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A B S T R A C T

Background. Vascular endothelial growth factor A (VEGF) is
an essential growth factor during glomerular development and
postnatal homeostasis. VEGF is secreted in high amounts by
podocytes into the primary urine, back-filtered across the glo-
merular capillary wall to act on endothelial cells. So far it has
been assumed that VEGF back-filtration is driven at a constant
rate exclusively by diffusion.
Methods. In the present work, glomerular VEGF back-filtration
was investigated in vivo using a novel extended model based on
endothelial fenestrations as surrogate marker for local VEGF
concentrations. Single nephron glomerular filtration rate
(SNGFR) and/or local filtration flux were manipulated by par-
tial renal mass ablation, tubular ablation, and in transgenic
mouse models of systemic or podocytic VEGF overexpression
or reduction.
Results. Our study shows positive correlations between VEGF
back-filtration and SNGFR as well as effective filtration rate
under physiological conditions along individual glomerular
capillaries in rodents and humans.
Conclusion. Our results suggest that an additional force drives
VEGF back-filtration, potentially regulated by SNGFR.

Keywords: endothelium, filtration, GFR, glomerular hypertro-
phy, VEGF, streaming potential

I N T R O D U C T I O N

In the renal glomerulus, vascular endothelial growth factor A
(VEGF) is derived almost exclusively from the visceral epithe-
lium (termed ‘podocytes’, Supplementary data, Figure S1A) and
ablation of VEGF secretion specifically in podocytes results in
loss of glomerular endothelial cells [1]. The major VEGF recep-
tor VEGF-R2 (flk-1/KDR) is expressed on endothelial cells [2]
and podocytes [3]. Thus, VEGF is likely to be back-filtered
against the bulk current of the glomerular filtrate towards the
capillary lumen. It has been proposed that about a third of
podocyte-derived VEGF reaches the glomerular endothelial
cells via diffusion [4].

Multiple studies in animals and humans show that glomeru-
lar hypertrophy marks the risk of kidney disease [5–8].
However, the mechanism linking renal plasma flow, glomerular
filtration rate (GFR) and glomerular hypertrophy remains
unclear [5–8]. Rapid increases in GFR are mediated, at least in
part, by volume retention and vasoactive mediators such as
nitric oxide and kallikrein [9]. Classical diseases of Western so-
ciety (i.e. obesity, metabolic syndrome, hypertension, diabetes,
and high-protein diets) are associated with glomerular hyperfil-
tration and hypertrophy [10, 11], which drive progression to
end-stage renal disease. Therefore, unravelling the mechanism
of glomerular hypertrophy is of paramount importance.
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It is well-established that VEGF induces neoangiogenesis in
peripheral capillary beds [12]. Within the glomerulus of the
kidney, increased levels of VEGF induce glomerular hypertro-
phy (i.e. growth of glomerular capillaries, Supplementary data,
Figure S1A, right) [13–15]. Vice versa, decreased VEGF levels
result in significantly smaller glomeruli (hypoplasia) [16], dem-
onstrating that tightly regulated levels of VEGF are necessary to
maintain a normal glomerular phenotype.

The present study analyses endothelial morphology as surro-
gate marker for VEGF back-filtration in the renal glomerulus.
We find an unexpected positive correlation between effective
filtration pressures [and single-nephron glomerular filtration
rate (SNGFR)] with VEGF back-filtration. Mathematical mod-
elling suggests electrical effects as a candidate force to drive this
relationship.

M A T E R I A L S A N D M E T H O D S

Animal experimental procedures were performed according to
German and European Legislation and approved by the local
authorities (see cited references). Animals were housed under
standard specific pathogen-free (SPF)-free conditions. Pax8-
Cre/beta-cateninfl/fl knock-out mice, Pod-rtTA/Tet-O-siVEGF
(5 weeks old, 7 days of Dox) and Pod-rtTA/(tetO)7VEGF
(8 weeks old) were described in references [13], [16] and [17],
respectively. When using transgenic mice, exclusively non-
transgenic or single-transgenic littermates were used.

