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Hyperbolic geometry of the olfactory space
Yuansheng Zhou1,2, Brian H. Smith3, Tatyana O. Sharpee1,4*

In the natural environment, the sense of smell, or olfaction, serves to detect toxins and judge nutritional content by
takingadvantage of the associationsbetween compoundsas they are created inbiochemical reactions. This suggests
that the nervous system can classify odors based on statistics of their co-occurrence within natural mixtures rather
than from the chemical structures of the ligands themselves. We show that this statistical perspective makes it pos-
sible to map odors to points in a hyperbolic space. Hyperbolic coordinates have a long but often underappreciated
history of relevance to biology. For example, these coordinates approximate thedistancebetween species computed
along dendrograms and, more generally, between points within hierarchical tree–like networks. We find that both
natural odors and human perceptual descriptions of smells can be described using a three-dimensional hyperbolic
space. Thismatch ingeometries can avoid distortions thatwould otherwise arisewhenmappingodors toperception.
INTRODUCTION
The reason that the sense of smell can be used to avoid poisons or
estimate a food’s nutrition content is because biochemical reactions
create many by-products. Thus, the emission of certain sets of vol-
atile compounds will accompany the production of a specific poison
by a plant or bacteria. An animal can therefore judge the presence of
poisons in the food by how the food smells. Other specific examples
include the use of smell by bees when judging whether a flower has
more pollen or nectar (1, 2). Fruit flies select places to lay eggs based
on odors (3). These examples suggest that, from a practical perspective,
it would be useful for the nervous system to classify odors based on
statistics of their co-occurrence. For example, if odor components that
are strongly correlated are represented nearby within the nervous sys-
tem (4), then detection of one component could be quickly used as an
indicator for the likely existence of another component that is strongly
correlated with it. With this perspective in mind, we set out to study
the structure of the olfactory space based on odor co-occurrence.

Before we describe the results, we review the reasons for why one
might expect to find hyperbolic coordinates to be relevant for olfaction
and biological systems in general. Biological data are often represented
using dendograms or hierarchical tree structures (Fig. 1A). These data
can be equivalently represented using Venn diagrams, where larger
circles correspond to broader classifications (Fig. 1B) (5). For example,
before Darwin, these Venn diagrams were used to classify species based
on their properties (6). Darwin used the mapping from Venn diagrams
to trees (6) to infer the likely tree for speciation based on available
descriptions of species properties (Venn diagrams). There is a deep
mathematical reason underlying the equivalence between these two
representations, and it involves hyperbolic spaces. Specifically, starting
with the Venn diagram (Fig. 1B), one can assign points to a three-
dimensional (3D) space whose horizontal x and y coordinates equal to
center coordinates of the Venn circles, whereas the vertical coordinate
equals to the circle radius (7). In this manner, larger circles get assigned
to higher heights, which would then correspond to positions closer to
the tip of the tree (Fig. 1C). Sometimes, the presence of partially
overlapping circles leads to a structure that is not precisely a tree because
it contains loop. Nevertheless, the resulting 3D space has a hyperbolic
metric (8) and can be described by the Poincare half-spacemodel for the
hyperbolic space. The fact that the metric is non-Euclidean can be ob-
served from the fact that the shortest distance between two points goes
up in the z-direction (along the tree) before descending back to the tar-
get node. In Fig. 1D, we show an example shortest path between two
points in a 2D half-space model (red dashed line) and its discrete ap-
proximation (red solid line). To foreshadow the results on olfactory
odor classification,wenote that 3Dhyperbolic space is the lowest dimen-
sional space where the descriptor sets (Venn diagrams) are not 1D, as in
Fig. 1D, but are 2D circles as in Fig. 1 (B and C). At least two axes have
been described for the human odorant perception (the “pleasantness-to-
unpleasantness” axis and the “chemical-to-natural” axis) (9,10).Together,
these mathematical and biological observations point to the relevance
of 3D hyperbolic geometry for odor perception.
RESULTS
To analyze which space best describes the statistics of co-occurrence
within natural odormixtures, we used a recently developed a statistical
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Fig. 1. Hyperbolic spaces approximate hierarchical networks. (A) Example hi-
erarchical description of data and (B) its equivalent representation using Venn
diagrams. (C) Venn diagrams can be mapped onto points in a 3D space, forming
approximately a tree. The metric in the resulting 3D space is hyperbolic (7). The
hyperbolic aspects of the metric are illustrated by the fact that the shortest path be-
tween nodes in the tree goes upward and then descends back to the target node.
(D) Discrete approximation to a half-spacemodel of the hyperbolic space in 2D. Red
solid and dashed lines show the discrete and continuous shortest paths between
point a and b within the half-space model of the hyperbolic space (8).
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method (11) that can identify the presence of a geometric structure in
data based on observed correlations between data components. This
method is unaffected by linear or nonlinear monotonic transforma-
tions of inputs and therefore can be used to determine the overall ge-
ometry of the data without worrying at first about the precise scaling
of the axes. The analysis starts by taking a set ofmeasurements of con-
centrations of individual monomolecular odors, as they occur in the
natural environment. Our analyses will be based on four data sets of
odors measured from samples of strawberries (12), tomatoes (13),
blueberries (14), and mouse urine (15). To give an overview of the
data, 69 monomolecular odors were measured across 50 different
mouse urine samples, 66 monomolecular odors across 79 tomato
samples, 45 monomolecular odors across 101 blueberry samples, and
78 monomolecular odors across 54 samples of strawberries. The first
step of the analysis is to compute correlations between the concentra-
tions of monomolecular odor across samples (Fig. 2A). The correlation
coefficient between two odors x, y was defined as

