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Abstract

Recent advances in technology have enabled the measurement of RNA levels for individual cells. 

Compared to traditional tissue-level bulk RNA-seq data, single cell sequencing yields valuable 

insights about gene expression profiles for different cell types, which is potentially critical for 

understanding many complex human diseases. However, developing quantitative tools for such 

data remains challenging because of high levels of technical noise, especially the “dropout” 

events. A “dropout” happens when the RNA for a gene fails to be amplified prior to sequencing, 

producing a “false” zero in the observed data. In this paper, we propose a Unified RNA-

Sequencing Model (URSM) for both single cell and bulk RNA-seq data, formulated as a 

hierarchical model. URSM borrows the strength from both data sources and carefully models the 

dropouts in single cell data, leading to a more accurate estimation of cell type specific gene 

expression profile. In addition, URSM naturally provides inference on the dropout entries in single 

cell data that need to be imputed for downstream analyses, as well as the mixing proportions of 

different cell types in bulk samples. We adopt an empirical Bayes’ approach, where parameters are 

estimated using the EM algorithm and approximate inference is obtained by Gibbs sampling. 

Simulation results illustrate that URSM outperforms existing approaches both in correcting for 

dropouts in single cell data, as well as in deconvolving bulk samples. We also demonstrate an 

application to gene expression data on fetal brains, where our model successfully imputes the 

dropout genes and reveals cell type specific expression patterns.
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1. Introduction

A biological organism is made up of individual cells, which work in concert in tissues to 

constitute functioning organs. Biologists have long thought that the key to understanding 

most human diseases lies in understanding the normal and abnormal function of cells. Yet, 

until very recently, our view of what molecules are expressed and where and when was 

limited to the level of tissues. Indeed RNA sequencing (RNA-seq) was introduced as a 

critical tool to answer these questions, but the RNA itself was collected from tissues. This 

bulk RNA-seq data provides reliable measurements of gene expression levels throughout the 

genome for bulk samples. With sufficient sequencing depth, even weakly expressed 

transcripts can be accurately captured by RNA-seq data. This technology has led to 

breakthroughs in various fields. For example, Fromer et al. (2016) use bulk data, obtained 

from prefrontal cortex of post-mortem subjects, to gain insight into how genetic risk 

variation for schizophrenia affects gene expression and likely generates risk for this severe 

psychiatric disorder.

Still bulk RNA-seq data inevitably ignores the heterogeneity of individual cells because the 

measurements are summed over the population of cells in the tissue. Yet it is reasonable to 

predict that diseases like schizophrenia do not arise from malfunctioning brain tissue, per se, 

but rather certain malfunctioning cells within that tissue. A leading hypothesis is that 

schizophrenia arises from synaptic dysfunction, and synapses are fundamental to neurons, so 

should neurons alone be targeted for analyses into schizophrenia? Actually, brain tissue is 

composed of a remarkably heterogeneous set of cell types, which have vastly different 

functions and expression profiles. While many are different types of neurons, many others 

support and alter the function of those neurons and their synapses. Thus, the different gene 

expression profiles for distinct cell types can have profound functional consequences. These 

likely are critical for the development of tissues and human diseases, and will be especially 

important as we aspire to fix such complex diseases as schizophrenia.

It is also of interest to link gene expression with genetic variation, particularly damaging 

variants associated with risk of disease. Until recently, researchers have assumed that most 

cells express both copies of a gene equally; however, new findings suggest an even more 

complex situation motivating single cell measurements. Apparently, some neurons 

preferentially express the copy of a gene inherited from one parent over the other and this 

can shape how mutated genes are expressed at the cellular level [Huang et al. (2017a)].

One approach to characterize cell type specific gene expression profiles is to perform 

deconvolution on bulk RNA-seq data. Consider an observed gene expression matrix X ∈ 
ℝN×M for N genes in M bulk samples, each containing K different cell types. The goal of 

deconvolution is to find two nonnegative matrices Ã ∈ ℝN×K and W ∈ ℝK×M, such that

X ≈ A
∼

W , (1.1)

where each column of W represents the mixing proportion of K cell types in each bulk 

sample, and each column of Ã represents the average gene expression levels in each type of 
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cells. If the “signature” matrix Ã is available for a set of “barcode genes” in each cell type, 

deconvolution reduces to a regression-type problem that aims at estimating W. Several 

algorithms have been proposed under this setting, including Cibersort [Newman et al. 

(2015)] and csSAM [Shen-Orr et al. (2010)]. However, without knowing the signature 

matrix, deconvolution is highly nontrivial, and this line of methods includes the Deconf 

algorithm [Repsilber et al. (2010)], semi-supervised Nonnegative Matrix Factorization 

algorithm (ssNMF) Gaujoux and Seoighe (2012) and Digital Sorting Algorithm (DSA) 

[Zhong et al. (2013)].

A fundamental challenge of the NMF-based methods is the nonuniqueness of the 

factorization [Donoho and Stodden (2003)]. Therefore, to obtain a biologically meaningful 

result, both ssNMF [Gaujoux and Seoighe (2012)] and DSA [Zhong et al. (2013)] use a set 

of “marker genes” to guide the factorization. A marker gene is a gene that only expresses in 

one cell type. In other words, there are several rows of Ã that are priorly known to be non-

zero at only one column. This is equivalent to the separability assumption introduced by 

Donoho and Stodden (2003) for the uniqueness of NMF. Unfortunately, marker genes are 

rarely known in practice. In fact, extracting high-quality marker genes is a challenging step, 

which is often approached by analyzing purified cells [Abbas et al. (2009)].

On the other hand, single cell RNA sequencing provides gene expression measurements in 

individual cells, yielding a high-resolution view of cellular states that are uncharacterized in 

bulk data. Recent advances in high-throughput technologies have made it possible to profile 

hundreds and thousands of cells [Fan, Fu and Fodor (2015), Kolodziejczyk et al. (2015)]. 

With several extra pre-processing steps including reverse transcription and amplification, the 

single cell mRNA library goes through similar sequencing procedures as the bulk samples, 

and the gene expression levels are measured by the number of mapped reads. With single 

cell RNA-seq data, one can investigate distinct subpopulations of cells, gain better 

understanding of the developmental features of different cell types [Grün et al. (2015)], 

identify cellular differences between healthy and diseased tissues [Kharchenko, Silberstein 

and Scadden (2014)] and infer gene-regulatory interactions [Padovan-Merhar and Raj 

(2013)].