The Pax8-rtTA/(tetO)7VEGF (mixed genetic background,
8 weeks old) animals received doxycycline hydrochloride via
the drinking water ad libitum for a total of 14 or 30 days (5% su-
crose, 1 mg doxycycline/mL, protected from light), which was
exchanged every 2 days.

For ‘5/6 nephrectomy’, C57/Bl6 mice aged 8 weeks were
anaesthetized with ketamine-xylazine (100 mg/mL ketamine
and 20 mg/mL xylazine in normal saline 0, 9%; 0, 1 mL/10 g of
bodyweight) and after shaving a laparotomy was made. The
right kidney was removed and the upper and lower poles of the
left kidney (two-thirds) were excised and Gelastypt (Sanofi-
Aventis, Frankfurt, Germany) was used to stop bleeding. GFR
measurements were performed as described [18] by injecting
dialysed FITC-inulin (3.74 lL/g body weight) retroorbitally
under brief isoflurane anaesthesia. Approximately 20 lL of
blood were collected via the saphenous vein at 3, 7, 15, 35 and
55 min post-injection (10 lL of plasma). Using semi-quantita-
tive RT-PCR glomeruli were isolated on Day 2 and Day 5 after
5/6UNx using magnetic beads (verified>90% purity). Total
ribonucleic acid (RNA) was isolated using the RNeasy Mini Kit
(Qiagen, Hilden, Germany). Quantification of the RNA content
and sample purity, complementary deoxyribonucleic acid
(cDNA) synthesis and real-time quantitative reverse transcrip-
tion polymerase chain reaction (RT-PCR) were assessed and
performed, respectively, as described in Ostendorf et al. [19].
Real-time RT-PCR were normalized using eukaryotic 18S ribo-
somal ribonucleic acid (rRNA) using the Comparative CT-
method (CT) method. Primers (FAMTM dye-labelled probes
from ThermoFisher Scientific): VEGF-A (Mm00437306_m1,
which exclude genomic DNA contaminants) and 18S rRNA
(Hs99999901_s1).

For perfusion fixation, mice were anaesthetized and kid-
ney(s) were perfused via the left ventricle with 3% paraformal-
dehyde in PBS (pH 7.6) for 3 min. Pieces of the kidney(s) were
snap-frozen in liquid nitrogen or (post-)fixed in 3% buffered
formalin and embedded in paraffin. ‘Immunofluorescence’
stainings were performed on 2-mm paraffin sections using pri-
mary antibodies anti-PV-1 (MECA32) (1:100, sc-19603 Santa
Cruz Biotechnology, Dallas, TX, USA) and synaptopodin
(1:100, sc-21537 Santa Cruz Biotechnology). Donkey anti-
rabbit, -mouse or -rat Dylight 488 or Dylight 549 (1:200,
Dianova, Hamburg, Germany) served as secondary antibodies.
When staining mouse sections, secondary antibodies were ad-
sorbed with 4% normal mouse serum. Nuclei were stained
using Hoechst 33342 (Sigma Aldrich, St Louis, MO, USA).
Sections were evaluated with a Keyence BZ-9000 microscope
using BZ-II Analyzing software (Keyence Corporation, Osaka,
Japan).

For ‘immunohistochemistry’, paraffin sections were blocked
with avidin/biotin blocking kit (Vector Laboratories,
Burlingame, CA, USA) and 3% H2O2. The sections were sub-
jected to microwave antigen retrieval in Antigen Unmasking
Solution (Vector Laboratories) followed by incubation with
antibodies (secondary: biotinylated goat anti-rabbit, Vector
Laboratories). Detection was carried out with vectorstain ABC
kit (Vector Laboratories) using peroxidase as label and 3-
amino-9-ethylcarbazole as substrate.

For transmission electron microscopy (TEM), tissue was
fixed with 2% paraformaldehyde and 2.5% glutaraldehyde in
0.1 M sodium cacodylate buffer and processed for TEM.

VEGF enzyme linked immunosorbent assay (ELISA)
(mVEGF-A, R&D, Minneapolis, MN, USA) was used.