corrðx; yÞ ¼ ∑n

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n

i¼1ðyi � �yÞ2
q

where xi and yi represent concentrations of odor x and odor y in ith
sample, �x and �y represent the mean values of concentrations across
all samples, and n is the number of samples. Correlation coefficients
were computed separately for each data set. The absolute values of
the correlation matrix from each data set are passed through a step
function with different thresholds: The correlation values above the
threshold are set to 1, and the rest of values are set to 0 (Fig. 2B). The
transformedmatrix can now be visualized as a topological graph where
all unit values represent links between the corresponding odors (Fig.
2C). The graph can be characterized by the number of holes (cycles)
in one, two, or higher dimensions. For high thresholds, the number
of cycles will be low because most units are not connected. Similarly,
at low thresholds, the number of cycles is also low because units form
fully connected networks. Plotting the number of cycles as a function of
density of edges, or equivalently the number of connected nodes, yields
the so-called Betti curves. It turns out that the shapes of these Betti
curves are quite sensitive to the statistics of correlations. This sensitivity
makes it possible to infer the geometry of the space that can produce
these correlations if we sample points from this space and assume that
stronger correlations (before thresholding) imply closer distances (11).

Applying this statistical approach to each of the four data sets sep-
arately, we found the data in each case to be consistent with being
drawn from a neighborhood of a sphere positioned within a 3D
hyperbolic space together with a small amount of multiplicative noise
added to the distances (Fig. 2D). The fact that hyperbolic space ap-
proximates hierarchical tree–like networks motivated this choice of
the model (7), with odors reflecting leaves of the network—the neigh-
borhood of the surface (Fig. 1). Quantitatively, one can compare Betti
curves derived from a model geometrical space and from a data set by
computing the integral of the curve (11), the quantity referred to as the
integrated Betti value. To find the best-fitting geometry, we optimized
parameters of the model such that the noise magnitude and the range
of radii within the space from which the sample points were drawn
provided the best match to the first integrated Betti value. Then, we
examined how these optimized parameters could account for the
second and third integrated Betti values. For all four data sets, we
found the measurements to be consistent with sampling from a 3D
Zhou et al., Sci. Adv. 2018;4 : eaaq1458 29 August 2018
hyperbolic space (P > 0.25, P > 0.21, P > 0.45, and P > 0.19 for blue-
berry, tomato, mouse, strawberry data sets, respectively; in each case,
the value stated is theminimal value across the Betti curves in 2D and
3D; see also table S1).

