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Abstract Introduction: We aimed to evaluate the consistency of the A/T/N classification system.
Methods: We included healthy controls, mild cognitive impairment, and dementia patients from
Alzheimer’s disease Neuroimaging Initiative. We assessed subject classification consistency with
different biomarker combinations and the agreement and correlation between biomarkers.
Results: Subject classification discordance ranged from 12.2% to 44.5% in the whole sample;
17.3%—46.4% in healthy controls; 11.9%—46.5% in mild cognitive impairment, and 1%—35.7% in de-
mentia patients. Amyloid, but not neurodegeneration biomarkers, showed good agreement both in the
whole sample and in the clinical subgroups. Amyloid biomarkers were correlated in the whole sam-
ple, but not along the Alzheimer’s disease continuum (as defined by a positive amyloid positron emis-
sion tomography). Neurodegeneration biomarkers were poorly correlated both in the whole sample
and along the Alzheimer’s disease continuum. The relationship between biomarkers was stage-
dependent.
Discussion: Our findings suggest that the current A/T/N classification system does not achieve the
required consistency to be used in the clinical setting.
© 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Background

Alzheimer’s disease (AD) is currently conceptualized as
a clinicobiological entity [1-3]. Accordingly, modern
clinical and research criteria have integrated biomarkers
for the in-vivo identification of the AD pathophysiological
state [4—7]. Biomarkers can be divided into two main
modalities: neuroimaging and cerebrospinal fluid (CSF)
biomarkers and can also be subdivided according to their
specificity for different pathophysiological categories
including: cerebral amyloid deposition, tau pathology, and
neurodegeneration [8].

Current diagnostic recommendations consider the infor-
mation provided by a growing number of biomarkers.
Consequently, biomarker-based classification systems have
been proposed to integrate the information provided by the
different sets of biomarkers. Specifically, the A/T/N system
has been recently proposed to dichotomize the biomarker re-
sults from three different pathophysiological categories (ce-
rebral amyloid deposition [A], tau pathology [T], and
neurodegeneration [N]). While some classification systems
consider the individual clinical status [4,5,7,9], others such
as the A/T/N system are proposed to be applicable across
all clinical diagnostic stages independent of cognitive
status [ 10]. This approach provides an integrative framework
for AD research and cognitive aging.

However, the operationalization of biomarker-based
classification systems poses challenges before it can be
applied in clinical practice. Foremost, subject classification
at the individual level must be consistent across biomarker
modalities and be faithful to the pathophysiology. Hence,
the consistency of biomarker-based classification systems
will essentially rely on a good agreement between bio-
markers belonging to the same pathophysiological cate-
gory. Nonetheless, we have previously shown in a study
in mild cognitive impairment (MCI) that the selection of
biomarkers may be determinant for the individual subject
classification [11].

Despite significant previous efforts [12—14], a systematic
appraisal of the agreement between the biomarkers related to
each of the pathophysiological categories of the A/T/N
system had not been conducted. In this study, we used the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
multimodal biomarker data to evaluate for the first time:
(i) the consistency of available biomarkers for subject
classification within the A/T/N system; and (ii) the
agreement and correlation across these biomarkers along
the AD continuum.

2. Methods

2.1. Study population

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led
by a principal investigator Michael W. Weiner, MD. The

primary goal of the ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For the pre-
sent study, we selected 711 individuals from ADNI-2
(n = 595) and ADNI-GO (n = 116) with available CSF re-
sults, 3T MRI study, and [18F] florbetapir (FBP) PET im-
aging at baseline. ADNI-1 subjects were excluded due to
the lack of 3T MRI. For up-to-date information, see
www.adni-info.org.

2.2. CSF analyses

We obtained the baseline CSF amyloid 8 (AB) 1-42, total
tau (t-tau), and phosphorylated tau (p-tau) levels from the
ADNI database. We applied the validated ADNI thresholds
for subject dichotomization (AB 1-42: 192 pg/mL; t-tau:
93 pg/mL; and p-tau: 23 pg/mL) [15].

2.3. Magnetic resonance imaging

2.3.1. MRI acquisition and processing

The details of acquisition are available elsewhere (http://
www.adni-info.org). Cortical reconstruction of the TI
images was performed with FreeSurfer (version 5.1; http:
/Isurfernmr.mgh.harvard.edu), as previously described
[16-19]. From 711 MRI studies, 151 were excluded
because of segmentation errors.