For deglycosalation and immunoblot analysis, recombin-
ant human VEGF121 or VEGF165 (Symansis, Temecula
California, USA) was denatured at 85�C or 50�C and deglycosy-
lated using the Glycoprotein Deglycosilation Kit (Calbiochem,
Merck, Darmstadt, Germany). Afterwards the proteins were
loaded with Laemmli on NuPAGE 4-12% Bis Tris Zoom Gels
(Invitrogen, Carlsbad, CA, USA) for sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). After gel elec-
trophoresis, the proteins were transferred on nitrocellulose
membranes (Protan, Whatman, Dassel, Germany) followed by
a reversible staining with PonceauS (Sigma-Aldrich, St. Louis,
MI, USA) to control transfer efficiency and compare protein
loading. For immunodetection, the membrane was blocked in
RotiBlock (Carl Roth, Karlsruhe, Germany) and incubated
using goat polyclonal anti-human VEGF antibody (R&D
Systems, Minneaplis, USA) followed by a horseradish peroxi-
dase (HRP)-conjugated secondary antibody (anti-goat; Dako
Agilent, Santa Clara, CA, USA). Signals were visualized by
enhanced chemiluminescence (ECL) or Super Signal Femto
(Pierce Protein Biology, Thermo Scientific, Waltham, MA,
USA) and digitally detected by LAS- 3000 (Fujifilm, Minato,
Tokio, Japan).

For two-dimensional gel electrophoresis, proteins were sepa-
rated in the first dimension by isoelectric focussing using the
Ettan IGPhor 3 IEF System and Immobiline DryStrips pH 3-10
(GE Healthcare, Uppsala, Sweden) and in the second dimen-
sion by SDS-PAGE in NuPAGE 4–12% Bis-Tris ZOOM Gels
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FIGURE 1: VEGF induces open fenestrae in peritubular endothelial cells. (A) Transgenic map of systemic inducible VEGF overexpression in
Pax8-rtTA-VEGF164 mice. (B) Serum VEGF levels in Pax8-rtTA-VEGF164 mice. (C) Immunostaining for diaphragmed fenestrae (PV-1) in
VEGF-overexpressing transgenic mice showed partial preservation (arrows) or absence of diaphragmed endothelia within the tubulo-intersti-
tium (black arrowheads). Within the glomeruli, hypertrophy and complete absence of PV-1 staining was noted (white arrowhead). (D) On
random glomerular cross-sections, the fraction of glomeruli with PV-1-positive (i.e. diaphragmed) endothelial fenestrations was reduced sig-
nificantly after induction of VEGF overexpression (50 glomeruli from 7 different animals per time point, one-way ANOVA, Bonferroni post
hoc test; ***P< 0.001). (E–F) On TEM, tubular endothelial cells formed open fenestrae in VEGF-overexpressing mice (arrowheads).
Manipulating VEGF expression in podocytes results in concordant changes of endothelial morphology. (G) VEGF overexpression in podocytes
of transgenic Pod-rtTA/(TetO)7-VEGF164 abolished formation of diaphragmed fenestrae in endothelial cells (n¼ 5 per time point). In the op-
posite experiment, partial knock-down of endogenous VEGF in inducible Pod-rtTA/(TetO)7-siVEGF mice after 7 days [16], showed significant
upregulation of diaphragmed fenestrae. Semi-quantitative evaluation of diaphragmed endothelia was performed by immunostainings for PV-
1-positive glomeruli (50 glomeruli per mouse, n¼ 4 per time point, one-way ANOVA, Bonferroni post hoc test, *P< 0.05; **P< 0.01;
***P< 0.001; ****P< 0.0001), dashed circles mark representative glomeruli; arrows, PV-1 staining). (H) TEM showed no signs of endotheliosis
in both transgenic mouse models (arrowheads; asterisks mark capillary lumen). Scale bars 50mm for light microscopy, 0.5mm for TEM.
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(Invitrogen, Carlsbad, CA, USA) followed by immunoblotting
and immunodetection as described above.