The first three Betti curveswere also sufficient to show that Euclidean
spaces could not account for the data, even when dimensionality and
other parameters were optimized (Fig. 2E, P < 0.03 for blueberry and
P < 0.003 for other three data sets). As a control, we verified that
shuffling odor concentrations between samples, which destroys corre-
lations between odors, produced Betti curves that can be fully ex-
plained by random matrices (P = 0.4, P = 0.7, and P = 0.9 for
integrated Betti values one through three, respectively; cf. fig. S1).
These matrices would not be consistent with the hyperbolic space plus
the small amount noise that fits the real data (P < 0.01). As additional
controls, we verified that (i) evaluating differences between Betti
curves using L1 distances instead of the integrated Betti values (tables
S2 and S3) or (ii) applying logarithm to concentration values before
computing their correlations led to the same conclusions (fig. S2 and
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Fig. 2. Topological organization of the natural odor space. (A to C) Illustration
of the topological algorithm for identifying spaces consistent with correlation statistics.
(A) Example correlationmatrix for fiveodors in strawberrydata set. (B) Correlationmatrix
after applying a threshold of 0.25. (C) A nonzero value represents an edge connecting
the two elements. The resulting complex has one 1D cycle and edge density of 0.5.
(D and E) Betti curves with the number of cycles in one (yellow), two (red), and three
(blue) dimensions plotted as a function of edge densities. Data from Betti curves
(dashed) are compared with predictions using model geometry (solid lines) of 3D
hyperbolic space in (D) or Euclidean space (E). Insets show comparisons between
integrated Betti values from data (black triangles) compared withmodels. The error
bars show 95% confidence intervals (from 2.5% to 97.5%) from 300models with the
same number of odors as the data, and the colored squares show the medium
values of the models.
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table S4). In particular, hyperbolic 3D is consistent with measure-
ments for all three Betti curves, whereas the best-fitting Euclidean
model can be ruled out according to these measures. The corre-
sponding P values are provided in tables S1 to S4. Note that hyperbolic
spaces of dimensions higher than three cannot be ruled out (fig. S3).
However, the 3D hyperbolic space remains the best-fitting model
across the four data sets. This is true whether one uses either the
integrated Betti value or the L1 distances between model and experi-
mental Betti curves (fig. S3).

To visualize how the points consistent with odorant correlation sta-
tistics might be distributed within the hyperbolic space, we used non-
metric multidimensional scaling (MDS) (16). The nonmetric MDS
algorithm embeds a set of points into the N-dimensional space while
attempting to preserve the rank ordering of distances as best as possible
(16). Traditionally,MDS is applied to the Euclidean space, butwemod-
ified it (see Materials and Methods) to work with hyperbolic distances
(7). After testing the algorithm on synthetic data (fig. S4), we applied
the modified algorithm to the four data sets. In Fig. 3, we show results
for the four data sets. Because the points are located near a surface of a
sphere (the range of radii Rmin = 0.9 Rmax), we present the points on a
sphere using the two angles of latitude and longitude. The results show
approximately uniform sampling in all four data sets. Notably, the
points do not cluster based on functional chemical properties of the
individual components (fig. S5). One can understand the absence of
clustering from the fact that monomolecular odors with different func-
tional properties are produced together in biochemical pathways.

What are the axes of this olfactory space?Or, in otherwords, do odors
associated with certain parts of this space have different perceptual or
physicochemical properties? Previous studies found axes that correlated
with perceptual odor pleasantness (17) and physicochemical properties
such as molecular boiling point and acidity (9, 17, 18). We checked for
Zhou et al., Sci. Adv. 2018;4 : eaaq1458 29 August 2018
associationswith all of these properties, and supporting previous findings
(9, 10, 17, 19) found that points corresponding to pleasant andunpleasant
odors occupied different parts of the space. We note that this analysis of
pleasantness rankings was based only on odor components from tomato
and strawberry data sets, for which these rankings were available. Thus,
the pleasant-unpleasant odor axis can be identified even solely using fruit
odor components. Thedirectionmost associatedwith a change in pleas-
antness value ismarked by the red line in Fig. 4 (A andC). For odormix-
tures produced by individual fruit samples, we use the “overall liking”
rating assigned by humans to fruit samples as ameasure of pleasantness
(Fig. 4A). To test how well the identified pleasantness axes can predict
measured pleasantness rankings for novel samples, we regenerated this
axis using only strawberry samples and use it to predict pleasantness
ranking for tomato samples. The correlation was significant, with
correlation coefficient R = 0.34 and P = 0.01 (Fig. 4B). The pleasant-
ness values could also be assigned to individual odor components
based on the correlation between the odor concentration in a mix-
ture and mixture pleasantness computed over samples (Fig. 4C).
This measure of pleasantness produced an even stronger correlation
between pleasantness and odor coordinates within the space, R = 0.66
and P = 3 × 10−7 (Fig. 4D). We also computed these correlation values
using different odor components from those used to generate the
pleasant-unpleasant axis for odor components in Fig. 4C. Specifically,
we used two-thirds of randomly selected odor components to generate
this axis; we computed the correlation value using the remaining com-
ponents. The pleasantness axis for odor components had a similar ori-
entation to the one for mixtures (that is, individual fruit samples).