2.3.2. Adjusted hippocampal volumes

Adjusted hippocampal volume values were directly
downloaded from the ADNI database. We applied the
previously validated threshold for adjusted hippocampal
volume (—0.63) for subject dichotomization [20].

2.3.3. Cortical signature of Alzheimer’s disease

In this work, we applied a previously validated cortical
signature of Alzheimer’s disease [21] to extract the individ-
ual mean cortical thickness [21,22]. We calculated the cutoff
with the highest Youden’s index (cutoff = 2.53; area under
the receiver operating characteristic curve = 0.90) to
differentiate FBP-positive AD dementia patients (n = 114)
from FBP-negative healthy controls (HCs; n = 108). This
cutoff was applied for subject dichotomization.

2.4. Positron emission tomography

The details of acquisition for [18F] FBP PET and [18F]
fluorodeoxyglucose PET (FDG PET) are available
elsewhere (http://www.adni-info.org). We downloaded the
Landau’s composite standardized uptake value ratio both
for FBP PET and FDG PET from the ADNI database. We
then applied the validated thresholds for FBP PET (1.11)
[23] and FDG PET (1.2) [24] for subject dichotomization.
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2.5. Definition of the AD state and stages in the AD
continuum

In this study, we differentiate between the clinical group
and AD stage. We refer to the clinical groups, (a) HCs, (b)
MCI patients, and (c) dementia patients, when we include
all subjects irrespective of the biomarker status. We define
the AD state by the presence of a positive amyloid PET ac-
cording to the International Working Group-II criteria [6].
Based on the FBP PET positivity, we classified HC, MCI,
and demented participants into asymptomatic at risk for
AD, prodromal AD, and AD dementia, which define the
different stages of the AD continuum.

2.6. Statistical methods

Continuous variables are described as mean and standard
deviation, and categorical variables are described as percent-
ages. Differences in baseline characteristics between groups
were assessed using the t-test for continuous variables and
the Chi-square for dichotomous or categorical data.
Nonparametric tests were applied when variables did not
follow a normal distribution. We calculated the Spearman
correlation coefficient (for raw values) and the Cohen’s
Kappa index (for dichotomous classification) to test agree-
ment between biomarkers. The kappa index provides a reli-
able measure of chance-corrected classification between
different measures. We also explored if threshold adjustment
could have the potential to improve the agreement. For this
purpose, for each biomarker pair, we calculated the agree-
ment using all possible values in one biomarker while keep-
ing the cutoff of the other biomarker fixed at the validated
threshold.

Table 1

The agreement was examined in (a) the whole cohort and
(b) all clinical groups (HC, MCI, and dementia patients).
The correlations were examined in (a) the whole cohort,
(b) all clinical groups (HC, MCI, and dementia patients),
and (c) the AD continuum (AD state; with asymptomatic
at risk for AD, prodromal and AD dementia stages) to assess
stage-dependent relationships and because pooling together
different populations (with and without an AD pathophysio-
logical process; AD state) may generate spurious correla-
tions.

We applied a previously proposed grading for the corre-
lation coefficients and kappa indexes [25,26]. We labeled
kappa values below 0.6 as “inadequate” as suggested for
studies in medical sciences [25]. Statistical significance for
all tests was set at 5% (o = 0.05), and all statistical tests
were two-sided. All analyses were performed using SPSS
20.0 (Armonk, NY: IBM Corp.).

3. Results
3.1. Demographics and patients’ characteristics

Table 1 shows the demographic, cognitive, and genetic
data of the participants for each clinical group (cognitively
healthy, MCI, and dementia) and in the subgroup of partici-
pants within the AD continuum (asymptomatic at risk for
AD, prodromal AD, and AD dementia stages). A total of
711 subjects were included (mean age 72.5 years, 54.3%
women). The MCI group was the largest group (n = 423,
59.5%) whereas the AD dementia group was the smallest
one (n = 129, 18.1%). The MCI group was younger than
the AD dementia and control group. As expected, the

Demographic, clinical, and cognitive data along clinical groups and the AD continuum