Statistical and mathematical analyses data are presented as
mean 6 standard error of mean (SEM) unless otherwise speci-
fied. Statistical analyses were performed using Prism software
(GraphPad Software, La Jolla, CA, USA). Differences between
two mean values were evaluated by Student’s t-test. For com-
parison of paired right and left kidney after a uninephrectomy,
the paired Student’s t-test was used. Multiple groups were com-
pared by one-way analysis of variance (ANOVA) with
Bonferroni post hoc analysis. A P-value of<0.05 was considered
significant. All quantitative or semi-quantitative analyses were
performed in a blinded fashion (samples were blinded by a dif-
ferent investigator).

Mathematical modelling of VEGF transport

For mathematical estimations for VEGF back-filtration, the
governing equation for VEGF concentrations across the renal
filter follows from Hausmann et al. [20], where we adjusted the
boundary conditions to the back-filtration setting (for a detailed
summary, see Supplementary data). We thus obtained a first-
order linear ordinary differential equation with constant coeffi-
cients, which can be solved analytically. To facilitate parameters
studies, a Graphical User Interface was set up in MATLABVR ,
which allowed the user to adjust the various parameters enter-
ing the model (e.g. electric field, charge, pore size).

R E S U L T S

Glomerular endothelial plasticity as surrogate marker
for local VEGF levels

Endogenous local VEGF levels are difficult to determine pre-
cisely in vivo. However, endothelial fenestrations have been
described as surrogate marker for local VEGF bioactivity—in
peripheral as well as glomerular capillaries (Supplementary
data, Figure S1B) [21–25]. Increasing VEGF levels are associ-
ated with a transition from a continuous endothelium without
fenestrae to fenestrae with diaphragms. In the present study,
this tool was utilized and further developed in order to detect
higher VEGF levels (Supplementary data, Figure S1B, marked
in red). Glomerular capillaries of the kidney are unique in that
the endothelial cells form fenestrae without diaphragms (i.e.
open fenestrae, Supplementary data, Figure S1B) [26]. Here, we
report three experimental findings supporting the notion that
higher levels of back-filtered VEGF are sufficient to mediate
this unique endothelial phenotype.

Systemic VEGF overexpression induces open fenestrae
in endothelial cells in- and outside the renal glomerulus

In transgenic Pax8-rtTA/(TetO)7-VEGF164 mice, murine
VEGF164 was overexpressed in an inducible fashion in tubular
epithelial cells of the kidney (Figure 1A–F). As reported previ-
ously [14], increased VEGF levels were sufficient to induce
open fenestrae in peritubular endothelial cells outside of the
glomerulus (Figure 1C). For semi-quantitative analysis, endo-
thelial diaphragms were detected by immunostaining for
‘plasmalemmal vesical-associated protein 1’ (PV-1) [27, 28]

(Figure 1C). To exclude endotheliosis, the findings were con-
firmed by TEM, where peritubular capillaries formed open fen-
estrae identical to glomerular endothelial cells (Figure 1E and
F). The use of an inducible transgenic mouse model to overex-
press VEGF demonstrated that open fenestrae can be induced
in adult mice (excluding a developmental phenotype).

In our Pax8-rtTA/(TetO)7-VEGF164 mouse model, serum
VEGF levels were increased. Therefore, glomerular capillaries
were exposed to increased levels of VEGF via the systemic blood
circulation (Figure 1B) [14]. Upon induction of VEGF trans-
gene expression, the frequency of glomeruli containing endo-
thelial cells with diaphragmed fenestrae decreased significantly
(Figure 1D). However, endothelial cells formed open fenestrae
instead, consistent with the model of VEGF-dependent endo-
thelial plasticity for higher VEGF levels (Supplementary data,
Figure S1B). Endotheliosis was ruled out by TEM (Figure 1E
and F) and absence of proteinuria [14].

Podocyte-specific overexpression of VEGF induces open
fenestrae in glomerular endothelial cells

Next, double transgenic Pod-rtTA/(TetO)7-VEGF164 mice
were analysed, in which inducible local VEGF overexpression
in podocytes induced glomerular hypertrophy (Figure 1G) [13].
As shown in Figure 1G, local VEGF overexpression led to glo-
meruli with significantly more open endothelial fenestrae
(Figure 1G). This finding supports the notion that that VEGF
produced by podocytes influences glomerular endothelial cells.