The challenges of modeling single cell RNA-seq data come from high cell-to-cell variation, 

as well as high levels of technical noise during sequencing due to the low amounts of 

starting mRNAs in individual cells. One important bias comes from the so-called “dropout” 

events. A dropout happens when a transcript is not detected due to failure of amplification 

prior to sequencing, leading to a “false” zero in the observed data [Kolodziejczyk et al. 

(2015)]. Given the excessive amount of zero observations in single cell RNA-seq data, it is 

critical to distinguish between (i) the dropout genes where transcripts are missed in 

sequencing and (ii) the “structural zeros” where the genes are truly un-expressed. Modeling 

the dropout events is especially challenging because of their complicated dependency on 

gene expression levels and cell characteristics. Specifically, dropouts are more likely to 

occur in genes expressed at low levels, and certain cells may have systematically higher 

dropout probabilities than others. In addition to dropout events, other challenges in modeling 

single cell data include the over-dispersion due to both cellular and technical variation, as 
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well as high magnitude outliers due to bursts and fluctuations of gene expression levels. We 

refer the readers to Haque et al. (2017) for a more comprehensive review.

Despite the success of many early single-cell studies, statistical tools that account for the 

technical noise in single cell RNA-seq data, especially the dropout events, are limited. There 

have been efforts to analyze single cell data for various purposes. Many methods propose to 

quantify and account for technical noise using spike-ins [Brennecke et al. (2013), Vallejos, 

Marioni and Richardson (2015), Vallejos, Richardson and Marioni (2016)]. However, spike-

ins are usually unavailable in single cell data due to its expenses in practice. For differential 

expression analysis, SCDE [Kharchenko, Silberstein and Scadden (2014)] is based on a 

Bayesian hypothesis testing procedure using a three-component mixture model to capture 

technical noise; subsequently, MAST [Finak et al. (2015)] uses a hurdle model that can 

adjust for various covariates; more recently, Vu et al. (2016) construct a beta-poisson 

mixture model, integrated within a generalized linear model framework. Various relevant 

problems have also been studied, including inferring the spatial localization of single cells in 

complex tissues [Satija et al. (2015)], dimension reduction using Zero-Inflated Factor 

Analysis (ZIFA) [Pierson and Yau (2015)], and clustering unlabeled single cells while 

accounting for technical variation [Prabhakaran, Azizi and Pe’er (2016)]. All of these 

aforementioned methods have been successfully applied to different single cell data sets. 

However, analytical methods that aim at the fundamental problem of imputing dropout genes 

and estimating the cell-type-specific gene expression profiles remain underdeveloped.

In this paper, we propose to jointly analyze single cell and bulk RNA-seq data using the 

Unified RNA-Sequencing Model (URSM), which simultaneously corrects for the dropout 

events in single cell data and performs deconvolution in bulk data. We point out that URSM 

only requires consistent cell types between both data sources, preferably measured on the 

same tissue from subjects with similar ages. It does not require the single cell and bulk data 

being measured on the same subjects, nor does it assume the same proportions of cell types 

in both data sets. Given a single cell data set, usually there are existing bulk data measured 

on the same tissue that can be modeled jointly using URSM. For example, BrainSpan 

provides extensive gene expression data on adult and developing human brains [Sunkin et al. 

(2013)], and GTex establishes a human RNA-seq gene expression database across 43 tissues 

[GTEx Consortium (2013)].

By integrating single cell and bulk RNA-seq data, URSM borrows the strength from both 

data sources, and is able to (i) obtain reliable estimation of cell type specific gene expression 

profiles, (ii) infer the dropout entries in single cell data and (iii) infer the mixing proportions 

of different cell types in bulk samples. Our framework explicitly models the dropout events 

in single cell data, and captures the relationship between dropout probability and expected 

gene expression levels. By involving high-quality bulk data, URSM achieves more accurate 

estimation of cellular expression profiles than using only single cell data. By incorporating 

the single cell data, URSM provides, for the first time, deconvolution of the bulk samples 

without going through the error-prone procedure of estimating marker genes. To the best of 

our knowledge, this is the first model that jointly analyzes these two types of RNA-seq data. 

We will illustrate in simulation (Section 4) and real-world data (Section 5) that URSM 
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successfully corrects for the dropouts in single cell data, and provides reliable deconvolution 

for bulk samples.

2. A unified statistical model

Suppose RNA-sequencing is conducted on N genes and K types of cells are of interest. Then 

bulk and single cell RNA-seq data can be linked together by a common profile matrix A ∈ 
ℝN×K, where the kth column A·k represents the expected relative expression levels of N 
genes in the kth type of cells, such that each column sums to one. Note that by considering 

the relative expression levels, the profile matrix A does not depend on sequencing depths, 

and thus remains the same in both data sources. The two data sources provide two different 

views on the profile matrix A. In single cell data, the observations are independent 

realizations of different columns of A with extra noise due to dropout events. In bulk data, 

the expected relative expression levels for a mixture sample are weighted sums of columns 

of A, where the weights correspond to mixing proportions of different cell types. Here, we 

propose URSM to analyze the bulk and single cell RNA-seq data together, which borrows 

the strength from both data sets and achieves more accurate estimation on the profile matrix. 

This further enhances the performance of deconvolving bulk samples, as well as inferring 

and imputing the dropout genes in single cells.

The plate model of URSM for generating single cell and bulk RNA-seq data is given in 

Figure 1. Specifically, for single cell data, let Y ∈ ℝN×L represent the measured expression 

levels of N genes in L single cells, where the entries are RNA-seq counts. To model the 

dropout events, we introduce the binary observability variable S ∈ {0, 1}N×L, where Sil = 0 

if gene i in cell l is dropped out, and Sil = 1 if it is properly amplified. For each cell l, let Gl 

∈ {1, …, K} denote its type, then the vector of gene expression Y·l ∈ ℝN is assumed to 

follow a Multinomial distribution with probability vector pl, and the sequencing depth 

Rl = ∑i = 1
N Y il is the number of trials. Without dropout events, pl would be the corresponding 

column of the profile matrix, A·Gl, which is the true relative expression levels for cell type 

Gl. With the existence of dropouts, pl becomes the element-wise product of A·Gl and S·l, 

which is then normalized to sum to one. To capture the dependency between dropout 

probabilities and gene expression levels, the observation probability πil = ℙ(Sil = 1) is 

modeled as a logistic function of Ai, Gl,

πil = logistic(κl + τlAi, Gl
), (2.1)

so that lowly expressed genes have high probabilities of being dropped out, where the 

coefficients (κl, τl) are cell-dependent that capture the cellular heterogeneity. Under this 

model, the set of dropout entries and structural zeros are defined as
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dropouts = (i, l):Sil = 0 ,
structural zeros = (i, l):Sil = 1, Y il = 0 .