Healthy controls MCI Dementia All participants
Whole sample
n, (% of total sample) 159 (22.4) 423 (59.5) 129 (18.1) 711 (100)
Age, years 73.5 * 6.3° 71.5 * 7.3 74.4 + 8.4° 725+ 7.4
Women, n (%) 78 (49.1) 231 (54.3) 77 (59.7) 386 (54.3)
Education, years 16.6 = 2.5° 162 £2.6 15.7 £ 2.6* 162 £2.6
APOE €4, n (%) 43 (27)* 202 (47.8)* 86 (66.7)* 331 (46.6)
MMSE 29.1 + 1.1* 28.1 + 1.7%¢ 232 + 2% 274 +26
ADAS-Cog 9.1 + 4.5 14.8 + 7% 28 = 11 16.3 = 10.1

Asymptomatic at risk for AD

Prodromal AD AD dementia All AD stages

AD continuum*

n, (% of AD continuum*) 51 (12.8)
Age, years 75.7 = 5.8°
‘Women, n (%) 19 (37.3)
Education, years 16 =24
APOE ¢4, 1 (%) 21 (41.2)
MMSE 29.1 * 0.9
ADAS-Cog 10 = 4.6

232 (58.4) 114 (28.7) 397 (100)
72.8 * 6.7° 74 + 8.4 73.6 = 7.1
128 (55.2) 63 (55.3) 210 (52.9)
16 + 2.8 15.6 = 2.7 159 = 2.7
155 (66.8)" 85 (74.6)" 261 (65.7)
27.7 * 1.8 23.1 + 2.1 26.6 = 2.9
17.1 + 6.9% 30.2 + 11.4% 20 = 10.7

NOTE. Results are mean * standard deviation for continuous variables or frequency (%) for categorical variables. a: different from healthy controls/asymp-
tomatic at risk for I AD (P < .05); b: different from MCI/prodromal AD stage (P < .05); c: different from dementia/AD dementia stage (P < .05).

*The AD state was defined by a positive FBP PET; Alzheimer’s Disease Assessment Scale-Cognitive Sub-scale, (ADAS-Cog); MCI, mild cognitive impair-
ment; MMSE, Mini-Mental State Examination; CDR-SOB, Clinical Dementia Rating Sum of Boxes; APOE, apolipoprotein E.
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Mini-Mental State Examination frequency was lower and
the apolipoprotein E (APOE €4) frequency higher in the
MCI and dementia groups when compared with the cogni-
tively HCs. Within the AD continuum (as defined by a pos-
itive FBP PET), the group of prodromal AD was the largest
group (n = 232, 58.4%), whereas the asymptomatic at risk
for AD group was the smallest one (n = 51, 12.8%). The pro-
dromal AD group was slightly younger than the asymptom-
atic at risk for AD group. The APOE €4 frequency was
higher in the prodromal and dementia AD groups when
compared with the asymptomatic at risk for AD group.

3.2. Consistency of biomarker combinations across A/T/N
categories at the individual level

In the whole sample, the percentage of subjects inconsis-
tently classified by the biomarkers in the A/T/N system varied
from 12.2% to 44.5%. For illustrative purposes, Fig. 1 A shows
the proportion of subjects classified in a different category when
taking as the reference the classification using CSF core AD
biomarkers. In the whole sample, the percent of misclassifica-
tion varied from 12.5% to 34.3% when only one biomarker
was replaced, to 39.6%—44.5% when two of the three bio-
markers where modified. As shown in Fig. 1B-D, similar re-
sults were observed when restricting the analyses to the
cognitively healthy, MCI, and dementia groups, respectively.

3.3. Agreement and correlation between amyloid
biomarkers

Fig. 2 shows the agreement and correlation between CSF
AB1-42 and FBP PET in the whole sample and in the
different clinical groups. The agreement was moderate to
high in the whole sample (k = 0.74, P <.001) and in all clin-
ical groups (k = 0.58,k = 0.75, and k = 0.78, all P <.05; for
HC, MCI, and dementia patients, respectively).

The correlations changed in the different clinical groups.
It was moderate to high for the whole sample (Rho = —0.73,
P < .001), HC (Rho = —0.6, P < .001), and MCI
(Rho = —0.74, P <.001), but it was negligible in the demen-
tia group (Rho = —0.24, P = .007).

We then restricted the analysis to the subgroup of patients
with a positive FBP PET. In this subgroup, the correlation be-
tween CSF AB1-42 and FBP PET was low (Rho = —0.30,
P <.001). However, we found a decreasing magnitude of cor-
relation between both measures along the AD continuum
from asymptomatic at risk for AD (Rho = —0.48,
P <.001) to prodromal AD (Rho = —0.31, P <.001) and
no significant correlation in the AD dementia group
(Fig. 3A). Of note, when we subdivided the patients with pro-
dromal AD into early MCI and late MCI, we also found the
same pattern, a weak correlation in early MCI (n = 125;
Rho = —0.43, P < .001) and no correlation in late MCI
(n = 107; Rho = —0.10, P = .29). As seen in Fig. 2, we
obtained essentially the same results when the AD state
was defined by the positivity of both amyloid biomarkers.