In the third experiment, VEGF expression was reduced by
>50% in podocytes using the inducible Pod-rtTA/(TetO)7-
siVEGF mouse model (Figure 1G, lower panel) [16].
Glomerular endothelial cells formed significantly more dia-
phragmed fenestrae within 7 days after induction of VEGF
knock-down (Figure 1G). No endotheliosis was observed by
TEM (Figure 1H).

Collectively, these results support the notion that endothelial
morphology reflects changes in local VEGF levels also at higher
concentrations in vivo and also in the glomerulus of the kidney.
Manipulating VEGF expression specifically in podocytes leads
to concordant changes of glomerular endothelial cell morph-
ology, suggesting that podocytic VEGF is transported across the
glomerular filtration barrier against the bulk current of the
glomerular filtrate (VEGF back-filtration).

GFR and endothelial morphology: interruption of
filtration via electrocoagulation

Next, we investigated whether manipulation of SNGFR cor-
relates with glomerular VEGF back-filtration. Glomerular fil-
tration was interrupted by localized electrocoagulation of the
kidney cortex in adult mice, as described previously [29]. Upon
application of five electrical impulses, a fraction of the tubules
were ablated and filtration was interrupted in remnant atubular
glomeruli (Figure 2A and B). As a consequence, progressive
and global PV-1 expression as surrogate marker for formation
of diaphragmed fenestrae was observed in atubular glomeruli
up to 30 days after coagulation (Figure 2B–E). In the early phase
of the model, it could not be determined histologically whether
a glomerulus was atubular or not. In order to exclude selection
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bias in our statistical analysis (Figure 2E), PV-1 expression was
evaluated in all glomeruli (including atubular and a larger frac-
tion of intact glomeruli) on random sections. Increased PV-1
expression suggested less VEGF back-filtration in atubular
glomeruli.

In addition, PV-1 expression was analysed in incidental
human atubular glomeruli, which occur preferentially in chron-
ically injured human kidneys [29]. As shown in Supplementary
data, Figure S2, ubiqitous PV-1 expression was observed in
atubular glomeruli also in human kidneys.

Increased SNGFR correlates with higher vegf activity

In order to achieve glomerular hyperfiltration, C57/Bl6
mice were subjected to 5/6 nephrectomy and analysed 2 or
5 days after the operation. Glomerulosclerosis was ruled out
on Periodic acid-Schiff (PAS) sections (not shown). Renal in-
sufficiency was achieved as indicated by elevated creatinine
and urea (Figure 2F and G). SNGFR was approximately
doubled when considering that approximately one-sixth (i.e.
16%, indicated by dashed line in Figure 2H) of remnant renal
mass generated 30% of the initial GFR. Under these condi-
tions, glomerular endothelial cells formed significantly fewer
diaphragmed fenestrae (Figure 2I).

Increased glomerular VEGF expression may be a possible
explanation for these results. However, VEGF-A mRNA levels
were found to be down-regulated in isolated glomeruli after 5/6
nephrectomy (Figure 2J and K) arguing against increased
VEGF expression as major contributor to the apparent increase
in VEGF back-filtration in hyperfiltration.