(2.2)

For bulk data, let X ∈ ℝN×M represent the RNA-seq counts of N genes in M bulk samples. 

For the j th bulk sample, let W·j ∈ ℝK denote the mixing proportions of K cell types in the 

sample, satisfying ∑k = 1
K Wk j = 1. Then the gene expression vector X·j ∈ ℝN is assumed to 

also follow a Multinomial distribution, where the probability vector is the weighted sum of 

K columns of A with the weights being W·j, and the number of trials is the sequencing depth 

for sample j, defined as R j = ∑i = 1
N Xi j.

For the hierarchical model setting, we assign the conjugate Dirichlet prior for the mixing 

proportions W·j, and Gaussian priors for the cell-dependent dropout parameters (κl, τl). 

Here, we adopt an empirical Bayes’ approach, where the parameters are estimated by 

maximum-likelihood-estimations (MLE) using the expectation-maximization (EM) 

algorithm. Using this framework, our goal is threefold: (i) learn the profile matrix A as part 

of the model parameters, which characterizes the cellular gene expression profiles, (ii) make 

posterior inference on the dropout status S for single cell data, which can be used to identify 

dropout entries and (iii) make posterior inference on the mixing proportions W in bulk 

samples. Finally, the inferred dropout entries in single cell data can be imputed by their 

expected values using the estimated A and sequencing depths Rl.

Full model specification

• Bulk data

– W · j ∼i.i.d. Dirichlet(α) for j = 1, …, M, where α ∈ ℝK, α ≥ 0.

– X · j ∣ W · j ∼indep. Multinomial(R j, AW · j) for j = 1, …, M, where 

R j = ∑i = 1
N Xi j.

• Single cell data

– κl ∼i.i.d. N(μκ, σκ
2), τl ∼i.i.d. N(μτ, στ

2) for l = 1, …, L.

– πil = logistic(κl + τl Ai, Gl), where Gl ∈ {1, …, K} is the type of the lth 

cell.

– Sil ∣ κl, τl ∼indep. Bernoulli(πil) for i = 1, …, N; l = 1, …, L.

– Y · l ∣ S · l, ∼indep. Multinomial(Rl, pl) for l = 1, …, L, where Rl = ∑i = 1
N Y il,

pl = (pil)i = 1, …, N
, where pil =

Ai, Gl
Sil

∑n = 1
N An, Gl

Snl
.
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Remark 1—We assume all entries in A to be strictly positive. In principle, one can allow 

some entries Aik to be exactly zero, but this will lead to a degenerate multinomial 

distribution and complicate the likelihood function. In addition, making inference on Sil 

when Ai, Gl = 0 is an ill-defined problem. If Aik = 0, then we will have Xil = 0 for all type-k 
cells, but such structure rarely appears in real data. In practice, it is usually helpful to use 

some small positive numbers rather than exact zeros to capture the background signal in 

sequencing processes [Kharchenko, Silberstein and Scadden (2014)].

Remark 2—It is straightforward to use one part of URSM when only one data source is 

available. In Section 4, we will show the performance of the submodel for single cell data. It 

is also possible to use the submodel for bulk data when only bulk data are available, but 

extra information about marker genes needs to be incorporated in this scenario to avoid the 

non-identifiability issue, as explained in Section 1.

3. Inference and estimation: EM algorithm

This section presents an expectation-maximization (EM) algorithm [Dempster, Laird and 

Rubin (1977)] for fitting the maximum likelihood estimation (MLE) of the parameters 

θ = (A, α, μκ, σκ
2, μτ, στ

2), as well as a Gibbs sampling algorithm for posterior inference on 

latent variables H = (W, S, κ, τ). As illustrated in Section 2, the key values of scientific 

interests include (i) an estimate of the profile matrix A that characterizes the cellular gene 

expression profiles, (ii) [S|Y, θ], the inferred dropout probability at each entry in single cell 

data and (iii) [W|X, θ], the inferred mixture proportion of bulk samples.

The main difficulty of handling our model is the intractable posterior distributions due to 

nonconjugacy. Therefore, approximate inference needs to be performed. One of the main 

methods for approximate inference in Bayesian modeling is Monte Carlo Markov Chain 

(MCMC) sampling [Gelfand and Smith (1990)], where a Markov chain on latent variables is 

constructed, with stationary distribution being the true posterior. After obtaining a long 

enough chain, the posterior can be approximated with empirical estimation. Gibbs sampling 

[Casella and George (1992), Geman and Geman (1984)] is one of the most widely used 

forms of MCMC algorithms given its simplicity and efficiency. On the other hand, 

variational methods form an alternative line for approximate inference, where the posterior 

is approximated analytically by a family of tractable distributions [Blei, Kucukelbir and 

McAuliffe (2017), Jordan et al. (1999), Wainwright and Jordan (2008)]. While being 

computationally scalable in many large-scale problems, variational methods are inherently 

less accurate due to the inevitable gap between the variational distributions and the true 

posterior distribution.

In this paper, we present a Gibbs sampling algorithm for approximate inference on latent 

variables using the data augmentation trick. This algorithm can also be used in the E-step of 

the EM procedure, leading to a Gibbs-EM (GEM) algorithm for obtaining MLEs of model 

parameters [Dupuy and Bach (2016)]. The specific steps are outlined in Section 3.1 and 

Section 3.2, and more details can be found in the supplement [Zhu et al. (2018)]. Finally, we 

point out that one can also proceed with variational inference, but due to space limitation, we 

do not pursue this approach in detail.
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3.1. E-step: Gibbs sampling

The latent variables for bulk data and single cell data are conditionally independent given 

observed data X, Y and parameters. Therefore, Gibbs sampling can be performed on the two 

data sources in parallel. In this section, we describe the sampling procedure for the two parts 

separately.

Bulk data—To obtain the posterior inference of W (the mixing proportions) in bulk data, 

we rewrite the model to be mixture of multinomials by introducing the augmented latent 

variables Z and d as follows:

W · j ∼i.i.d. Dirichlet(α), j = 1, …, M,

Zr j ∼i.i.d. Multinomial(1, W · j), r = 1, …, R j,

dr j ∼indep. Multinomial(1, A · Zr j
), r = 1, …, R j,

Xi j = ∑
r = 1

R j
I{dr j = i}, i = 1, …, N, j = 1, …, M .