In addition to the pleasantness axis, we could also find axes that
were strongly associated with two other properties: molecular boiling
point—which is probably a reflection of volatility—and acidity, both
of which showed significant correlations (P < 0.04; Fig. 4, E and F).We
assigned acidity for individual odors as the correlation coefficient be-
tween its concentration and fruit sample acidity measurement. (We
computed all of these correlation coefficients using a different subset
of odors from the one used to estimate the corresponding axes.) Be-
cause the space is essentially 2D, the three axes of odor pleasantness,
acidity, and molecular boiling point are not independent. In other
words, knowing the coordinates along the molecular boiling point
and acidity axes, one can predict the position along the pleasantness
axis. That is, the identified mapping to a sphere in a hyperbolic space
makes it possible to predict, with correlation R = 0.34 (Fig. 4B) for
natural mixtures and with R = 0.66 (Fig. 4D) for monomolecular
odors, how perceptually pleasant these odors are based on their pro-
jections on the acidity and volatility axes.

The observation that the odormixtures can bemapped onto a con-
tinuous metric space is consistent with a previous vector-based model
of human olfactory perception (19). Thismodel posits that the percep-
tion of odor mixtures is based on a combination of the mixture compo-
nents or, in other words, that there is an underlying set of coordinates
that can represent olfactory mixtures. Previous analysis (9) of the
Dravnieks database (20) containing human perceptual descriptions of
>120 monomolecular odors showed that the perceptual space is likely
to be curved.Qualitatively, the pointswere found to forma “potato-chip”
surface (9). This can be a signature of the hyperbolic space; potato-chip
or saddle-like surface have a negative curvature and serve as an everyday
example of hyperboloid surfaces. To quantitatively test whether the per-
ceptual space is described by hyperbolic geometry, we applied the Betti
curve method to the Dravnieks database (20). First, we found that Eu-
clidean spaceswere not consistentwithmeasuredBetti curves (P< 0.003;
Blueberry Tomato

StrawberryMouse urine

Front

Back

Fig. 3. Visualization of the natural olfactory space using nonmetric MDS. Be-
cause the variation in radius is small, data points are shown on the surface of a sphere
with circles/rectangles for points falling on the near/far side of the sphere. The RGB
color scales were proportional to the XYZ coordinates of points.
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Fig. 5A and table S5). The first Betti curve could not be matched to the
data in terms of its area for any dimensionality of the Euclidean space
(Fig. 5A, inset). Second,we found that the full hyperbolic space of varying
dimensions could match the area of the first Betti curve. However, only
hyperbolic spaces with small number of dimensions could also simulta-
neously match the area of the second Betti curve (Fig. 5B, inset). The 3D
hyperbolic space produced the best fit, with larger dimensions yielding
increasing deviations. Hyperbolic spaces with dimensions nine and
above could be excluded with P < 0.034. The third Betti curve was essen-
tially zero and is not shown here. One may notice that the first and sec-
ond Betti curves were not as regular as in the case of odorants and
containedmultiple peaks. It turns out that the biphasic nature of the Betti
curve could be explained by the nonuniformdistribution of points across
the two angles (Fig. 5C). Unlike in the case of olfactory stimulus spaces
that are sampled approximately uniformly, here, the distribution of
points obtained using MDS is not uniform and clusters in one-half of
the space. Sampling points from this embedding yields biphasic Betti
curves that match those derived from perceptual data (Fig. 5D). Specif-
ically, P values for L1 differences between Betti curves derived from data
and MDS fits were P = 0.32 (hyperbolic, Betti 1), P = 0.20 (hyperbolic,
Betti 2), P = 0 (Euclidean, Betti 1), and P = 0.06 (Euclidean, Betti 2)
(cf. inset in Fig. 5D). TheMDSdistances also better correlated with per-
ceptual distances when we carried out MDS in the hyperbolic space
compared to Euclidean space (fig. S6).
DISCUSSION
Our results highlight the importance of hyperbolic curved geometry
for understanding how natural odors are represented in the nervous
system. Overall, we find that both the statistics of natural odor mix-
Zhou et al., Sci. Adv. 2018;4 : eaaq1458 29 August 2018
tures and human odor perception can be mapped onto hyperbolic
spaces. In the natural environment, hierarchical biochemical networks
produce odor components. Hierarchical networks can often be ap-
proximated by trees and, therefore, by hyperbolic spaces (7, 21). We
find that most natural odor components fall near the boundary of the
observed hyperbolic space, corresponding to leaves of the trees (Fig. 1).
At the perceptual level, we also found hyperbolic organization. However,
in this case, the odors selected for the Dravnieks database did not sample
the human perceptual space uniformly (Fig. 5).