Endothelial morphology in pax8-cre/beta-cateninfl/fl

Knock-out Mice

Pax8-Cre/beta-cateninfl/fl knock-out mice (Figure 3A) show
a developmental defect in �10% of the glomeruli, whereby the
inner aspect of Bowman’s capsule is lined by fully differentiated
podocytes (termed parietal podocytes) instead of parietal epi-
thelial cells (Figure 3B–D) [17]. The parietal podocytes were
shown to express similar amounts of VEGF as visceral podo-
cytes, recruited periglomerular capillaries and formed a mor-
phologically almost normal filtration barrier [17]. Thus, the
mouse model forms two filtration barriers within the same
glomerulus: periglomerular capillaries which arise from peritub-
ular capillaries, which have low effective filtration pressures
(Pperiglom capillary – PBowman’s space � near zero) (Figure 3D). On
the other hand, the high-pressure capillaries of the glomerular
tuft filter normally (as indicated by the lack of proteinuria in
these mice) [17]. As shown by TEM, both filtration barriers are
similar (both form a GBM-like basement membrane)
(Figure 3D–E’). As shown in Figure 3B–B’ and C–C’, endothelial
cells formed diaphragmed fenestrae in periglomerular (low-
pressure) capillaries consistent with lower VEGF back-filtration.
Endothelial cells of high-pressure capillaries formed open fenes-
trae within the same glomerulus indicating higher VEGF back-
filtration. In summary, the experiments described above suggest
a correlation of SNGFR to VEGF back-filtration. These data sup-
port the hypothesis that increased SNGFR results in increased
VEGF back-filtration and vice versa.

Endothelial PV-1 expression along the glomerular
capillary

A specific sequence of morphological changes has been
described previously in 1991 by Elger et al. [30] in glomerular
endothelial cells along the length of glomerular capillaries
(Supplementary data, Figure S3A and B): first, at the afferent ar-
teriole, glomerular endothelial cells form open fenestrae.
Towards the efferent arteriole, fenestrae become diaphragmed.
Finally, endothelial cells are continuous and capillary filtration
no longer occurs. This sequence of endothelial changes suggests
decreasing VEGF back-filtration along the length of the glom-
erular capillaries. Indeed, effective filtration pressures and flux
decrease towards the efferent arteriole due to increasing oncotic
pressures (termed filtration pressure reduction or even equilib-
rium) (Supplementary data, Figure S3C).

To investigate this relationship further, capillary sealing
was analysed in mice where subcortical superficial glomeruli
are significantly smaller than juxtamedullary glomeruli. Since
all filtering glomerular capillaries are known to be arranged
in parallel [31] (Figure 4A), the glomerular capillaries of the
superficial glomeruli are shorter compared to those of
the larger juxtamedullary glomeruli. When examining the
microanatomical location of diaphragmed fenestrae within
small superficial glomeruli, PV-1 expression was restricted to
the immediate proximity of the efferent arteriole (Figure 4B).
This finding is consistent with the notion that filtration pres-
sure reduction (or equilibrium) occurred at the end of the
glomerular capillaries. As shown on serial sections of the
larger juxtamedullary glomeruli in Figure 4C–E, endothelial
cells formed diaphragmed fenestrae already within the glom-
erular capillary tuft. These findings suggest that capillary
sealing is regulated and may depend on physiological param-
eters (such as effective filtration pressures). In human kidney,
diaphragmed fenestrae were also detected exclusively towards
the efferent arteriole (Figure 4F).

Mathematical modelling of VEGF back-filtration

The above-described experimental findings demonstrate a
proportional relationship between effective SNGFR and effect-
ive filtration pressures and VEGF back-filtration. In order to
test for potential mechanisms, the individual fluxes of VEGF
against the bulk flow of the filtrate across the filter were ana-
lysed using our previously described mathematical model of
glomerular filtration to simulate two models of glomerular fil-
tration [20] (Figure 5 and Supplementary data).

In the pore model [32, 33], the glomerular filter is regarded
as an impermeable membrane perforated by highly defined
small pores, which allow the passage of small solutes (e.g. water,
salt; blue arrows in Figure 5A). Albumin is driven into the filter
by convection and diffusion; and repelled by size exclusion
(black arrow). Small amounts of albumin may pass through
rare ‘large pores’, which are specific for albumin (dashed
arrow). As shown in Figure 5C, VEGF back-filtration is driven
by diffusion alone in this model. Thus, VEGF back-filtration is
predicted to be reduced or virtually constant when GFR is
increased. Therefore, this model of glomerular filtration did not
predict the results for our experimental findings.
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The electrokinetic model is an expansion of the pore model,
which considers also electrical effects [20, 29, 34–38].
According to this model, glomerular filtration works in two
steps, which occur simultaneously (Figure 5B). First, forced fil-
tration generates an electrical field across the glomerular filter
(streaming potential), which is proportional to filtration pres-
sures (and SNGFR). Secondly, negatively charged plasma pro-
teins are repelled by electrophoresis (electromigration) from
entering the filter (Figure 5B, black arrow in Step 2) [20, 29, 34–
38]. As shown in Figure 5C, the electrokinetic model predicts a
proportional increase in VEGF back-filtration with increasing
GFR. The model suggests electrical effects as a candidate force
to drive VEGF across the filter against the bulk flow of the
filtrate.