(3.1)

Note that this model is closely related to the Latent Dirichlet Allocation (LDA) model [Blei, 

Ng and Jordan (2003)] in topic modeling, if we view a gene as a word, a cell type as a topic 

and a bulk sample as a document. Although the Gibbs sampling algorithm has been 

developed for LDA in Griffiths and Steyvers (2004), there are two difficulties that prevent us 

from directly applying this algorithm to our model. First, the LDA model assumes 

observations of drj, which are the actual words in an document, but in RNA-seq data, only 

the final counts Xij are observed. Second, the sequencing depths Rj ’s are typically large in 

real data, so it will be extremely computationally demanding to keep track of Zrj and drj. 

Therefore, we propose a modified algorithm by defining another set of augmented latent 

variables

Z∼i j, k: = ∑
r:dr j = i

I
Zr j = k

and Z∼i j: = (Z∼i j, k) ∈ ℝK, (3.2)

and it can be shown that
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W · j ∣ W · ( − j), Z∼, X Dirichlet α + ∑
i = 1

N
Z∼i j ,

Z∼i j ∣ Z∼( − i j), W , X Multinomial Xi j,
Ai · ⊙ W · j

∑k = 1
K AikWk j

,

(3.3)

where ⊙ denotes element-wise multiplication, and the index (–i) denotes everything else 

other than i.

Single cell data—As for posterior inference of S, κ, τ in single cell data, note that the first 

part of the model can be rewritten as

(κl, τl) N(μ, ∑), where μ = (μκ, μτ), ∑ = Diag(σκ
2, στ

2),

Sil ∣ κl, τl Bernoulli(logistic(ψ il)), where ψ il = κl + τlAi, Gl
,

(3.4)

which has the same form as a Bayesian logistic regression, with covariates being (1, Ai, Gl). 

Therefore, following the recent development of Gibbs’ sampling technique in this area 

[Polson, Scott and Windle (2013)], we introduce a set of augmented latent variables ω, and 

the conditional complete posteriors can be shown to be

ωil ∣ ω( − il), S, Y , κ, τ Polya‐Gamma(1, ψ il),
(κl, τl) ∣ κ( − l), τ( − l), ω, S, Y N(mωl, Vωl

−1),
Sil ∣ S( − il), ω, S, κ, τ, Y Bernoulli(bil),

(3.5)

where
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ψil = κl + τlAi, Gl
,

Vωl =
∑

i = 1

N
ωil + σκ

−2 ∑
i = 1

N
ωilAi, Gl

∑
i = 1

N
ωilAi, Gl

∑
i = 1

N
ωilAi, Gl

2 + στ
−2

,

mωl = Vωl
−1

∑
i = 1

N
Sil − N /2 + μκ /σκ

2

∑
i = 1

N
SilAi, Gl

− 1/2 + μτ /στ
2

,

bil =

1, if Yil > 0,

logit ψil + Rl log
∑n ≠ i An, Gl

Snl

Ai, Gl
+ ∑n ≠ i An, Gl

Snl
, if Yil > 0.

3.2. M-step

In the M-step of GEM algorithm, the parameters are updated to maximize a lower bound on 

the expected complete log likelihood function, or the so-called Evidence Lower BOund 

(ELBO), where the posterior expectation Q is estimated using Gibbs samples obtained in 

the E-step. The optimal dropout parameters (μκ, σκ
2, μτ, στ

2) have the following closed forms:

μκ = 1
L ∑

l = 1

L
𝔼Q(κl), σκ

2 = 1
L ∑

l = 1

L
𝔼Q[(κl − μκ)2],

μτ = 1
L ∑

l = 1

L
𝔼Q(τl), στ

2 = 1
L ∑

l = 1

L
𝔼Q[(τl − μτ)

2] .
(3.6)

For A and α, there are no closed form solutions, and we use the projected gradient ascent 

algorithm:

A · k
new Proj(A · k

old + t · ∇ELBO(A · k
old)), αnew Proj(αold + t · ∇ELBO(αold)), (3.7)

where the step size t is determined by backtracking line search, and the Proj function is the 

projection onto the feasible set:

Aik ≥ εA, ∑
i = 1

N
Aik = 1, αk ≥ εα, (3.8)
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where εA, εα > 0 are some small predetermined constants. The gradients are computed as

∂ELBO
∂Aik

= ∑
j = 1

M 𝔼Q[Z∼i j, k]
Aik

+ ∑
l:Gl = k

Y il𝔼Q(Sil)
Aik

− 𝔼Q[ωilτl
2]Aik −

𝔼Q(Sil)Rl
ul

+ 𝔼Q Sil − 1
2 τl − ωilτlκl , ∂ELBO

∂αk
= ∑

j = 1

M
𝔼Q[ log Wk j] + M Ψ ∑

k = 1

K
αk − Ψ(αk) ,

(3.9)

where ul = ∑i = 1
N Ai, Gl

𝔼Q(Sil) and Ψ(·) is the digamma function. More detailed derivations 

can be found in the supplement.

4. Simulation results

In this section, we evaluate the performance of URSM in synthetic datasets. We focus on the 

accuracy of recovering the profile matrix A and mixing proportions W, as well as the ability 

of distinguishing between dropout entries and structural zeros using the posterior inference 

of S.

4.1. Settings

Let N be the number of genes. The sequencing depths for bulk samples are independently 

generated from Poisson(50N). To account for the fact that the sequencing depths of single 

cell data are usually much lower and highly variable, they are generated from the Negative 

Binomial with mean 2N and dispersion parameter 2.

The cell-type specific profile matrix A is generated as follows: (i) simulate all entries 

independently from log-normal with μ = 0, σ = 1, (ii) for each cell type k, let Nm = 10 genes 

be marker genes, that is, set Ail = 0 for l ≠ k, (iii) for each cell type k, let Na = 10 genes be 

anti-marker genes, that is, set Aik = 0, (iv) let another set of Nh = 30 genes be housekeeping 

genes that have the same expression levels in all cell types and (v) finally, properly 

normalize A so that each column sums to 1. Specifically, in each column, we normalize the 

Nh housekeeping genes such that they sum to Nh/N, and the remaining genes sum to 1 – 

Nh/N.

Finally, the observation status {Sil}il for each gene i in each single cell l is simulated 

independently from Bernoulli(πil). Recall that Sil = 0 indicates a dropout, and the dropout 

probability is determined by

1 − πil = 1 − logistic(κl + τlAi, Gl
), (4.1)

where Gl ∈ {1, …, K} is the type of cell l. In the following sections, κl ’s are independently 

generated from Normal(−1, 0.52), and τl ’s are independently generated from Normal(1.5N,

(0.15N)2). Note that by construction, the mean of each column of A, Ā·, k, is always 1/N. 
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Therefore, [κl + τl Ā·, Gl] = 0.5 for each cell, which corresponds to an average dropout 

probability of 37.8%, and the maximal dropout probability is 73.1% when Aik = 0.

