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ABSTRACT Whole-genome sequencing of bacterial isolates is increasingly being
used to predict antibacterial susceptibility and resistance. Mason and coauthors de-
scribe the phenotypic susceptibility interpretations of more than 1,300 Staphylococ-
cus aureus isolates tested against a dozen antistaphylococcal agents, and they com-
pared these findings to susceptibility predictions made by analyzing whole-genome
sequence data (J Clin Microbiol 56:e01815-17, 2018, https://doi.org/10.1128/JCM.01815
-17). The genotype-phenotype susceptibility interpretations correlated in 96.3% (2,720/
2,825) of resistant findings and 98.8% (11,504/11,639) of susceptible findings. This work
by Mason and colleagues is helping to lower the barriers to using whole-genome
sequencing of S. aureus in clinical microbiology practice.

High-throughput sequencing is not routinely performed in most hospital-based
clinical microbiology laboratories. However, when high-throughput sequencing

methods are employed in clinical microbiology, the data are typically used in one of
four ways: (i) to characterize an isolate using whole-genome sequencing (WGS) (1–3),
(ii) to characterize an organism using targeted sequencing (4, 5), (iii) to detect a
pathogen using metagenomics (6–9), or (iv) to characterize a microbiome using met-
agenomics (10–12). All of these applications (and others such as transcriptome profiling
of the host or microbe) have potential utility in clinical microbiology practice, but
barriers remain that prevent rapid widespread adoption. Mason and coauthors’ study
specifically focuses on WGS applications in Staphylococcus aureus isolates, and their study
has helped to lower the barriers to bringing WGS of S. aureus to clinical microbiology
practice (3).

CHARACTERIZING STAPHYLOCOCCUS AUREUS CLINICAL ISOLATES USING
WHOLE-GENOME SEQUENCING

Mason and colleagues add to their published work, which correlates S. aureus
genome data with phenotypic susceptibility interpretations (3, 13, 14). In their current
article, they compare three data analysis software tools to determine their adequacy in
detecting virulence genes and resistance genes in more than 1,300 S. aureus isolates
from WGS data, which were generated as short reads (150 bp) using Illumina HiSeq (3).
Also, phenotypic susceptibility testing was performed on the isolates, and phenotypic
susceptibility interpretations were compared to the susceptibility predictions based on
the WGS data for 12 antimicrobial agents: ciprofloxacin, clindamycin, erythromycin,
fusidic acid, gentamicin, methicillin, mupirocin, penicillin, rifampin, tetracycline, trim-
ethoprim, and vancomycin. Agreements between phenotypic testing and all three
analysis pipelines were identified in 96.3% (2,720/2,825) of resistant findings and 98.8%
(11,504/11,639) of susceptible findings. The authors concluded that all three analysis
pipelines performed similarly in their abilities to detect virulence and resistance genes.

Mason et al.’s study is interesting to clinical microbiologists for at least three reasons.
First, it reinforces previous studies’ findings that correlated S. aureus WGS data with
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antimicrobial susceptibility and resistance (13–15). This study builds on the evidence
that WGS data can be used to accurately predict phenotypic susceptibility and resis-
tance in S. aureus. Second, the study highlights the need to compare and validate
laboratory-developed analysis pipelines when using sequencing data in clinical micro-
biology. The three pipelines described in Mason et al.’s study performed similarly, but
the authors describe subtle differences in interpretation tendencies between the
software tools. Third, the authors selectively reported known virulence genes that were
identified in the WGS analyses. Currently, clinical microbiology laboratories do not
routinely interrogate S. aureus for virulence genes, but if WGS becomes standard
practice, then detecting and reporting virulence genes may become routine. However,
the clinical utility of identifying and reporting S. aureus virulence genes would need
empirical support, which has not yet been established. The work by Mason and
colleagues reinforces the accuracy, feasibility, and potential value-added features of
using WGS in routine clinical microbiology, and their work forces clinical microbiolo-
gists to consider not “if” but “when” WGS will become part of the repertoire of tools
used in routine practice.

