 indicates the days
post injection and injury). The other experimental group
of mice received a single BrdU pulse every 2 days during
the 2 weeks that followed the surgical procedure, and
were sacrificed 14 days after the last BrdU injection. These
are referred to as s14+14 dpi (letter s indicates single
injection and 14+14 indicates the dpi/injection before and
after BrdU administration).

Brain processing and immunohistochemistry
Brain removal, processing, sectioning, and immunohis-

tochemical detection of BrdU and other cell markers were
performed as previously described28,29. Primary anti-
bodies used were: mouse monoclonal anti-BrdU (1:100)
and rabbit polyclonal anti-GFAP (1:3000) from Dako
(Glostrup, Denmark); rat monoclonal anti-BrdU (1:100)
from Abcam (Cambridge, UK); goat polyclonal anti-
doublecortin (1:200) and goat polyclonal anti-nestin
(1:200) from Santa Cruz Biotechnology (Santa Cruz, CA,
USA); mouse monoclonal anti-NeuN (1:100), goat poly-
clonal anti-ChAT (1:100), and mouse monoclonal anti-
parvalbumin (1:100) from Merk Millipore (Billerica, MA,
USA), and mouse monoclonal anti-VGLUT2 (1:100) from
Abcam (Cambridge, UK). Secondary fluorescent anti-
bodies used (1:1000) were all from Invitrogen (Carlsbad,
CA, USA): donkey anti-rabbit IgG conjugated to Alexa-
Fluor 594 or AlexaFluor 488; donkey anti-mouse IgG
conjugated to AlexaFluor 405 or AlexaFluor 488; donkey
anti-goat conjugated to AlexaFluor 594; and donkey anti-
rat conjugated to AlexaFluor 488 or AlexaFluor 594.
Biotinylated donkey anti-goat IgG (1:250) was from
Sigma-Aldrich.

Stereology and quantitative analyses
Stereological methods for unbiased cell counting were

used to estimate the number of cells positive for the
markers analyzed30,31 and 5–6 animals were used per
condition. See supplementary material for more detailed
information.
In the case of the neurogenic regions SVZ and DG,

ipsilateral and contralateral sides of the brain (in relation
to the cortical lesion) were counted separately. Quantifi-
cations were done in 1 out of every five 30-μm-thick serial
coronal sections spanning, in the rostrocaudal axis in
relation to Bregma, from +1.54 to −0.94 mm for the SVZ,
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and from −0.94 to −3.64 mm for the DG32. In each sec-
tion, cell number was counted throughout the entire lat-
eral walls of the lateral ventricles (for the SVZ), or the
entire DG. The absolute number of cells positive for a
given marker in these structures was defined as: N= ƩQ x
1/ssf, where ƩQ is the total number of cells counted in all
the sections for that structure and ssf is the fraction of
sections counted (1/5).
To analyze cell number in the lesion perimeter,

3–5 sections containing the cortical injury were selected
per mice. In each section, cells positive for the desired
markers were quantified within a 200-μm-wide band of
tissue adjacent to the lesion border, and the area occupied
by this tissue band was also measured using the ImageJ
software. Cell density (number of cells counted divided by
lesion area and by section thickness) was calculated for
each section, and averaged for each animal. Inter-animal
differences in perilesional areas were minimal (30 ± 4 ×
103 μm2/section).

Statistical analysis
When more than two treatment groups were compared,

statistical analyses were performed using one-factor
ANOVA, followed by post-hoc Bonferroni. The Stu-
dent's t test was used when only one treatment group was
compared with the control. When ipsilateral versus con-
tralateral brain hemispheres were compared, the Student's
t test for paired samples was used. The U-Mann Whitney
test was used in the case of non-parametric distribution of
samples. Differences were considered significant at values
of p < 0.05.

