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Argininosuccinic aciduria fosters neuronal
nitrosative stress reversed by Asl gene transfer
Julien Baruteau1,2,3, Dany P. Perocheau1, Joanna Hanley3,4, Maëlle Lorvellec3,4, Eridan Rocha-Ferreira5,

Rajvinder Karda 1, Joanne Ng1,6, Natalie Suff1, Juan Antinao Diaz 1, Ahad A. Rahim7, Michael P. Hughes7,

Blerida Banushi4, Helen Prunty 8, Mariya Hristova5, Deborah A. Ridout9, Alex Virasami 10, Simon Heales3,8,

Stewen J. Howe1, Suzanne M.K. Buckley1, Philippa B. Mills3, Paul Gissen 2,3,4 & Simon N. Waddington 1,11

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and

the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argini-

nosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocog-

nitive impairment despite treatment aiming to normalise ammonaemia without considering

NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves

neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injec-

tion of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term

correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cer-

ebral disease persists if ammonaemia only is normalised but is dramatically reduced after

correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural

improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a

distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by

simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways,

provides new hope for hepatocerebral metabolic diseases.
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Adeno-associated virus (AAV) vector-mediated gene ther-
apy has achieved promising results in recent clinical trials
in liver1 and neurodegenerative2 inherited diseases, and

has led to the market approval of the gene therapy product to
treat RPE65-mediated inherited retinal dystrophy3. This success
underpins the current interest in this technology, as illustrated by
the rapidly expanding number of gene therapy-based clinical
trials4. Among various AAV capsid variants, AAV serotype 8
(AAV8) has demonstrated its efficacy in liver transduction in
preclinical5 and clinical studies6. This serotype also efficiently
transduces other tissues including the central nervous system
after systemic injection in neonatal mice7.

As with many liver inherited metabolic diseases, urea cycle
defects exhibit a high rate of mortality and neurological morbidity
in infancy despite conventional treatment8. Successful correction
of the urea cycle via AAV-mediated gene therapy has been
reported in mouse models of ornithine transcarbamylase defi-
ciency9, argininosuccinate synthetase deficiency10, and arginase
deficiency11. Argininosuccinic aciduria (ASA; OMIM 207900) is
the second most common urea cycle defect with a prevalence of
1/218,000 live births12. In addition, ASA is an inherited condition
proven to cause systemic nitric oxide (NO) deficiency13 as the
disease is caused by mutations in argininosuccinate lyase (ASL),
an enzyme involved in two metabolic pathways: (i) the liver-based
urea cycle that detoxifies ammonia, a highly neurotoxic com-
pound generated by protein catabolism and (ii) the citrulline-NO
cycle, present in most organs, producing NO from L-arginine via
nitric oxide synthase (NOS) (Supplementary Fig. 1)14. Patients
may exhibit an early-onset phenotype with hyperammonaemic
coma in the first 28 days of life, or a late-onset phenotype with
either acute hyperammonaemia or a chronic phenotype with
neurocognitive impairment and progressive liver disease15.
Compared to other urea cycle defects, ASA patients present with
an unusual systemic phenotype, which involves various organs
such as brain, liver, kidney, gut and peripheral arteries15. The
neurological phenotype with a high rate of neurocognitive
impairment, epilepsy, ataxia, remains unexplained and contrasts
with a lower rate of hyperammonaemic episodes in ASA com-
pared to other urea cycle defects. Various pathophysiological
mechanisms have been hypothesised to account for this paradox,
including impaired NO metabolism16. A hypomorphic AslNeo/Neo

mouse model shows impairment of both urea and citrulline-NO
cycles and reproduces the clinical phenotype with impaired
growth, multiorgan disease, hyperammonaemia and early
death13. Common biomarkers of ASA include increased ammo-
naemia, citrullinaemia, plasma argininosuccinic acid, orotic
aciduria and reduced argininaemia16.

In this study, we characterise the neuropathophysiology of the
disease studying the brain of the hyperammonaemic AslNeo/Neo

mouse. We identify features of a cerebral hyperammonaemic
disease and a distinct neuronal disease mediated by oxidative/
nitrosative stress but not associated with hyperammonaemia. We
use a systemic AAV-mediated gene therapy approach as a proof-
of-concept study to rescue survival and protect the ASL-deficient
brain from both hyperammonaemia and cerebral impaired NO
metabolism. To achieve this, we designed a single-stranded AAV8
vector carrying the murine Asl (mAsl) gene under transcriptional
control of an ubiquitous promoter, the short version of the
elongation factor 1 α (EFS) promoter. The vector is administered
systemically to adult and neonatal AslNeo/Neo mouse cohorts.