BARRIERS TO HIGH-THROUGHPUT SEQUENCING

Cost was previously seen as a significant barrier to high-throughput sequencing. In
2001, the National Institutes of Health (NIH) estimated the cost of sequencing a
megabase of DNA to be more than $5,000, but the NIH’s most recent estimate puts the
cost of sequencing a megabase of DNA at a little more than a penny ($0.012)
(https://www.genome.gov/27541954/dna-sequencing-costs-data/). Although cost is
still a concern, it is no longer seen as an insurmountable barrier (16). Now, barriers other
than costs are the most concerning: turnaround time (17, 18), empirical knowledge
enabling genotype-phenotype correlation (2, 19), and data analysis workflow (2, 16).

Barrier 1: turnaround time. The barrier of a long turnaround time is being
overcome by technical improvements in sequencing and data analysis, which are
moving toward real-time DNA sequencing analysis (18, 20, 21). Turnaround time needs
to be rapid enough to significantly impact clinical decision making, and it should be at
least as rapid as established methods. When the etiology of infection is unclear and no
good alternatives to high-throughput sequencing exist for achieving an accurate
diagnosis, then the tolerance for a long turnaround time metagenomics approach is
more acceptable (7). However, when sequencing is being used to produce an inter-
pretation that could be achieved using more traditional methodology, then there is
little tolerance for the WGS turnaround time to be longer than the traditional method’s
turnaround time. For example, to adopt the use of WGS as an adjunct or replacement
to phenotypic susceptibility testing, the turnaround time to produce susceptibility and
resistance interpretations using WGS needs to be at least as rapid as routine phenotypic
testing.

Mason and colleagues recognize the need for a short turnaround time. The WGS
data used in their analyses were short reads (150 bp), which can be produced relatively
quickly. They also point out that two of the analysis tools, Genefinder and Mykrobe,
only take a couple of minutes of computer processing time. The turnaround time for
identifying a susceptibility genotype in S. aureus using Mason et al.’s approach is near
to the time required to identify its susceptibility phenotype (13). As technology
improves and sequencing turnaround time is decreased, it is likely that identifying
susceptibility using WGS will be more rapid than identifying susceptibility by traditional
phenotypic methods.

Barrier 2: genotype-phenotype correlation. The correlation of high-throughput
sequence data and the associated phenotype is a barrier that can only be overcome by
empirically building the knowledge base. For WGS data of bacteria, the clinical impact
of each virulence gene needs to be studied in order for clinicians to be able to
meaningfully interpret the relevance of the gene, because reporting a virulence gene
without clearly linking that finding to a diagnosis, prognosis, or management choice
would invoke clinical confusion rather than clarity.
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Correlating the phenotypic susceptibility and resistance of a bacterial isolate to a
WGS genotype also needs to be performed on an organism-by-organism basis. Recent
studies have empirically demonstrated that predicting susceptibility and resistance
using WGS data is feasible or potentially feasible for S. aureus (13–15), Enterobacteria-
ceae (22–25), Pseudomonas aeruginosa (26, 27), Campylobacter (28), Helicobacter pylori
(29), Neisseria gonorrhoeae (30, 31), and Mycobacterium tuberculosis (13, 18, 32–35). In
one of these studies, WGS data from more than 1,700 isolates of Salmonella enterica
were used to predict susceptibility and resistance to 13 antimicrobial agents (22). In
another study, machine learning was used to analyze WGS data and phenotypic
susceptibility interpretations from more than 1,800 M. tuberculosis isolates (34). The
machine learning approach improved upon the accuracy of resistance prediction in M.
tuberculosis compared to a rules-based analysis of WGS data (34, 35), and machine
learning approaches may also help to improve the accuracy of genotype-phenotype
correlations in other taxa.