Results
Description of the cortical injury model
We performed controlled mechanical injuries in

adult mice that produced discrete lesions restricted
to the primary motor cortex-gray matter. The time-
course of the neurogenic response to the lesion was
analyzed 3, 7, and 14 dpi in the SVZ and DG, as well
as within the perilesional area. Mice were intraper-
itoneally injected with BrdU on the day of sacrifice.
We analyzed the following cell markers: BrdU for
proliferative cells; nestin for undifferentiated NPC; DCX
for neuroblasts; GFAP for astrocytes; and NeuN for
mature neurons.

Neurogenic response to cortical injuries in the adult
mouse brain
Proliferative (BrdU+) cells were found within the

injured area as soon as 2–3 dpi (mice sacrificed on
day 3 received BrdU on day 2, thus BrdU+ cells may
have incorporated BrdU from days 2 to 3); the number
of proliferative cells increased dramatically (5-fold)
from 2–3 dpi to 7 dpi, decreasing to almost undetectable

levels at 14 dpi (Fig. S1). The number of nestin+ undif-
ferentiated progenitors was much higher than that
of BrdU+ cells, but it showed a fluctuation pattern
with time identical to that of BrdU+ cells (Fig. S2 A, C).
In fact, the proportion of BrdU+ cells expressing
nestin did not significantly change over time (Fig. S2 D).
GFAP+ cells were not very abundant at 3 dpi, but
increased dramatically on days 7 and 14 (Fig. S2 B, E);
in fact, at 14 dpi, nearly 70% of BrdU+ cells expressed
the astrocytic marker GFAP+ (Fig. S2 F), while no
DCX+ neuroblasts were found in the injured area at any
time point.
We also analyzed the concomitant response of physio-

logical neurogenic niches to cortical injury. A proliferative
reaction was found in both the ipsilateral SVZ (Fig. S3)
and DG (Fig. S4) of injured mice, at all time points tested
(2–3, 7, and 14 dpi). The response in the DG was stronger
than in the SVZ (Fig. S3 and S4).

Description of the paradigm used to study the effects of
metalloprotease inhibition in mouse cortical lesions
According to previous reports14, inhibition of the

ADAM17 metalloprotease in vitro increases neuronal
differentiation from NPC. Thus, we hypothesized that
local metalloprotease inactivation within cortical lesions
could enhance the generation of new neurons from nes-
tin+ precursor cells.
Metalloprotease activity was inhibited by osmotic

minipumps that chronically released, during 14 or
28 days, either the broad metalloprotease inhibitor
GM6001 (50 μM) or vehicle. All mice, regardless of
treatment duration being 14 or 28 days, were injected
with BrdU on day 14 to label proliferative cells. In
mice treated with GM6001 or vehicle during the first
14 dpi (referred to as c14 dpi on the figures), we
analyzed the number of BrdU+, nestin+, DCX+, Iba1+

cells, and the GFAP+ burden. In addition, in mice
treated for 28 dpi, we analyzed whether cells labeled
with BrdU on day 14 had survived, remained undiffer-
entiated, or had differentiated into neuroblasts, neurons
or glia on day 28 (this group is referred to as c14+14 dpi
on the figures).

Inhibition of metalloprotease activity in cortical lesions
promotes the generation of undifferentiated progenitors
In vehicle-treated mice, BrdU+ cells (Fig. 1a, d) were

found around the damaged cortex at 14 dpi, together
with nestin+ and GFAP+ cells (Fig. 1b, c, f, g). Treatment
of lesions with GM6001 for 14 days resulted in a
robust increment of BrdU+ (Fig. 1a, d) and nestin+ cells
(Fig. 1c, g) around the lesion. Nearly 5% of these BrdU+