3.4. Agreement and correlation between
neurodegeneration biomarkers

Table 2 shows the agreement and correlation between am-
yloid, tau, and neurodegeneration biomarkers in the whole
sample. The agreement between neurodegeneration bio-
markers did not reach adequate agreement (k > 0.6), neither
in the whole sample nor in different clinical groups. In the
whole sample, the highest agreement was found between
the adjusted hippocampal volume (aHV) and the MRI
cortical signature (k = 0.44, P < .05). When we restricted
the analysis to subjects within the AD continuum, we
observed similar results (Table 2).

The correlation within neurodegeneration biomarkers in
the whole sample ranged from moderate (Rho = 0.55,
P < .05, for AD cortical signature and the aHV) to low
(Rho = —0.36, P <.05, for the aHV and t-tau). We then as-
sessed the correlations between neurodegeneration bio-
markers in each clinical group. In HC, no significant
correlations were found within the neurodegeneration bio-
markers. In MCI patients, aHV was correlated with both
cortical thinning within the AD MRI cortical signature
and the FDG PET hypometabolism (Rho = 0.52,
P <.001 and Rho = 0.37, P < .05, respectively) and the
FDG PET also correlated with the cortical AD signature
(and Rho = 0.42, P <.05). In dementia patients, the corre-
lations were lost, and only the AD cortical signature and
FDG PET showed a correlation with each other
(Rho = 0.40, P <.05).

We then analyzed the correlations in the AD continuum.
Importantly, all correlations between neurodegeneration
biomarkers decreased when we restricted the analysis to
the subjects within the AD continuum, except for the corre-
lation between the cortical AD signature and the FDG PET
(Fig. 3A).

CSF p-tau was the sole tau pathology biomarker included
in this study due to the small number of patients with tau
PET data available in ADNI-2 and ADNI-go cohorts.

We next explored if threshold adjustment could have the
potential to improve the agreement. For this purpose, for
each neurodegeneration biomarker pair, we calculated the
agreement using all possible values in one biomarker while
keeping the cutoff of the other biomarker fixed. Impor-
tantly, the agreement between neurodegeneration bio-
markers did not improve with threshold adjustment as
shown in Fig. 4.

3.5. Agreement and correlation between biomarkers of
different pathophysiological categories

The agreement between biomarkers of different patho-
physiological categories did not reach adequate agreement
(k > 0.6) neither in the whole sample nor in the different
clinical groups or along the AD continuum.

In the whole sample, biomarkers of different pathophys-
iological categories showed varying degrees of correlation
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Fig. 1. Percent of A/T/N misclassifications for the different biomarker combinations in (A) the whole sample, (B) cognitively healthy controls, (C) mild cognitive
impairment and (D) dementia subjects. The percent of participants classified in different categories are shown for each biomarker combination when compared
with classification with AP 1-42, p-tau, and t-tau. Percent of misclassifications are shown in green when one biomarker was changed, and in orange, when two
biomarkers were changed. Abbreviations: AB, amyloid B; ADsig, Alzheimer’s disease cortical signature; aHV, adjusted hippocampal volume; FBP PET, [18F]
florbetapir positron emission tomography; FDG PET, [18F] fluorodeoxyglucose positron emission tomography; p-tau, phosphorylated tau; t-tau, total tau.

from negligible (Rho = - 0.29, P < .05, for aHV and p-tau)
to moderate (Rho = 0.59, P < .001, for p-tau and FBP
PET).

t-Tau and p-tau showed the highest correlation in the
whole sample (Rho = 0.76, P < .001), in all the clinical
groups (Rho = 0.62-0.77, all P <.001) and along the AD
continuum (Rho = 0.75-0.59, all P < .001). As shown in

Fig. 5A, this high correlation contrasted with their low
agreement (k = 0.29, P < .05). Importantly, as shown in
Fig. 5B, the modification of the thresholds for either p-tau
cutoff (from 23 to 39 pg/mL) or t-tau (from 93 to 56 pg/
mL) greatly improved the agreement between t-tau and
p-tau (k = 0.56 and k = 0.59, for the resulting p-tau and t-
tau adjusted threshold, respectively).
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Fig. 2. Agreement and correlation between amyloid biomarkers across the AD continuum. Agreement and correlation between CSF AB1-42 and FBP PET in
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dots). Abbreviations: A, amyloid B; CSF, cerebrospinal fluid; FBP PET, [18F] florbetapir positron emission tomography.