Hyperbolic perceptual organization is likely to be general across
different sensorymodalities. There are two reasons for this. First, neu-
ral networks that give rise to perception are hierarchically organized,
and as we have seen in Fig. 1, this can lead to hyperbolic geometry.
Second, individual neurons have limited response ranges. Because of
response saturation, small changes in neural responses near their limit
correspond to exponentially large changes in the input values. This
compressive mapping (22) is similar to the Poincare disk representa-
tion of the hyperbolic space (7). There is evidence that visual, haptic,
and auditory perceptual spaces are all hyperbolic (23–26). Adding ol-
factory perception to this list could help explain why humans canmap
odors to auditory pitch (27, 28) and to colors (29).

Noteworthy is the low dimensionality of both the physical odor
space and perceptual odor spaces. In both cases, the curved space
contains approximately three dimensions despite the fact that the data
vary in >50 dimensions associated with different samples of natural
odormixtures and according >100 perceptual descriptors. The low di-
mensionality of the environmental odor space could be a general
property of natural odors because it occurred for odors as diverse as
fruit and mammalian urine odors. Note that all four natural odor data
sets were described by the same 3D hyperbolic space with exactly the
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between molecular boiling point, a measure of odor volatility, with projection on the associated axes. (F) Correlation between acidity value and the associated axes.
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same radius (equivalent to curvature of the space). This property could
make it easier to represent data from different data sets within the
same space. For example, odors from strawberry and tomato could
be represented jointly within a single 3D space (Fig. 4). We could
not combine data from other data sets because, for example, there
were no overlapping components between fruit odors and mouse
urine data sets. It is possible that representing all possible natural
odors will increase the dimensionality of the overall space. Another
possibility is that introducing odors from different sources will “fill
in” the inner part of the hyperbolic space. The natural odors con-
sidered here mapped onto a surface of a hyperbolic space. Odors
produced by biochemical pathways of different complexity are likely
to map to surfaces with a different radius, filling in the space. This
possibility is especially interesting because it would provide a link to
the filled 3D hyperbolic space that we find for perceptual data, which
was obtained using diverse classes of odors. At the same time, the per-
ceptual odor mapping reveals that odors tested so far concentrate on
one side of the space (Fig. 5) (9, 19), whereas natural odor components
cover their respective space rather uniformly (Fig. 3). These analyses
thus suggest perceptual coordinates that are yet to be explored.
Zhou et al., Sci. Adv. 2018;4 : eaaq1458 29 August 2018
The match in dimensionality between the environmental and per-
ceptual spaces would not have been expected a priori. The matching
dimensionality between the input and perceptual spaces can help
avoid nonlinear distortions that would necessarily arisewhenmapping
two nonlinear spaces of different dimensionality. These distortions are
known to exist in vision where we perceive distances in a compressed
way: The moon appears disproportionately closer to us than would be
based on the actual Euclidean distance (23, 24). We also plot equi-
distant and parallel lines differently, which is one of the key signatures
of the hyperbolic space. Similar distortions arise in the haptic space
(25). The matching geometry between the input and perceptual spaces
in olfaction may therefore serve to minimize these distortions in odor
perception. Overall, the ability of the perceptual system to resolve
points in the low-dimensional odor space would depend on the num-
ber and tuning properties of sensory receptors (30–34).
MATERIALS AND METHODS
A clique topology method for finding geometric spaces
consistent with correlations in the data
We followed procedures from (11) to generate Betti curves for samples
taken from spaces with different geometries. The method effectively
converts the correlationmatrix to its rank-ordered version. This renders
the algorithm’s results invariant under monotonic transformation of
values, for example, due to nonlinearities introduced at the measure-
ment stage. However, this property can also be used to assign a distance
between points based on the correlation in the activity of two units in a
network (11) or, as in our case, between two odors across different
samples. All monotonic functions will yield the same result. We chose
Dij = − |Cij|, whereDij is the assigned distance between odors, and |Cij| is
the absolute value of the correlation coefficient of odor concentrations
among a set of points. This definition ensures that stronger correlations
(in absolute value) corresponded to tighter connections and smaller ge-
ometric distances, as in (35).