The above-described outside-in electrophoretic transport
of VEGF can occur only if the mobile isoforms of VEGF are
negatively charged. To test this, the electrostatic charge of
human isoforms of recombinant VEGF was determined ex-
perimentally. Since glycosylation modifies the electrostatic
charge significantly, recombinant VEGF expressed in eukary-
otic cells was used assuming that the glycosylation pattern is
most similar to the situation in vivo. Recombinant murine
VEGF expressed in eukaryotic cells was not available at the
time of the study.

As shown in Figure 6A, the mobile hVEGF110-113 and
hVEGF121 isoforms share a common anionic N-terminus and
lack the cationic C-terminus of the longer isoforms (VEGF165

and VEGF189). Biologically active VEGF110-113 can be generated
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by proteolytic cleavage of the C-terminus by plasmin, urokin-
ase, and metalloproteases from any of the larger VEGF isoforms
[39–42]. All of these proteases are expressed within the renal
glomerulus [43–46]. In vitro digestions indicated that the
human VEGF121 isoform is not glycosylated, whereas the
VEGF165 isoform is glycosylated—most likely within the add-
itional C-terminal 44 amino acids (Figure 6B–D’). Assuming
that the highly similar murine VEGF120 isoform is also not gly-
cosylated, the overall charge of the VEGF mobile isoforms can
be calculated from sequence analysis alone: the predicted charge
of VEGF110-113 is �10; and of VEGF121 is �4. The negative
charge of VEGF120 was confirmed experimentally by 2D gel
electrophoresis (Figure 6C and C’). In summary, our

experiments confirmed that the mobile isoforms of recombin-
ant human VEGF are negatively charged.

DISCUSSION

In the present study, the model of endothelial morphology
was extended and validated to detect also higher levels of
VEGF. The results of the present study show that VEGF back-
filtration is regulated and correlates with SNGFR in vivo.
Mathematical modelling of VEGF fluxes according to two mod-
els of glomerular filtration revealed that in addition to diffusion,
streaming potentials generated by filtration could be a potential
candidate force to drive VEGF against the bulk flow of the fil-
trate across the filter by electrophoresis.
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Potential factors influencing regulated vegf
back-filtration

It is unlikely that differential expression of VEGF in podocytes
mediated the observed correlation between SNGFR and endothe-
lial morphology. We show that global expression of VEGF was
decreased in hyperfiltration, therefore it cannot explain
the observed apparent increase in VEGF back-filtration (Figure 2J
and K). Our findings are also consistent with published reports of
glomerulomegaly in cyanotic heart diseases in humans or in mice
after podocyte-specific inactivation of von-Hippel-Lindau (VHL)
[47, 48], where VEGF synthesis is increased in podocytes.

Differential release of VEGF from individual podocytes is
also an unlikely explanation for the observed decreasing VEGF
activity towards the efferent arteriole because podocytes usually
cover several capillaries and thus overlap significantly with mul-
tiple other podocytes. Finally, there is exquisite gene dosage
sensitivity of VEGF, e.g. development of focal segmental glo-
merulosclerosis (FSGS) upon inactivation of one VEGF allele in
podocytes. As outlined by Eremina et al. [49], this argues
against a potential regulatory mechanism to adjust VEGF

expression levels in podocytes to mediate the observed effects in
this study [49].