4.2. Estimation of profile matrix

In this section, we illustrate that URSM provides accurate estimation on the profile matrix A 
after correcting for dropouts and utilizing bulk samples. Following the simulation settings 

specified in Section 4.1, we generate L = 100 single cells and M = 150 bulk samples on N = 

200 genes. We consider K = 3 cell types. For single cells, 30%, 30% and 40% of the cells 

are assigned to the 3 different types, respectively. For bulk samples, the hyperparameter of 

the mixing proportions is set to α = (1, 2, 3). The dropout probability curves, simulated 

following equation (4.1), are shown in Figure 2(a). The simulated single cell data has 64.6% 

entries being zero.

A naive method to estimate the profile matrix A is to use the sample means of single cell 

expression levels, after normalizing by their sequencing depths. Specifically, recall that Y ∈ 
ℝN×L represents the observed expression levels in single cells, {Gl}l=1,…, L represent the cell 

types and {Rl}l=1,…, L are the sequencing depths, defined as Rl = Σi Yil. Then an entry Aik 

can be estimated by

Aik
naive = 1

# {l:Gl = k} ∑
l:Gl = k

Y il
Rl

. (4.2)

However, due to the presence of dropout events and the dependency between πil and A, this 

naive sample mean estimation is biased, with L1 loss 0.81 [Figure 2(b)], where the L1 loss is 

computed as Σi, k |Âik – Aik|. On the other hand, by explicitly modeling the occurrence of 

dropout events and capturing the relationship between dropout probability and expected 

expression level, a submodel of URSM that only uses single cell data successfully corrects 

for the bias, and substantially reduces the loss to 0.27 [Figure 2(c)]. Finally, by integrating 

the bulk data, URSM further improves the estimation and further reduces the L1 loss to 0.17 

[Figure 2(d)].

4.3. Deconvolution of bulk samples

Now we further examine the model performance on inferring the mixing proportions W in 

bulk samples, using the same simulation setting as in Section 4.2. We compare the 

performance of URSM to three widely used deconvolution methods: Digital Sorting 

Algorithm (DSA) [Zhong et al. (2013)], semi-supervised Nonnegative Matrix Factorization 

(ssNMF) [Gaujoux and Seoighe (2012)] and Cibersort [Newman et al. (2015)].

Both DSA and ssNMF rely heavily on a set of given marker genes as input to guide the 

matrix factorization, where a “marker gene” is only expected to express in one cell type. 

Unfortunately, marker genes are rarely known in practice, and a widely adopted procedure is 

to estimate the list of marker genes from purified cells by selecting those with the most 

different expression levels across cell types. Here, we mimic this procedure by estimating a 
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list of marker genes from single cell data to guide DSA and ssNMF. Specifically, we adopt 

the method in Abbas et al. (2009), which calculates a p-value of each gene by comparing its 

expression level in the highest and second-highest types of cells, then selects the group of 

genes with the smallest p-values. Figure 3 shows the L1 loss of estimating A and W using 

DSA and ssNMF with different sets of estimated marker genes with p-values smaller than 

{10−8, …, 10−3}, and the number of selected marker genes is listed in Table 1. It is clear that 

these two algorithms are sensitive to the input marker genes. For comparison, we also 

evaluate the performances of DSA and ssNMF when the oracle information of true marker 

genes is available.

On the other hand, Cibersort requires a “signature” matrix containing the expression levels 

of a group of “barcode” genes that collectively distinguish between different cell types. Note 

that this essentially requires knowing part of the profile matrix A, which contains much 

more information than the marker gene list. Here, we use the estimated Â from our unified 

model as the signature matrix for Cibersort. We report the L1 loss of estimating W when 

Cibersort only takes the expression levels of the selected marker genes, as well as when 

Cibersort uses the entire Â. Figure 3(b) suggests that Cibersort prefers larger number of 

barcode genes as input.

Finally, URSM automatically utilizes the information in single cell data to guide 

deconvolution. Figure 3 illustrates that URSM and Cibersort usually outperform DSA and 

ssNMF using estimated marker genes, and achieve comparable L1 loss even when DSA and 

ssNMF have the oracle information of marker genes.

4.4. Inference of dropout entries in single cell data

Next, we present the inference on dropout entries in single cell data, again using the same 

setting as in Section 4.2. Here, our goal is to distinguish between dropout entries and 

structural zeros, as defined in equation (2.2). Note that we only need to make inference for 

locations where the observed expression levels are zero, that is, on the set {(i, l) : Yil = 0}. 

Recall that Sil = 0 if gene i is dropped out in cell l, and our model provides the estimated 

posterior mean of S:

π∼il = 𝔼(Sil ∣ X, Y , θ), (4.3)

where θ denotes the model parameters. Hence a natural approach is to predict the entries 

with small π̃
il to be dropouts.

A potential competitor for imputing dropout entries is the Nonnegative Matrix Factorization 

(NMF) [Lee and Seung (2000)]. One can construct a low-rank approximation to the single 

cell expression matrix Y ∈ ℝN×L using NMF. Intuitively, the approximated values tend to be 

higher at dropout entries, and closer to zero at structural-zero entries. As shown in Figure 

4(a), if the rank is properly specified, this simple NMF-based method demonstrates certain 

ability to distinguish between dropout genes and structural zeros, but not as well as URSM. 

In addition, in order to further impute the dropout entries, a good estimation of the profile 

matrix A is also needed. Figure 4(b) shows the estimation of A by taking sample average as 
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in equation (4.2), with Y substituted by the NMF approximation. It is clear that the NMF 

approach fails to correct for the bias introduced by the dropout events, while URSM 

succeeds in both identifying dropout entries and obtaining an unbiased estimation of A 
[recall Figure 2(d)].

4.5. Robustness

Finally, we demonstrate the robustness of our model. We apply URSM under the scenario 

where the number of cell types in single cell data Ksc is not equal to the number of cell types 

in bulk data Kbk, as well as when the number of genes N grows. URSM always takes K = 

max{Ksc, Kbk} as input, and estimates Âunif ∈ ℝN×K and Ŵunif ∈ ℝK×M. When Ksc > Kbk, 

it is straightforward to directly apply URSM, and ideally the estimated Ŵunif will assign 

zero proportions to the missing cell types in bulk samples. However, when Ksc < Kbk, 

without extra information, deconvolution is an ill-defined problem because of the 

nonidentifiability issue (see Section 1 for more details). In order to find a biological 

meaningful solution, we follow the idea in ssNMF [Gaujoux and Seoighe (2012)] and use a 

set of marker genes to initialize the parameters for the EM algorithm by setting the 

corresponding entries in A to be zero. We consider the scenario where for each cell type, 5 

true marker genes and 3 imperfect marker genes are used for initialization. The imperfect 

marker genes are selected from the nonmarker genes, where we pick the ones with the 

largest difference between the highest and second highest expression levels across cell types 

in A.