cells co-localized with the microglial marker Iba1, with
no differences between control and treated animals
(data not shown).
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Fig. 1 Local inhibition of metalloprotease activity in the injured cortex increases the number of neural progenitors and limits their glial
differentiation. a–c Representative confocal (a, b) and fluorescence (c) microscopy images of the area surrounding cortical lesions in mice locally-
infused with vehicle or the metalloprotease inhibitor GM6001 (50 μM). Mechanical cortical lesions were unilaterally performed in the primary motor
cortex of adult mice, and minipumps were implanted to locally deliver GM6001 or vehicle for 14 or 28 days; at 14 days post-injury (dpi), all mice
were intraperitoneally injected with BrdU to label proliferating cells. Mice were sacrificed either at the end of that day (c14 dpi groups) or 14 days
later (c14+14 dpi groups). Dotted lines delineate cortical lesion borders. Arrows indicate cells double-labeled for BrdU/GFAP (b) or BrdU/nestin (c).
Scale bar= 50 µm. d Quantification of BrdU+ cells/mm3 in the perilesional area of the indicated animal groups. e Graph shows the percentage
of BrdU+ cells that coexpressed GFAP in the perilesional area. f Graph shows the percentage of perilesional area occupied by GFAP+ labeling
(GFAP burden). g Quantification of nestin+ cells/mm3 in the perilesional area of the indicated animal groups. h Percentage of BrdU+ cells that
coexpressed nestin in the perilesional area. Data shown are the mean ± S.E.M.; n= 3–6 animals per group. Statistical analysis: ANOVA and Bonferroni
posttest; *p < 0.05 when compared to vehicle-treated mice; †p < 0.05 when compared to the c14 dpi group. L lesion
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Animals labeled with BrdU at day 14 and analyzed at
day 28 (c14+14 dpi) presented a large dispersion in the
number of BrdU+ cells around the lesion. Nevertheless,
BrdU counts at 28 dpi were similar to those found at
14 dpi (Fig. 1a, d), suggesting that most BrdU+ cells
had survived for 14 days after BrdU labeling in both
treated and non-treated lesions. Nestin+ cells were
scarce in the perilesional area at 28 dpi (Fig. 1c, g), but
the number of remaining cells co-expressing nestin and
BrdU was slightly higher in GM6001-treated than in
control lesions (Fig. 1c, h).

Prolonged treatment with GM6001 reduces glial
differentiation from NPC in cortical injuries
A strong overexpression of the astroglial marker GFAP

occurred within the injured cortex at 14 and 28 dpi
(Fig. 1b, f), with no differences in rough GFAP burden
observed between control and GM6001-treated mice.
This suggested that chronic administration of GM6001
did not significantly affect astrogliosis. However, to dis-
tinguish the newly-formed astrocytes, emerging from
NPC, from reactive astrocytes within the lesion, we
focused on the analysis of BrdU+ cells.
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In control lesions, at 14 dpi, almost 80% of BrdU+ cells
expressed GFAP (Fig. 1e), while more than 40% of BrdU+

cells expressed nestin (Fig. 1h), suggesting a partial
overlap of nestin and GFAP expression in BrdU+ cells,
in agreement with previous reports. At 28 dpi, 80% of
BrdU+ cells were still GFAP+, while nestin expression
was considerably reduced. These results indicated that

the vast majority of BrdU+ cells had gradually differ-
entiated into astrocytes within control lesions.
Interestingly, chronic administration of GM6001 for

14 or 28 days reduced the percentage of BrdU+ cells that
expressed GFAP (Fig. 1b, e), and this reduction reached
statistical significance at 28 dpi, when a dramatic decrease
on newly-formed astrocytes was observed.
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Inhibition of metalloprotease activity in cortical lesions
promotes the generation of neuroblasts and mature
neurons
We next studied whether GM6001 had an effect on

neuroblast formation within the injured cortex. As
expected, DCX+ neuroblasts were absent in vehicle-
treated animals at 14 and 28 dpi (Fig. 2a, c). Interestingly,
in mice treated with GM6001, a significant number of
DCX+ cells were found within the injured area at 14
(c14 dpi) and 28 dpi (c14+14 dpi), some of which
co-localized with BrdU (Fig. 2a, d).
At the perimeter of GM6001-treated lesions, DCX+