Mason and colleagues have worked to improve the genotype-phenotype antimi-
crobial susceptibility correlation for S. aureus by characterizing over 1,300 isolates,
including 16,000 phenotypic susceptibility results—the largest published set to date
(3). Studies like this will provide the prerequisite knowledge foundation that will foster
the eventual implementation of WGS in clinical microbiology. The article builds upon
the authors’ previous work and reinforces the findings that the presence of resistance
genes or mutations within housekeeping genes can be used to predict the suscepti-
bility phenotype in S. aureus (13, 14). However, challenges will remain in identifying
uncommon phenotypes that are not clearly understood genetically (e.g., staphylococci
not susceptible to vancomycin) and recognizing novel resistance mechanisms.

The empirical approach used by Mason and colleagues on S. aureus will be neces-
sary for each taxon in which WGS is to be used, and so susceptibility and resistance can
be confidently and accurately predicted in each taxon. It is likely that not all taxa will
be as amenable as S. aureus for using WGS to predict phenotypic susceptibility, but
these challenges need to be identified and shared in published studies. Identifying
these challenges will lead to more study and subsequent understanding of antimicro-
bial resistance mechanisms. Once these challenging resistance mechanisms are char-
acterized, they could potentially be detected using ancillary nucleic acid methods, such
as transcriptomic or epigenetic analyses.

Barrier 3: the pipeline. The software used in data analysis workflow (also known
as the “pipeline”) interprets high-throughput sequence data and translates the
findings into clinically useful reporting. The main goal of a pipeline is to extract as
much clinically applicable and accurate information from sequencing data as
possible in as little time as possible and to present this information in a manner that
is easily interpreted by humans. Parallel pipelines can be built and used to analyze
the same data set to address different needs (e.g., virulence detection, clonality
detection [outbreak surveillance], and antimicrobial resistance detection) (36).
These pipelines are often designed and maintained by each laboratory performing
the analyses, and this practice will likely remain commonplace until an FDA-cleared
solution is created.

Mason and colleagues’ study points to the need for head-to-head comparisons of
different pipelines. The authors identified minor trends in interpretations between the
pipelines studied and some significant differences in processing time (i.e., minutes
versus hours) between the pipelines. For example, Mykrobe had more false positives for
blaZ than the other two pipelines, Genefinder had a better ability to detect mutations
in genes invoking linezolid resistance, and Typewriter was more prone to fail to detect
a few virulence genes that the other pipelines detected. The differences between
pipelines may go unnoticed unless formal comparisons are undertaken.

A well-curated, dynamic reference database is a key component of the analysis
process, and variants of unknown significance in key genes need to be studied as
they are encountered in order to determine whether or not they confer resistance.
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FDA-ARGOS (https://www.fda.gov/MedicalDevices/ScienceandResearch/Databasefor
ReferenceGradeMicrobialSequences/default.htm) is being developed as a reference-
grade microbial sequence database and may become a viable resource and standard in
the development and validation of clinical WGS. A database like FDA-ARGOS could
serve as the truth source for novel and emerging resistance mechanisms and for
outbreak strain genotypes. Maintaining a well-curated database in the cloud or locally
will be a challenging but necessary component of clinical WGS.

Mason and colleagues point out that using WGS has better interlaboratory repro-
ducibility than phenotypic susceptibility testing, but they also recognize the need for
proficiency testing material for WGS. As this study demonstrates, different pipelines can
produce minor differences in WGS data interpretations. Because each laboratory po-
tentially uses a unique pipeline, WGS proficiency testing material would be a valuable
addition to laboratories’ quality plans.

SUMMARY

The barriers to implementing WGS of S. aureus in clinical microbiology practice are
being lowered by the work of Mason and colleagues (3, 13, 14). In their most recent
work, they have again demonstrated that S. aureus WGS data can be used to predict the
phenotypic susceptibility interpretations of common antistaphylococcal agents. Their
approach should serve as a model for researchers and clinical microbiologists who work
to investigate the genotype-phenotype correlations of other microbial taxa. The bar-
riers to implementing WGS in clinical microbiology will continue to be lowered as
sequencing technologies become more rapid and as scientific investigation unravels
the correlation between genotype and phenotype.
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