Following Section 4.1, we simulate M = 150 bulk samples, where the mixing proportions in 

bulk samples are generated from Dir(α) with α = (1, …, Kbk). For single cell data, we 

generate 40 cells in the majority cell type, and 30 cells in each of the remaining Ksc – 1 

types. To reduce the computation load and enhance stability, we use the maximum a 

posteriori estimation for W in the E-step for bulk samples. More details are included in the 

supplement.

Again, we compare URSM to DSA, ssNMF and Cibersort. Both DSA and ss-NMF require a 

set of marker genes as input, and we report their performances under two scenarios: (i) the 

oracle scenario where 5 true marker genes are provided for each cell type and (ii) a more 

realistic scenario as used by our uniform model, where 5 true marker genes and 3 imperfect 

marker genes are provided for each cell type. Note that when Ksc > Kbk, bulk samples 

contain no information of the expression patterns for the missing cell types, so we allow 

DSA and ssNMF to only deconvolve Kbk cell types in these cases. We point out that this 

strategy favors the DSA and ssNMF methods by providing them extra information of the 

missing cell types in bulk samples. For Cibersort, as in the previous sections, we use the 

estimated profile matrix obtained from our uniform model as the input signature matrix.

Figure 5(a) summarizes the performance of different models under various choices of Ksc 

and Kbk when N = 200 in 10 repetitions. In order to make a comparable comparison across 

different K’s, we report the average per cell type L1 loss, that is, the average L1 loss ||Â·, k – 

A·, k||1 and ||Ŵ·, k – W·, k||1 across all columns k. We see that the performance of URSM 

remains robust under different settings, and is usually comparable to DSA and ssNMF 

algorithms even when the latter two algorithms have the oracle marker gene information. 
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Not surprisingly, Cibersort has similar performance as URSM because it uses our estimated 

Âunif as input. We point out that when the sample mean estimation Ânaive [equation (4.2)] is 

given to Cibersort as the signature matrix, the performance is unstable and it cannot provide 

deconvolution when Ksc < Kbk. Finally, we also demonstrate the performance of different 

models when N = {200, 500, 1000}, where we set Ksc = Kbk = 3. Figure 5(b) verifies that 

URSM remains robust with larger numbers of genes.

5. Application to fetal brain data

5.1. Data preprocessing

In this section, we apply URSM to gene expression measured on fetal brains. The single cell 

RNA-seq data comes from Camp et al. (2015), where 226 cells from fetal brains are 

sequenced on 18,927 genes. The authors have removed endothelial cells and interneurons, 

and the remaining 220 single cells are labeled into three types: 40 apical progenitors (APs), 

19 basal progenitors (BPs) and 161 neurons (Ns). In addition, the authors have normalized 

the RNA-seq counts using FPKM (Fragments Per Kilobase of exon per Million fragments 

mapped) and performed log-transformation by log2(x + 1). We refer the readers to Camp et 

al. (2015) for more details of the single cell data preprocessing. On the other hand, 

microarray bulk gene expression data on fetal brains is provided by the BrainSpan atlas 

Kang et al. (2011). Within the same window of development, 12 to 13 post-conception 

week, 72 bulk samples from prefrontal cortex are measured on 16,947 genes. To apply our 

model, the single cell RNA-seq data are transformed back to linear scale by 2x – 1, and all 

measurements are truncated to integers. To approximate the RNA-seq counts in bulk 

samples, we transform the BrainSpan microarray data in the same way and treat them as 

pseudo-RNA-seq counts. The resulting bulk samples have an average pseudo sequencing 

depth of 5.5 × 106, which is 26 times larger than the average effective sequencing depth in 

single cells, 2.1 × 105, where the effective sequencing depth is calculated as the sum of 

FPKM across all genes in each single cell.

To reduce computational load, we only focus on genes with significantly different 

expression levels among the three cell types. Specifically, we use the 315 so-called PC genes 

proposed in Camp et al. (2015), which have the largest loadings in a Principal Component 

Analysis (PCA) and account for the majority of cellular variation. After restricting to the 

overlapping genes that are also sequenced in BrainSpan bulk samples, a final list of 273 PC 

genes are obtained and used in the following analyses. When restricting to these 273 genes, 

the average effective sequencing depth (i.e., the sum of RNA-seq counts in each sample) is 

3.2 × 105(sd = 1.6 × 104) in BrainSpan tissues, and 1.4 × 104(sd = 4.3 × 103) in single cells.

Due to the nature of active cell development from APs and BPs to Neurons in fetal brains, 

we expect to have a few cells that are actively transitioning between two cell types, whose 

labels are ambiguous. We first remove these ambiguously labeled cells from our analysis. 

Specifically, we project the single cells to the leading 2-dimensional principal subspace, 

where the pseudo developing time is constructed using the Monocle algorithm [Trapnell et 

al. (2014)]. Based on the results, the 3 BPs that are close to AP or Neuron clusters are 

removed, so are the 4 Neurons that are close to AP or BP clusters [Figure 6(b)]. The 
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remaining 213 single cells are retained for analysis, and their gene expression levels on the 

273 PC genes are visualized in Figure 6(a).

5.2. Imputation of single cell data

Here, we apply URSM to identify and impute the dropout entries in single cell data. Note 

that in order to distinguish between dropout entries and structural zeros in single cell data 

[equation (2.2)], we only need to focus on the entries where the observed gene expression 

levels are zero. The inference of dropout entries is based on the estimated posterior 

expectation of (Sil |X, Y, θ). As a result, among the 37,771 zero-observation entries, 45.7% 

are inferred to be dropouts with probability one [Figure 6(c)]. These entries are then imputed 

by their expected values, calculated using the corresponding entries in the estimated profile 

matrix A multiplied by the sequencing depths of the corresponding cells. To illustrate the 

impact of imputation, we apply PCA again on the imputed data. Figure 6(d) visualizes the 

cells in the first two principal components, and the clusters for different cell types are more 

clearly separated.