neuroblasts showed a predominantly rounded mor-
phology, with very little or no neurites, different from
the bipolar shape of SVZ neuroblasts. In both control
and GM6001-treated mice, DCX+ neuroblasts with a
bipolar morphology were observed beyond the normal
SVZ perimeter, crossing through the corpus callosum
and forming a rough gradient towards the injury
(Fig. 2b). However, these migrating cells were more
abundant in GM6001-treated mice, and only these
mice presented DCX+ cells at the site of injury
(Fig. 2b).
The number of DCX+ cells found in GM6001-treated

injuries at 14 dpi was significantly reduced at 28 dpi
(Fig. 2c), inferring that part of the former neuroblasts
found at 14 dpi might have differentiated into mature
neurons at 28 dpi, losing DCX expression. To test this
possibility, we analyzed the expression of the mature
neuron marker NeuN in the c14+14 dpi group, and found
that ∼30% of BrdU+ cells within GM6001-treated cortical
injuries expressed NeuN (Fig. 2e, f).
From all the above results, we concluded that metallo-

protease inhibition within the injured cortex favored the
differentiation of NPC towards the neuronal, and not
the glial, lineage.

Metalloprotease inhibition allows the migration of cells
from neurogenic regions towards the injured area
NPC found within the injured cortical tissue could

originate in neurogenic regions and reach the lesion
after a process of migration or, alternatively, be gen-
erated following the activation of local neural stem
cells. To determine which the case was, a group of mice
received BrdU injections 6, 5, and 4 days before injury;
this paradigm allowed for substantial elimination of
BrdU from the mouse body before performing the
cortical lesions. Using this BrdU administration pro-
tocol, only cells from physiological neurogenic niches
could incorporate BrdU before injury; also, by not
prolonging too much the time interval between the last
BrdU injection and the injury, we could assure that
labeled cells would still be close to the SVZ or, at most,
halfway between the SVZ and the olfactory bulb. At the

time of injury, osmotic minipumps were implanted to
release either vehicle or 50 μM GM6001 locally at
the site of injury. Animals were sacrificed at 14 dpi (the
group is referred to as 6+14 dpi on the figures) and
brains were processed to detect BrdU+ cells together
with DCX, GFAP or nestin. In vehicle-treated mice, no
BrdU+ cells were found at the site of injury, whereas
mice treated with GM6001 showed a significant
amount of BrdU+ nuclei, 52% of them being GFAP+,
28% nestin+, and 20% DCX+ (Fig. 3). These results
indicated that, in the presence of GM6001, BrdU+ cells
born in distant neurogenic niches (likely, the SVZ)
reached the injured cortical tissue and survived.

Metalloprotease inhibition increases the SVZ response to
injury
To determine the extent to which injury activated SVZ

neurogenesis, and whether GM6001 treatment could
modulate this activation, we studied neurogenesis in the
SVZ of mice labeled with BrdU at 14 dpi and sacrificed at
14 or 28 dpi (c14 dpi and c14+14 dpi groups, respec-
tively). We have calculated, for each animal, the ratio of
ipsilateral BrdU+ cells to contralateral BrdU+ cells (Ratio
ipsi/contra in the figures), as a measure of SVZ reaction
to the injury. In all vehicle- and GM6001-treated mice
from c14 and c14+14 groups, significantly greater num-
bers of BrdU+ cells were found in the ipsilateral SVZs
than in the contralateral SVZs (Fig. 4d, asterisks). Fur-
thermore, GM6001 treatment significantly increased
the ratio of ipsilateral BrdU+ cells to contralateral BrdU+

cells in c14 mice (Fig. 4d). In contrast, neither GM6001
nor the lesion itself had any effect on the proportion of
BrdU+ cells within the SVZ that expressed nestin, GFAP,
or DCX (Fig. 4a–c, e–g).