The first three Betti curves turn out to be quite sensitive measures
of the distancematrices and can be used to find underlying geometries
consistent with the data (11). In addition to random spaces, we
screened two kinds of geometric structures: Euclidean spaces of differ-
ent dimensionality and hyperbolic space [we used the hyperbolic ball
model (7) with curvature z = 1] with different parameters. In each
space, we uniformly sampled points (the same number as the number
of odors in each of the data sets) based on the metric of the space. In a
d-dimensional Euclidean space, the points were uniformly distributed
in a d-cube with Euclidean distance. For a d-dimensional hyperbolic
ball model, we used partial space by setting theminimal radiusRmin and
maximal radius Rmax for the ball. This choice of the model was moti-
vated by the fact that hyperbolic space approximates hierarchical tree–
like networks (7), with odors reflecting leaves—the neighborhood of the
surface.We took the angles of points randomly and selected radii rwithin
[Rmin, Rmax] following the distribution

rðrÞe sinhððd � 1ÞrÞ ð1Þ

The distance between two points was derived from hyperbolic law of
cosines

coshzx ¼ coshðzrÞcoshðzr′Þ � sinhðzrÞsinhðzr′ÞcosDq ð2Þ
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Fig. 5. Hyperbolic organization of the human olfactory perception. The (A) first
and (B) second Betti curves of the perceptual data set (dotted line) (20) compared to Betti
curves of the 3D hyperbolic space (solid line) and 3D Euclidean space (dashed line).
Euclidean and hyperbolic spaces of other dimensions provided aworse fit. Insets compare
integrated Betti values from data (horizontal lines) and 300 repeated models in different
dimensions with Euclidean or hyperbolic metrics. The error bars show 95% confidence
intervals; the number of repeated computations ofmodel curveswas 300. (C) Visualization
of odors in human olfactory perception space using nonmetric MDS in a 3D hyperbolic
space. The sizes of points are proportional to their radii. The radius distribution is shown in
bottom right inset. (D) Themultimodal aspects of Betti curves derived from data (dotted
lines) can be accounted for by the nonuniform distribution of points within the 3D
hyperbolic space. Sampling points from (C) produces multimodal first (yellow) and sec-
ond (red) Betti curves (solid lines). Inset shows comparison of L1 distances between Betti
curves derived from data and those derived from 100 different MDS fits. Black open
triangles represent the distance between data andmodel mean, and colored bar plots
show the range of values, where data curves are substituted by different MDS fits.
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where z is the curvature set as 1 in our model, r and r′ are the radial
distances of the two points, and Dq is the angle between them.
Considering that noise may exist in the monotonous correspon-
dence between the underlying topological distance and correlation
strength of odors and that the amount of noise may differ between
data sets due to differences in sample collection procedures, we
addedmultiplicative Gaussian noise to the distancematrices for both
Euclidean model and hyperbolic model before plotting the Betti
curves. Together, we have the topological distance matrices of the
sampled points in geometric spaces

D ¼ Dgeo⋅ð1þ e⋅Nð0; 1ÞÞ ð3Þ

where Dgeo is the geometric distances, and e is the noise level.
In summary, the space geometry affects Betti curves through the

distribution of sampled point density (Eq. 1) and distance measures
(Eq. 2). Multiplicative noise (Eq. 3) also affects Betti curves. The op-
timal parameter values for the hyperbolic model were Rmax = 7 and
Rmin = 0.9 Rmax for all four odor data sets, while optimal noise values
were e = 0.045 (mouse), e = 0.050 (strawberry), e =0.050 (blueberry),
and e = 0.040 (tomato). The optimized parameters for the Euclidean
space were as follows: mouse data set, dimension d = 8; noise, 0.05;
strawberry data set, dimension d = 10; noise, 0.05; blueberry data
set, dimension d = 10; noise, 0.09; tomato data set, dimension d = 8;
noise, 0.09.