5.3. Deconvolution of bulk samples

Finally, we present the deconvolution results of bulk samples using URSM. According to the 

prior knowledge that the proportions in bulk samples should be roughly consistent with that 

in single cell data, the mixing parameter α is initialized at (2 × 104, 104, 7 × 104) for AP, BP 

and Neurons. The scale of α is chosen to be comparable to the average effective sequencing 

depths of 1.4×104 among all single cells. Figure 7(a) shows the inferred mixing proportions 

of APs, BPs and Neurons in each of the 72 bulk samples, with an average of 17.7% AP cells, 

8.7% BP cells and 73.6% Neurons.

For comparison, we also apply the Digital Sorting Algorithm (DSA) [Zhong et al. (2013)], 

semi-supervised Nonnegative Matrix Factorization (ssNMF) [Gaujoux and Seoighe (2012)] 

and Cibersort [Newman et al. (2015)] on the BrainSpan bulk samples. The marker genes for 

DSA and ssNMF are selected by comparing each gene’s expression level in the highest and 

second-highest types of cells in the single cell data, and genes with p-value < 10−5 are 

treated as markers [Abbas et al. (2009)]. This procedure leads to 21 AP markers, 6 BP 

markers and 28 Neuron markers, which serve as input to DSA and ssNMF. For Cibersort, the 

input signature matrix is provided by the estimated Â from URSM. Figure 7(b)–(d) suggest 

that the proportions estimated by ssNMF tend to have too large variations, while DSA 

overestimates the neural composition, and Cibersort obtains similar results as URSM.

As another perspective to verify the deconvolution results, we use the intuition that the true 

proportions of a cell type should be correlated with the expression levels of its marker genes 

in bulk samples. To check whether this holds in the results, we first normalize each bulk 

sample by their effective sequencing depths, such that the normalized expressions sum to 

one in each sample. We focus on 7 genes based on biological knowledge, including the 

radial glia (RG) markers PAX6 and GLI3 that are expected to only express in AP and BP 

cells, the RG marker HES1 that is mostly expressed in AP cells, the early BP marker HES6, 

as well as neuronal genes NEUROD6, BCL11B and MYT1L [Camp et al. (2015)]. Table 2 

summarizes the correlations calculated by estimated proportions using different methods, 
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and we see that URSM and Cibersort usually achieve the highest correlations. Finally, we 

point out that if Cibersort uses the naive sample mean estimation from single cell data as the 

signature matrix, it will fail to identify BP cells and achieve much lower correlations.

6. Discussion

In this paper, we propose URSM, a unified framework to jointly analyze two types of RNA-

seq data: the single cell data and the bulk data. URSM utilizes the strengths from both data 

sources, provides a more accurate estimation of cell type specific gene expression profiles, 

and successfully corrects for the technical noise of dropout events in single cell data. As a 

side product, URSM also achieves deconvolution of bulk data by automatically 

incorporating the cellular gene expression patterns.

Dropouts present one of the biggest challenges to modeling scRNA-seq data. URSM 

assumes a dependency between expression level and the probability of observing dropout 

and aims, probabilistically, to infer which observations are likely dropouts. There are a 

number of alternative approaches in the literature; for a discussion see Huang et al. (2017b) 

and Vallejos et al. (2017). The most common statistical approach is to explicitly model the 

zero-inflation process, for example, SCDE [Kharchenko, Silberstein and Scadden (2014)], 

MAST [Finak et al. (2015)] and ZIFA [Pierson and Yau (2015)]. Some methods assess the 

fraction of dropouts per gene, other methods, such as CIDR [Lin, Troup and Ho (2017)], 

take this process to the next step by imputing the dropout values. SAVER [Huang et al. 

(2017b)] avoids trying to determine which observations are dropouts and aims to impute any 

poorly measured value using the gene-to-gene correlation pattern, and other features in the 

cell-type specific samples.

We apply URSM to two gene expression data sets from fetal brains, and obtain promising 

results on imputing single cell RNA-seq data and deconvolving bulk samples. With more 

upcoming single cell data on fetal brains, it would be of great scientific interest to apply 

URSM to specimen from different brain developing periods, which will aid our 

understanding on gene expression patterns during early brain development and their impact 

on many complex human disorders. In practice, the degrees of heterogeneity can vary for 

different tissues. For example, liver tissues may contain more homogeneous cell types. In all 

cases, URSM can be applied to obtain an accurate estimate of the cell type specific profile.

There are many existing bulk RNA-seq data sets for various human and nonhuman tissues 

that can be paired with different single cell data and jointly modeled using this unified 

framework. We also conduct simulation studies to demonstrate that as long as most cell 

types are consistent across the two data sources, URSM is robust to subtle mismatched cell 

types.

As for computation, the bottleneck is the Gibbs sampling step, which scales linearly with N, 
M, L and K. In practice, we find that a few hundred Gibbs samples and 50–100 EM 

iterations are usually enough to obtain sensible results. In our experiment, for 100 single 

cells and 150 bulk samples, one EM iteration with 150 Gibbs samples takes about 3 minutes 

for 200 genes and 12 minutes for 1000 genes using a single core on a computer equipped 
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with an AMD Opteron(tm) Processor 6320 @ 2.8 GHz. It is straightforward to further 

reduce the computation time by utilizing the conditional independency to parallelize the 

Gibbs sampling procedure.

Many downstream analyses can be conducted with this framework. In particular, URSM 

provides accurate estimates of the cell type specific profile matrix, which can be used for 

differential expression analysis between diseased and control samples. One can also apply 

URSM to single cells sequenced at different developmental periods to study the 

developmental trajectories of the cellular profiles.

As technologies improve and costs decline, single cell analysis can move to the new level by 

incorporating differential expression by maternal or paternal source of the chromosome. 

Such information can be captured if there are genetic differences between parents in the 

genes. Moreover, genetic variation can affect expression of genes; already experiments are 

being performed to determine which genetic variants are associated with changes in single 

cell expression. This would allow analysis of expression based on parental origin of each 

copy of the gene. These sources of variation are ignored in our model. Refining and 

extending scRNA-seq analytical tools to accommodate these sources of variation is one of 

the challenges for the future.

In this paper, we present our model assuming a given number of cell types K. In the situation 

where K is not known a priori, one can first run the model using a larger value of K, examine 

the clustering of single cells after imputation, and then reduce to a reasonable choice of K by 

combining cells from similar clusters.