Overexpression of the ADAM17 pro-domain in NPC
cultures promotes neuronal differentiation in vitro
Among candidate metalloproteases targeted by

GM6001, we hypothesized that inhibition of ADAM17
was specifically mediating the above-mentioned effects,
as previously suggested33. In search for a biomolecular
tool designed to inhibit ADAM17 activity, we over-
expressed the pro-domain of ADAM17 (ADAM17-Pro),
regarded in previous studies as a potent inhibitor of
this metalloprotease26,27.
To test this construct in vitro, the coding sequence

of ADAM17-Pro was fused to that of GFP, and cloned
into a pCDNA3.3 plasmid. Adhered NPC were
then transfected with pCDNA3.3-GFP (empty vector),
pCDNA3.3-ADAM17-wt-GFP, or pCDNA3.3-ADAM17-
Pro-GFP, and were cultured for 72 h in the absence of
growth factors, to favor NPC differentiation (Fig. 5).
ADAM17-Pro was able to reduce soluble TGFα, a by-
product of ADAM17 activity, in the culture medium to

Geribaldi-Doldán et al. Cell Death and Disease  (2018) 9:862 Page 9 of 17

Official journal of the Cell Death Differentiation Association



almost 60% of control cultures (Fig. 5f). The percentage
of GFP+ cells expressing the neuronal marker ß-III-
tubulin was analyzed in NPC cultures transfected with
the different plasmids. Transfection efficiency was
similar in all conditions tested (Fig. 5e). However, while
31% and 20% of GFP+ cells expressed ß-III-tubulin
after transfection with the empty GFP vector (control)

or with ADAM17wt, respectively, this percentage
significantly increased in cultures transfected with
ADAM17-Pro, where 70% cells of GFP+ cells expressed
ß-III-tubulin (Fig. 5d). These results indicated that over-
expression of the dominant-negative ADAM17 mutant
in vitro promoted the differentiation of NPC towards
a neuronal fate.
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Overexpression of ADAM17-Pro within the injured cortex
promotes local generation of neuroblasts and neurons
In order to test the in vivo effects of ADAM17 inhibi-

tion within mechanical cortical injuries, a lentiviral
vector was designed to overexpress the ADAM17 pro-
domain locally in cortical lesions, which also contained
the GFP ZS-Green coding region as a reporter. This
lentiviral vector allowed for the independent expression
of ADAM17-Pro and ZS-Green, as co-translation of
both proteins was governed by an IRES element.

Controlled mechanical cortical lesions were per-
formed in mice and, immediately after, the injury was
injected with either a lentiviral vector expressing only
ZS-Green (empty vector), or with a lentiviral vector
expressing both ZS-Green and ADAM17-Pro. A second
type of control lesions were obtained by injecting
vehicle alone. Then, some mice were sacrificed 14 days
after the lesion/transduction procedure (s14 dpi),
which received three BrdU injections on the day of
sacrifice, whereas another group was sacrificed 28 dpi
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Fig. 5 Exogenous expression of the ADAM 17 Pro domain construct ADAM17-Pro increases neuronal differentiation of neural precursors
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vectors for the expression of: a the green fluorescent protein (GFP), b a chimera made of the metalloprotease ADAM17 tagged to GFP, or c a
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(s14+14 dpi), after receiving BrdU injections every
48 h from day 1 to day 14 (Fig. 6).
Transduction efficiency measured as the number of

ZS-Green+ cells/mm3 was similar in mice injected with
the empty (Zs-Green) lentiviral vector and the ADAM17-
pro-ZsGreen lentiviral vector (approximately, 50 × 103

cells/mm3), indicating that both vectors equally trans-
duced the injured area. Compared to controls
(empty vector- and vehicle-injected mice) those s14
mice that were injected with ADAM17-Pro showed a
significant increase on the number of BrdU+ cells within
the lesion (Fig. 6a, b). This increase on perilesional BrdU+

cells induced by specific ADAM17 knockdown was
much larger than that induced by broad metalloprotease
inhibition with GM6001 (compare Figs. 1d and 6b).
In addition, lesions transduced with ADAM17-Pro
showed a significant amount of DCX+ cells, and 5% of
all BrdU+ cells were DCX+ (data not shown), whereas
no DCX+ cells were found in lesions injected with the
empty vector or with vehicle (Fig. 6a, c). Moreover, the
DCX+ cells observed within the lesion after ADAM17-
Pro overexpression showed a highly differentiated
morphology, with clear and prolonged neuritic projec-
tions (Fig. 6a). Analysis of s14+14 dpi lesions showed
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Geribaldi-Doldán et al. Cell Death and Disease  (2018) 9:862 Page 12 of 17