Electrophoretic transport as candidate mechanism
coupling sngfr to vegf back-filtration

Mathematical modelling suggested that electrical effects may
drive VEGF back across the glomerular filter. The electrical field
is generated by a streaming potential which has been directly
measured in micropuncture experiments [20]. It is directly pro-
portional to SNGFR and negative in Bowman’s space
(Figure 5B). The specific polarity of the streaming potential in the
glomerulus has been detected also in a general diffusion porin
channel of Escherichia coli and ex vivo across the bovine lense
basement membrane (which is similar to the glomerular base-
ment membrane (GBM)) [50, 51].

Electrophoretic back-filtration of VEGF is consistent with all
of our experimental findings. In atubular glomeruli, where
filtration was interrupted acutely, we found that VEGF back-
filtration was decreased even though one would expect the op-
posite. If the convective outward flow of the primary filtrate is
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abolished by coagulating the tubule, VEGF should be accumu-
lating in Bowman’s space and higher amounts of VEGF should
be diffusing across the filter.

The biophysical phenomenon of streaming potentials in vivo
is a relatively recent and novel discovery. This is the first report,
proposing that the activity of a secreted growth factor (VEGF)
is additionally regulated by extracellular streaming potentials.

VEGF as model growth factor system

This study focussed on growth factor VEGF as a model
growth factor system. Within the glomerulus, a crucial and es-
sential functional role is well established for VEGF, where it me-
diates several important effects, including glomerular size. It is
very likely that VEGF is not the only factor regulating endothe-
lial cell fenestrations and glomerular size. Glomerular cells se-
crete several growth factors (e.g. angiopoietins, bone
morphogenic proteins, platelet-derived growth factors [52, 53])
and their activity is regulated by multiple mechanisms (expres-
sion levels, proteolytic cleavage). Other additional effects

including haemodynamic effects (e.g. shear forces) or other dir-
ect effects on endothelial cells may also play a role. Another
major limitation of this study is that VEGF levels can only be
measured indirectly using the established model of endothelial
morphology as surrogate marker [21–25]. To consider or com-
pensate other known and unknown potential effects, significant
efforts were undertaken to employ different in vivo models in
the present study.
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A B S T R A C T

Background. Bone impairment is a poorly described complica-
tion of nephropathic cystinosis (NC). The objectives of this study
were to evaluate in vitro effects of cystinosin (CTNS) mutations
on bone resorption and of cysteamine treatment on bone cells
[namely human osteoclasts (OCs) and murine osteoblasts].
Methods. Human OCs were differentiated from peripheral
blood mononuclear cells (PBMCs) of patients and healthy
donors (HDs). Cells were treated with increasing doses of cyste-
amine in PBMCs or on mature OCs to evaluate its impact on
differentiation and resorption, respectively. Similarly,
cysteamine-treated osteoblasts derived from murine mesenchy-
mal stem cells were assessed for differentiation and activity with
toxicity and proliferation assays.
Results. CTNS was expressed in human OCs derived from
HDs; its expression was regulated during monocyte colony-
stimulating factor- and receptor activator of nuclear factor-jB-

dependent osteoclastogenesis and required for efficient bone
resorption. Cysteamine had no impact on osteoclastogenesis
but inhibited in vitro HD osteoclastic resorption; however, NC
OC-mediated bone resorption was impaired only at high doses.
Only low concentrations of cysteamine (50 lM) stimulated
osteoblastic differentiation and maturation, while this effect was
no longer observed at higher concentrations (200mM).
Conclusion. CTNS is required for proper osteoclastic activity. In
vitro low doses of cysteamine have beneficial antiresorptive
effects on healthy human-derived OCs and may partly correct
the CTNS-induced osteoclastic dysfunction in patients with NC.
Moreover, in vitro low doses of cysteamine also stimulate osteo-
blastic differentiation and mineralization, with an inhibitory
effect at higher doses, likely explaining, at least partly, the bone
toxicity observed in patients receiving high doses of cysteamine.

Keywords: bone, cysteamine, cystinosin, nephropathic cysti-
nosis, osteoclast

VC The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. 1525

O
R

IG
IN

A
L

A
R

T
IC

LE


	gfx362-TF1
	gfx359-TF1
	gfx359-TF2
	gfx359-TF3