Finally, we point out that the current model is developed under the setting of supervised 

learning where the labels for single cells are known. One can extend this framework to 

conduct unsupervised cell clustering by introducing extra latent variables for cell labels in 

the hierarchical model. In addition, by the nature of the Multinomial distribution, the current 

model is fully determined by its first moment. Therefore, the imputation of single cell data 

may be further improved by introducing gene-gene correlations to the model. We leave the 

exploration in these directions to future work.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plate model of URSM, with both single cell data (on the left) and bulk samples (on the 

right). The two greyed nodes X and Y represent observed gene expression levels. Node S is 

a binary variable representing dropout status in single cells, and node W represents the 

mixing proportions in bulk samples. The node π representing observation probability is 

double-circled because it is deterministic, and all model parameters are shown without 

circles, including the profile matrix A that links the two data sources.
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Fig. 2. 
(a) Simulated logistic dropout probability curves for 100 single cells, as defined in equation 

(4.1). (b)–(d) True profile matrix A versus the estimated Â, plotted in the log scale, using (i) 

the naive sample mean estimation [equation (4.2)], (ii) a submodel using only single cell 

data and (iii) URSM with both single cell and bulk data. The L1 loss Σi, k |Âik – Aik| is 

reported on the top.
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Fig. 3. 
The L1 loss of recovering (a) the profile matrix, Σi, k |Âik – Aik|, and (b) mixing proportions, 

Σk, j |Ŵkj – Wkj |. We evaluate DSA and ssNMF when the marker genes are extracted from 

single cell data using different thresholds of p-values, as well as under the oracle condition 

where the true marker genes are given. We evaluate Cibersort on estimating W when the 

input signature matrix is based on the estimated Â from URSM. We report its performance 

when the entire Â is used (“Cibersort all”), as well as when only the estimated marker genes 

are used (“Cibersort”). The performance of URSM is plotted with a square in both panels, 

which does not depend on thresholding p-values.
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Fig. 4. 
(a) ROC curves of identifying dropout entries in single cell data. (b) True profile matrix A 

versus the sample average of a rank-3 NMF approximation, plotted in the log scale. The L1 

loss Σi, k |Âik – Aik| is reported on the top.
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Fig. 5. 
The average per cell type L1 loss of recovering the profile matrix A and the mixing 

proportions W in 10 repetitions, with the standard deviations shown by the error bars, when 

(a) Ksc, Kbk ∈ {3, 4, 5} with N = 200 genes; (b) N = {200, 500, 1000} with Ksc = Kbk = 3. 

Each figure shows the performance of (i) URSM, (ii) DSA and ssNMF with 5 true marker 

genes and 3 imperfect marker genes per cell type as input and (iii) DSA and ssNMF under 

the oracle scenario where 5 true marker genes per cell type are provided. We also report the 

performance of Cibersort for estimating W using the estimated Âunif from URSM as the 

input signature matrix.
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Fig. 6. 
(a) Single cell gene expressions (log2(FPKM + 1)) after removing 7 ambiguously labeled 

cells. Rows are 213 cells and columns are 273 genes. (b) PCA applied on the original single 

cell data with 220 labeled cells using 273 PC genes, where the Monocle algorithm is applied 

to construct pseudo developmental times. 7 cells are identified to be ambiguously labeled 

and are removed from our analyses (marked as triangles). (c) Entries in cleaned single cell 

data that are inferred to be dropout and imputed (marked in blue) versus the entries that are 

inferred to be structural zeros (marked in white) in cleaned single cell data. The entries with 

positive expression levels have no need for posterior inference, and are marked in grey. (d) 

After imputing dropout genes, PCA is conducted on the 213 cells using 273 PC genes, and 

the three different types of cells are more clearly separated.
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Fig. 7. 
Deconvolution of bulk samples into three cell types, using (a) URSM, (b) Cibersort, (c) 

Digital Sorting Algorithm (DSA) and (d) semi-supervised Nonnegative Matrix Factorization 

(ssNMF).

Zhu et al. Page 27

Ann Appl Stat. Author manuscript; available in PMC 2018 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 28

Ta
b

le
 1

N
um

be
r 

of
 s

el
ec

te
d 

m
ar

ke
r 

ge
ne

s 
us

in
g 

di
ff

er
en

t t
hr

es
ho

ld
in

g 
p-

va
lu

es

# 
of

 m
ar

ke
rs

lo
g 1

0 
(p

-v
al

ue
)

T
ru

e 
m

ar
ke

rs
−8

−7
−6

−5
−4

−3

ce
ll 

ty
pe

 1
5

8
11

16
19

27
10

ce
ll 

ty
pe

 2
2

2
8

11
16

23
10

ce
ll 

ty
pe

 3
1

2
7

10
17

21
10

Ann Appl Stat. Author manuscript; available in PMC 2018 August 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 29

Ta
b

le
 2

C
or

re
la

tio
n 

be
tw

ee
n 

th
e 

es
tim

at
ed

 p
ro

po
rt

io
ns

 o
f 

a 
ce

ll 
ty

pe
 k

 in
 b

ul
k 

sa
m

pl
es

, (
W

kj
) j,

 a
nd

 th
e 

no
rm

al
iz

ed
 e

xp
re

ss
io

n 
le

ve
ls

 (
X

ij/
R

j) j
 o

f 
its

 m
ar

ke
r 

ge
ne

 i 

in
 b

ul
k 

sa
m

pl
es

. F
or

 g
en

es
 m

ar
ki

ng
 b

ot
h 

A
P 

an
d 

B
P,

 th
e 

su
m

 o
f 

pr
op

or
tio

ns
 is

 u
se

d

G
en

e
M

ar
ke

d 
ce

ll 
ty

pe
U

R
SM

C
ib

er
so

rt
D

SA
ss

N
M

F

H
E

S1
A

P
0.

73
0.

62
0.

80
0.

68

H
E

S6
B

P
0.

66
0.

58
0.

53
−

0.
72

PA
X

6
A

P.
B

P
0.

91
0.

80
0.

80
0.

61

G
L

I3
A

P.
B

P
0.

90
0.

80
0.

83
0.

54

N
E

U
R

O
D

6
N

0.
28

0.
37

0.
02

−
0.

36

B
C

L
11

B
N

0.
45

0.
57

0.
23

0.
02

M
Y

T
1L

N
0.

44
0.

37
0.

32
0.

80

Ann Appl Stat. Author manuscript; available in PMC 2018 August 29.


	Abstract
	1. Introduction
	2. A unified statistical model
	Full model specification
	Remark 1
	Remark 2


	3. Inference and estimation: EM algorithm
	3.1. E-step: Gibbs sampling
	Bulk data
	Single cell data

	3.2. M-step

	4. Simulation results
	4.1. Settings
	4.2. Estimation of profile matrix
	4.3. Deconvolution of bulk samples
	4.4. Inference of dropout entries in single cell data
	4.5. Robustness

	5. Application to fetal brain data
	5.1. Data preprocessing
	5.2. Imputation of single cell data
	5.3. Deconvolution of bulk samples

	6. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table 1
	Table 2