Official journal of the Cell Death Differentiation Association



co-localization of BrdU and NeuN in all animal
groups (vehicle-, empty vector-, and ADAM17-
Pro injected mice), probably due to the intensive
BrdU-injection protocol in these s14+14 dpi mice.
However, a 10-fold increase in the percentage of
newly-formed neurons (BrdU+/NeuN+) was observed
in lesions infected with ADAM17-Pro, when compared
to control lesions (Fig. 7a–c). In addition, the ADAM17-
Pro mRNA was detected in the lesion by RT-PCR
(Fig. 7d). These results indicated that ADAM17-Pro
induced the generation of new neurons within the
injured area.

Overexpression of ADAM17-Pro within the injured cortex
promotes the generation of cholinergic neurons
The phenotype of the newly generated neurons was

further characterized in ADAM17-Pro-infected s14+14
dpi mice, by using the marker parvalbumin to detect
GABAergic neurons, choline acetyltransferase (ChAT)
to detect cholinergic neurons, and VGlut to detect
glutamatergic neurons. Almost 50% of BrdU+ cells were
ChAT+ within the injured area, whereas nearly 5% co-
localized with parvalbumin and no VGlut labeling was
detected (Fig. 8). These results indicated that, by
knocking down ADAM17 activity in primary motor
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Fig. 7 Local inhibition of ADAM17 activity in the injured cortex promotes the differentiation of neuroblast to mature neurons. Mechanical
cortical lesions were unilaterally performed in the primary motor cortex of adult mice and locally injected with vehicle, an empty vector (both of
them as controls) or Pro domain region of ADAM17 (ADAM17-Pro). Animals were sacrificed 28 days post-injury (s14+14 dpi), after receiving BrdU
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cortex lesions, the majority of the new neurons formed
are cholinergic.

Discussion
Based on our previous work on the role of ADAM17

inhibition in mediating neuroblast generation in vitro14,
it seemed reasonable to hypothesize that the specific
inhibition of ADAM17 in vivo in brain lesions might
create a neurogenic environment facilitating the generation
of new neurons. The results presented here show that
a gliogenic environment is generated in non-treated
cortical brain injuries, which prevents both the generation
of neuroblasts and their migration from the SVZ to the

injury, thus impairing neuronal renewal within the damaged
area. In this environment, pan-metalloprotease inhibition
not only promoted the generation of new neurons, but it
also allowed survival and migration of neuroblasts from
neurogenic niches, likely the adjacent SVZ. In addition, a
more potent neurogenic effect could be observed in injuries
in which the specific enzymatic activity of ADAM17 had
been blunted.

Local pan-metalloprotease inhibition in injured cortex
creates a neurogenic environment
Previous studies describe a neurogenic response to

lesions in the cerebral cortex or in the spinal cord34–38.
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Most of these studies analyze the response of DG and
SVZ to an injury rather than focusing on the injured-
tissue response. Our work characterizes the response of
the primary motor cortex to a focal injury at different
time points: 3, 7, 14, and 28 dpi, as well as the response
of the DG and SVZ to this specific injury.
In the absence of any treatment, an acute tissue

response to the injury was observed, characterized by a
fast proliferation of undifferentiated progenitors during
the first 7 days, most of which finally differentiated
into astrocytes, but never to neuroblasts. A glial scar
was rapidly formed by the activation of pre-existing
astrocytes present within the injured area, although
further addition of astrocytes generated de novo from
NPC might likely be contributing to it. Together, these
results show that a cortical injury constitutes a gliogenic/
non-neurogenic environment, which favors glial differ-
entiation of NPC and prevents either neuroblast forma-
tion or their integration/survival after migration from
neurogenic niches.
Inside this gliogenic context, local inhibition of metal-

loprotease activity with GM6001 (50 μM) decreased glial
differentiation of neural progenitors, and favored neuro-
blast formation and differentiation to mature neurons.