We then looked at correlations between other biomarkers
from different pathophysiological categories in the AD con-
tinuum (Fig. 3B). In the preclinical phase, FBP PET, t-tau,
and p-tau were the only biomarkers that showed relevant cor-
relations (Rho > 0.3). In prodromal AD, multiple biomarkers
from different modalities were correlated with each other. All
correlations were lost in the dementia stage with the sole
exception of the correlation between t-tau and p-tau.

4. Discussion

This article makes several novel contributions. First, to
the best of our knowledge, our article is the first to assess
the consistency and reproducibility of the A/T/N classifica-
tion system and gives a clear vision of the limitations of its

empirical application (i.e., lack of reproducibility). The
observed inconsistencies in the individual subject classifica-
tion were derived from insufficient agreement between bio-
markers within the different pathophysiological categories.
Second, this is the first article to prove that the agreement be-
tween biomarkers related to the same pathophysiological
category cannot be improved with the modification of
biomarker cutoffs. Third, we highlight the existence of dy-
namic correlations between biomarkers along the AD con-
tinuum (i.e., different correlations in the different stages of
the AD continuum). Finally, we show that the agreement be-
tween p-tau and t-tau could be significantly improved by
means of cutoff modification.

We found inconsistent individual subject classification
when using different biomarker combinations in up to
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clinical category of the AD continuum. The 0.3 threshold is marked with a red-dotted line. Abbreviations: AD, Alzheimer’s disease; A, amyloid B; FDG, [18F]

fluorodeoxyglucose; FBP, [18F] florbetapir.

44.5% of the participants. This result shows a limitation
associated with the A/T/N classification system, in which
biomarkers of different modalities are considered inter-
changeable. These systems, which are based on the succes-
sive dichotomization of biomarkers related to different
pathophysiological categories are very sensitive to the lack
of agreement between biomarkers ascribed to the same path-
ophysiological process. Therefore, while the addition of new
categories to the classification systems theoretically refines
the classifications, this additional complexity, in the absence

of high agreement between biomarkers within each cate-
gory, decreases the consistency of classifications. Thus, a
balance between precision (i.e., number of pathophysiolog-
ical categories) and reproducibility must be found to ensure
the generalization of the results.

Amyloid biomarkers showed the highest agreement in the
whole sample and in all clinical groups, but it never ex-
ceeded a kappa of 0.8. The correlation between CSF AB1—
42 and FBP PET values was very variable. It was good in
the whole sample, in HC and MCI patients, but negligible
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in dementia patients. Importantly, the correlation between
both measures decreased from asymptomatic at risk for
AD to prodromal AD and was not significant in the AD de-
mentia group. Both CSF AB1-42 and amyloid PET have
been reported to correlate with fibrillar amyloid deposition
[27,28], and early studies already emphasized the high
agreement and strong correlations between the two
[28-30]. However, despite efforts that attempted to convert
CSF AB1-42 and amyloid PET values [31], recent studies
have suggested a nonlinear correlation between these two
biomarkers [32]. We did replicate the good agreement be-
tween both amyloid measures, but we expand previous find-
ings by showing that the strong correlations found when
merging amyloid-positive and amyloid-negative populations

together may be, at least in part, spurious. In the AD contin-
uum, CSF AB1-42 and amyloid PET values only modestly
correlate in the preclinical and early prodromal AD stages.
Taken together, these results confirm the utility of both
CSF AP 1-42 and FBP PET as state biomarkers but also rein-
force the notion that amyloid biomarkers are not fully inter-
changeable to quantify the amyloid cerebral burden at the
different stages of the disease [33].