For the perceptual data set (127 monomolecular odors, 146 de-
scriptions for each) (20), the topological pairwise distances of odors
k and n were defined as ∑146i¼1ðvki � vni Þ2, where vki denotes human de-
scriptions for the kth odor. We use the differences between descrip-
tions across odors because, in this case, the absolute value of the
descriptor matters, unlike in the case of odors where correlations were
a more appropriate measure. When fitting the data using geometric
models, no noise was added to distances in models. We also tested
the sensitivity of the Betti curves to noise in pairwise perceptual
distances between odors. This was carried out by computing percep-
tual distances based on randomly selected subset of 120 of the total 146
descriptors. The variability in the resultant distance values was pro-
portional to the mean distance (fig. S7). The relative error in the
integrated Betti values across these samples was the same as the rela-
tive error of the distances themselves (fig. S7, inset on the right). Thus,
although the Betti curve construction evaluates data structure globally,
it is not driven by variability in larger distances. In the case of the per-
ceptual data set, we found that the full hyperbolic space better de-
scribed the data rather than a shell, and therefore, the minimal
radius was set to zero.We optimizedmaximal radius of the hyperbolic
model, which is a measure of its curvature, to fit the integrated Betti
value of the first Betti curve. The optimal Rmax were as follows: 1.6
(3D), 1.9 (4D), 1.8 (5D), 1.7 (6D), 1.9 (8D), and 3.0 (9D). We used
these values to compute the second Betti curve and determine how
well it could account for the second integrated Betti value.

All reported P values for comparison with experimentally gener-
ated Betti curves were obtained by creating, for each candidate geom-
etry, 300 statistically equivalent models. Points for each model were
selected randomly according to the density specific to that geometry
(uniformly within the unit cube for Euclidean spaces and according to
Eq. 1 for hyperbolic spaces). The number of points wasmatched to the
number of points in the corresponding experimental data set. On the
basis of this simulated point distribution, we computed 300 different
Zhou et al., Sci. Adv. 2018;4 : eaaq1458 29 August 2018
Betti curves. These curves were then used to generate a distribution of
integrated Betti values or compute the L1 distance of these curves from
the mean Betti curve of this model. The reported P values reflect two-
tailed percentiles for where experimental Betti curves fall within the
model-generated distributions. We report P values as <0.003 when
none of the samples generated values further from the mean than
the observed data point.

Nonmetric MDS embedding of odors on the surface of a 3D
hyperbolic sphere
The nonmetric MDS algorithm embeds a set of points within a prespe-
cified space while attempting to preserve rank-ordered distances be-
tween points. We modified the Euclidean-based, nonmetric MDS
algorithm in MATLAB version 2017a by replacing the Euclidean dis-
tance with hyperbolic distance in Eq. 2. The initial positions of points
were uniformly sampled in the optimal 3Dhyperbolic space determined
in Fig. 1. The radial coordinateswere fixed because their rangewas small
and points were approximately positioned on the surface of a sphere.
The algorithm updated the angular coordinates to minimize the mis-
match in the rank order of distances. The iterations ended when this
error fell below a threshold of 0.001. Because the MDS algorithm can
return the arbitrary rotation of the space, in Fig. 3, we used the Pro-
crustes algorithm to align the positions of odors between the strawberry
and tomato data sets, using the strawberry data set that had the most
odors as an anchor. The Procrustes process was carried out through the
Procrustes function in MATLAB, and the scale component and
translation component were set to 1 and 0, respectively.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaaq1458/DC1
Fig. S1. No indications of hyperbolic geometry in shuffled odor data sets.
Fig. S2. Alternative ways of evaluating differences between Betti curves also support
hyperbolic geometry of natural odor spaces.
Fig. S3. Error bar plots of Betti curves statistics for the hyperbolic model of different
dimensions.
Fig. S4. Test of the nonmetric multidimensional scaling algorithm in the hyperbolic space on
synthetic data.
Fig. S5. Odors within the identified space do not cluster by functional group.
Fig. S6. Comparison between embedded geometric distances and reported perceptual
distances.
Fig. S7. Analysis of sensitivity of integrated Betti value to noise in the input distances.
Table S1. Statistical tests (P values) for consistency with hyperbolic models based on
integrated Betti values.
Table S2. Statistical tests (P values) for consistency with hyperbolic models based on L1
distances between Betti curves.
Table S3. Statistical tests (P values) for evaluating consistency of experimental Betti curves with
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