Local metalloprotease inhibition in cortical lesions
promotes migration of cells from the SVZ to the injury
Proliferative (BrdU+) cells appeared throughout the

peri-lesional area in response to cortical injury, and their
number increased significantly after chronic treatment
with GM6001. Previous results have demonstrated that
migration of cells from the SVZ towards a cortical injury
does not easily occur7. We were able to identify neuro-
blasts migrating from the SVZ towards the lesion site
through the corpus callosum, which never reached the
lesion unless the metalloprotease inhibitor GM6001 was
present. Our work further demonstrated that at least
part of the BrdU+ cells found in GM6001-treated lesions
had come from distant neurogenic niches, likely the
SVZ, while non-treated lesions were devoid of these
cells. Once at the lesion site, the phenotype of migrating
cells varied from undifferentiated progenitors, to glial
cells or neuroblasts. The mechanism by which metallo-
protease inhibition exerted this effect remains unknown.
It could be the result of increased chemoattraction of
cells migrating from neurogenic areas towards the
lesion; alternatively, GM6001 could be altering the
pattern of proinflammatory-cytokine secretion within
the injury, to increase the survival of the BrdU+ cells
arriving at the lesion site. In relation to this, the metal-
loprotease ADAM17/TACE is responsible for the shed-
ding and activation of the proinflammatory molecule
tumor necrosis factor alpha, and its inhibition could
be beneficial for cell survival within the lesion39.

The neurogenic effect of specific ADAM17 inhibition
surpasses that of broad metalloprotease inhibition
Our work finally addressed the question of whether

specific inhibition of the gliogenic pathway ADAM17-
TGFα-EGFR14,40 in lesions promoted neurogenesis. To
inhibit ADAM17 we overexpressed the ADAM17 pro-
domain (ADAM17-Pro), a potent inhibitor of the catalytic
domain of this metalloprotease26,27. The pro-domain is
located at the N-terminal part of the protein, and needs to
be removed for the catalytic domain to become active;
ADAM17-Pro overexpression prevents the catalytic
domain from accessing a native functional state41,42.
Thus, we have used this previously described pro

domain construct (ADAM17-Pro) to inhibit ADAM17
activity in vitro and in vivo, and to test whether this
inhibition promoted neuronal differentiation. Although
it is possible that ADAM17-Pro could inhibit other
ADAMs, reports show that it may inhibit ADAM10 but
not other ADAMs27. We do not think this dual inhibition
was critical in our study since only ADAM17 and not
ADAM10 is overexpressed in injured tissue, and inhibi-
tion of ADAM10 in vitro does not exert any effect on
neuronal differentiation14.
Ablation of ADAM17 activity by ADAM17-Pro

increased cell proliferation within the injury as well as
the generation of neuroblasts, and its effect was much
more pronounced than that exerted by the general
metalloprotease inhibitor. Moreover, the neuroblasts
generated in the presence of ADAM17-Pro showed a
more complex and differentiated morphology than those
generated in the presence of GM6001. Additionally,
ADAM17-Pro induced the differentiation of these
neuroblasts into NeuN+ mature neurons. We partially
identified the phenotype of new neurons as ∼55% ChAT+

and 5% GABAergic; no new glutamatergic neurons
were found. These results agree with a recent study,
which shows that reactive astrocytes generated following
a cerebral medial artery occlusion transdifferentiate
into progenitors that produce cholinergic and GABAergic
neurons in the striatum43. ChAT+ cells might further
facilitate neurogenesis within the injury, since, in the
SVZ, acetylcholine released by subependymal cholinergic
neurons promotes neurogenic proliferation44.
In synthesis, our work demonstrates that inhibition of

ADAM17 in cortical lesions favors neuronal formation
by promoting the differentiation of progenitors and by
facilitating migration of neuroblasts from the SVZ
towards the injured area. We show that ADAM17 might
be a therapeutic target to develop strategies aimed to
repair the injured brain.
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