Neurodegeneration biomarkers showed inadequate
agreement and were poorly correlated. Modest correlations
between neurodegeneration biomarkers have been reported
in previous studies [34], as recognized in the recently pro-
posed A/T/N classification system [10]. A number of pre-
vious studies have assessed the relationship between

Table 2
Correlation and agreement across biomarkers in the whole sample and in the whole sample and in subjects within the AD continuum (positive FBP PET)
AB1-42 FBP PET t-Tau p-Tau MRI aHV MRI ADsig FDG PET
AB1-42 —0.73* —0.48%* —0.52% 0.42% 0.38* 0.42%
—0.30* —0.20%* —0.22% 0.25% 0.25% 0.26*
FBP PET 0.74* 0.58* 0.59% —0.39* —0.38* —0.39*
- 0.33* 0.32% —0.25% —0.27* —0.29%
t-Tau 0.37* 0.44* 0.76* —0.36* —0.38* —0.39*
0.09%* - 0.66* —0.20* —0.29% —0.29%
p-Tau 0.33* 0.37* 0.29* —0.29* —0.35% —0.36*
0.32% - 0.18* —0.13* —0.24* —0.25%
MRI aHV 0.30* 0.34* 0.28* 0.15™ 0.55% 0.48%
0.10* - 0.10™ 0.03" 0.52% 0.45%
MRI ADsig 0.26* 0.30* 0.31* 0.15% 0.44* 0.49%
0.08* - 0.17* 0.07* 0.36* 0.55%
FDG PET 0.29* 0.30* 0.37* 0.13* 0.38* 0.43*
0.07* - 0.26* 0.07* 0.32% 0.40%*

Abbreviations: ADsig, Alzheimer’s disease signature; FBP PET, [18F] florbetapir positron emission tomography; FDG PET, [18F] fluorodeoxyglucose posi-

tron emission tomography; MRI, magnetic resonance imaging.

NOTE. Spearman correlation coefficients are shown above the diagonal. Cohen’s Kappa index for each pair of scores are shown below de diagonal; the first
line in each box refers to the whole sample (n = 711), whereas the second line refers to the subset of subjects in the AD continuum (n = 397; positive FBP PET);

* P <.05; ns, non-significant.

NOTE. In bold: correlation coefficients and Cohen’s Kappa indexes with at least a moderate correlation (Rho > 0.5) or a substantial agreement (k > 0.6),

respectively.
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neuroimaging biomarkers. However, these studies were
restricted to a particular clinical stage, and they did not
assess the effect of substituting biomarkers within a given
category on individual subject classification consistency
[35.36]. Conversely, we found dynamic relationships
between neurodegeneration biomarkers along the AD
continuum. There were no correlations in the preclinical
stage, a stage in which little neurodegeneration is
expected to occur, were maximal in the prodromal AD
stage, when significant neurodegeneration accumulates,
and were lost in the AD dementia stage, when the
neurodegenerative load is maximal. The heterogeneity of
neurodegenerative changes in the preclinical stage of AD
has been underscored in the recently proposed criteria,
where ‘“downstream topographical biomarkers” are not
considered suitable for the definition of the preclinical
stage of AD [7]. These results suggest that neurodegenera-
tion biomarkers are not interchangeable to track neurode-
generation.

In addition, some important observations regarding neu-
rodegeneration biomarkers should be highlighted. First,
CSF t-tau did not correlate with the rest of neurodegenera-
tion biomarkers. Some recent findings may help in the inter-
pretation of this observation. While neuroimaging
biomarkers may be informative regarding the cumulative
neurodegenerative load (i.e., cortical thickness and meta-
bolism decreases with disease progression), recent longitu-
dinal studies suggest that CSF tau biomarkers may not
increase over time, thus limiting their ability to track neuro-
degeneration over disease course [37,38]. Second, our two
MRI-derived biomarkers where only moderately correlated
and showed a moderate agreement in the AD continuum.
Of note, the AD cortical signature and the FDG PET showed
the highest correlation in the AD continuum and were the
two only biomarkers correlated in the AD dementia stage.
This finding underlines the importance of considering the
topography of the neurodegeneration. Both MRI and FDG
PET AD cortical signatures track cortical changes as
opposed to the aHV, which is a reflection of medial temporal
lobe atrophy [39]. Network-based diagnosis is currently be-
ing developed [40], based on the evidence that large-scale
networks are key to understand regional vulnerability in
neurodegenerative disorders and to understand clinical het-
erogeneity [41]. Future classification systems should
consider the information contained at the network level.

The definition of cutoffs for continuous biomarker mea-
sures is crucial both for the development of consistent clas-
sification systems and for the reproducibility of findings
across cohorts [11], and significant efforts have been made
in this regard, analyzing different methods for defining
biomarker positivity [42]. Although we only used one previ-
ously validated threshold for positivity, we run several sim-
ulations calculating different thresholds that would
maximize the agreement between each biomarker combina-
tion. By doing that, only the agreement between CSF t-tau
and CSF p-tau was relevantly improved. This finding sug-

gests that the studied biomarkers related to the same patho-
physiological process will not reach adequate agreement
regardless on the method used to define positivity and there-
fore should not be equated [10].

The relationship between CSF t-tau and CSF p-tau de-
serves further comment. These two biomarkers are ascribed
to different pathophysiological categories in the A/T/N clas-
sification system based on the assumption that high p-tau
levels are specific of the AD process whereas high t-tau
levels are nonspecific [10]. However, we showed that a
good agreement could be achieved between these two mea-
sures with a modification of the cutoffs and that these bio-
markers showed the highest correlation among all
biomarkers in the AD continuum. A high correlation be-
tween CSF t-tau and p-tau levels has been previously re-
ported in large meta-analysis across different platforms
[43-45]. Furthermore, previous large pathology-proven co-
horts have reported similar correlations between the two
CSF tau biomarkers and the neurofibrillary tangle load or
tau PET [46-50]. Further multimodal studies are needed to
disentangle the relationship between tau PET and CSF tau
biomarkers.

Our work also showed mild to moderate correlations be-
tween biomarkers of different pathophysiological cate-
gories. We found that FBP PET (but not CSF AB1-42)
correlated with CSF t-tau and p-tau in the preclinical and
prodromal AD stages. Previous studies showed a similar per-
formance of FBP PET and the combination of CSF amyloid
and tau and neurodegeneration biomarkers for the prediction
of cognitive impairment [51]. These results, together with
the aforementioned relationship between t-tau and p-tau,
stress that pathophysiological categories should be carefully
delimited in the design of classification systems to ensure
their ability to track nonoverlapping pathophysiological pro-
cesses.

Our results have clinical implications as they are intended
to impact the empirical application of biomarker-based clas-
sification systems [52]. Researchers and clinicians should be
cautious when interpreting multimodal biomarker profiles
based on different biomarker combinations. If the robustness
of multimodal biomarker profiling is not ensured, we might
ascribe incorrect risks to a given individual, which has
important implications both in clinical practice and clinical
trials [11]. Neurodegeneration biomarkers were the most
problematic, especially when comparing neuroimaging and
CSF biomarkers. As we have shown in Fig. 4, it is unlikely
that a more precise cutoff definition will allow for the inter-
change of these biomarkers. However, neuroimaging and
CSF biomarkers might provide complementary information.
Neuroimaging studies might help in the differentiation of
AD endophenotypes with appropriate neurodegenerative
signatures accounting for disease heterogeneity [39].

This study has several limitations. First, we could not
assess the relationships within the tau pathology category
because we only had one biomarker available in that cate-
gory (p-tau) and tau PET was only available in a much
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smaller number of participants. However, a recent study
showed low correlation and agreement between the two
tau measures [50]. Second, while we applied previously vali-
dated thresholds, these were derived from different ap-
proaches (i.e., pathological cohort as a gold standard or the
best cutoff to differentiate HC from AD dementia patients).
Third, we specifically calculated a cutoff for the AD signa-
ture as following previously published recommendations
[42]. Anyway, as previously discussed, the discordances be-
tween the studied biomarkers were independent of the cutoff
with the exception of p-tau and t-tau.

In conclusion, we have shown that there are practical and
theoretical problems in the A/T/N classification system that
should be addressed to ensure its consistency, reproduc-
ibility, and accuracy.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using online databases looking for articles assess-
ing the consistency of biomarker-based classification
systems. Although previous studies had evaluated the
agreement between biomarkers related to the same
pathophysiological category, no previous studies
have evaluated the consistency of the A/T/N system.

2. Interpretation: The A/T/N system showed important
inconsistencies when using different biomarker combi-
nations. These inconsistencies where derived from
insufficient agreement between biomarkers within
the different pathophysiological categories. Moreover,
stage-dependent relationships between biomarkers
were found within the Alzheimer’s disease continuum.

3. Future directions: A balance between precision (i.e.,
number of pathophysiological categories) and repro-
ducibility must be found to ensure the generalization
of the results. Pathophysiological categories should
be carefully delimited for the refinement of
biomarker-based classification systems.
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