Results
Pathophysiology of the brain disease in ASA. ASL deficiency
causes a systemic NO deficiency due to the loss of a protein
complex that facilitates channelling of exogenous L-arginine to

NOS13. To explore the effect on cerebral NO metabolism, various
surrogate biomarkers were investigated. NO concentrations from
wild-type (WT) and AslNeo/Neo mice were evaluated by mea-
surement of nitrite (NO2

−) and nitrate (NO3
−) ions, downstream

metabolites of NO, and were found to be significantly increased in
AslNeo/Neo mice in brain homogenates (Fig. 1a), especially in the
cerebrum (Supplementary Fig. 2a) and in the diencephalon (i.e.
thalamus and hypothalamus) and midbrain (Supplementary
Fig. 2b) but not in the hindbrain (i.e. cerebellum, pons, medulla
oblongata) (Supplementary Fig. 2c). Similarly, cyclic guanosine
monophosphate (cGMP), a signalling pathway physiologically
upregulated by NO generated by coupled NOS17, when measured
in brain homogenates, was also found to be increased in AslNeo/
Neo mice (Fig. 1b). Low tissue L-arginine is a consequence of ASL
deficiency downstream the metabolic block and can cause NOS
uncoupling18, which leads to the production of reactive
oxygen species including superoxide ion (O2

−) or peroxynitrite
(ONOO−) with the latter nitrating specific tyrosine residues and
generating nitrotyrosine, a marker of oxidative/nitrosative
stress19. This process can modify the protein structure and
function, altering enzymatic activity or triggering an immune
response19. The detoxification of peroxynitrite by reduced glu-
tathione (GSH) can generate nitrite via the reaction ONOO−+
2GSH → NO2

−+GSSG+H2O 20. Contrasting with increased
nitrite/nitrate levels, glutathione concentrations in brain homo-
genates of AslNeo/Neo mice were not decreased compared to WT
(Supplementary Fig. 2d) although retrospective power calculation
showed an under-powered experiment (power of 0.371 with an α
type 1 error of 0.05). A sample size calculation for a power of 0.9
necessitated 34 WT and 31 AslNeo/Neo mice; groups of this size
were impossible due to the lack of animals available. In the cortex
of WT and AslNeo/Neo mice, immunostaining against nitrotyrosine
was significantly increased in AslNeo/Neo mice (Fig. 1c) in cells
identified as neurons (Fig. 1d). This nitrotyrosine staining was
present in most areas of the brain, but highly predominant in the
cortex and minimal in the cerebellum (Fig. 1e). Nitrosothiol levels
and western blotting against nitrotyrosine and in brain homo-
genates did not show any difference between WT and AslNeo/Neo

mice (Supplementary Fig. 2e and 2f, respectively). Immunos-
taining of glial fibrillary acidic protein (GFAP) and CD68, mar-
kers of astrocytic and microglial activation, respectively, did not
show any difference (Supplementary Fig. 2g). Immunohis-
tochemistry against NOS isoforms showed, in AslNeo/Neo mice, an
increased staining of neuronal NOS (nNOS or NOS1) (Supple-
mentary Fig. 3a) in neurons (Supplementary Fig. 3b), inducible
NOS (iNOS or NOS2) (Supplementary Fig. 3c), in neurons
(Supplementary Fig. 3d), and endothelial NOS (eNOS or NOS3)
(Supplementary Fig. 3e) in endothelial cells (Supplementary
Fig. 3f). The brain morphology did not differ between WT and
AslNeo/Neo mice (Supplementary Fig. 4). As measured by TUNEL
staining, an increased rate of cell death was observed in the cortex
of AslNeo/Neo mice (Fig. 1f). Collectively these data suggest that a
neuronal oxidative/nitrosative stress plays a role in the neuro-
pathology of ASA. However, hyperammonaemia per se can cause
brain toxicity through oxidative stress21. To investigate whether
neuronal oxidative/nitrosative stress is a primary mechanism
involved in the phenotype of patients with ASA or is secondary to
hyperammonaemia, we designed a gene therapy approach to
normalise ammonaemia and target neuronal ASL activity.

AAV8.EFS.GFP vector targets liver and cerebral neurons. In
order to extend survival and ameliorate the brain phenotype, we
designed a vector that was not only able to transduce the liver to
correct the defective urea cycle but also the brain, especially
neurons. Neonatal CD-1 mice received an intravenous injection
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Fig. 1 Neuronal oxidative/nitrosative stress is a component of the neurological disease in AslNeo/Neo mice. a Nitrite/nitrate levels (n= 12–15) and b cyclic
GMP (n= 6) in brain homogenates of 2–4-month-old mice. c Nitrotyrosine immunostaining was increased in cortical sections in cells morphologically
suggestive as neurons. d Neuronal nitrotyrosine staining was confirmed by immunofluorescence (n= 3). Colocalisation between nitrotyrosine and NeuN
was measured by Pearson’s coefficient. e Localisation of nitrotyrosine was diffuse, predominant in cortical and subcortical areas and was minimal in the
cerebellum. f Increased cell death rate in cortex was observed in AslNeo/Neo mice compared to WT (n= 4). Horizontal lines display the mean ± standard
error of the mean (SEM). ns= not significant. Unpaired two-tailed Student’s t test *p < 0.05, **p < 0.01, ***p < 0.001. a Graph displays not transformed
data. Log-transformed data were used for statistical analysis. Scale bars: c low and high magnification: 500 and 125 μm, respectively; d 25 μm; e 125 μm; f
low and high magnification: 500 and 125 μm, respectively. Figures show representative images and d representative z-projection
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of a single-stranded AAV8.EFS.GFP vector (3.4×1011vector gen-
omes/pup) and were culled at 5 weeks of life alongside uninjected
control littermates. Fluorescence microscopy revealed green
fluorescent protein (GFP) expression in the brain (Fig. 2a) and
the liver (Supplementary Fig. 5a). Anti-GFP brain immunos-
taining showed a transduction prominent in the cortex and
decreasing rostro-caudally (Fig. 2b). A pattern of neuronal
transduction was suggested by GFP immunostaining (Fig. 2c, d)
and confirmed by immunofluorescence (Fig. 2e, f). Anti-GFP
immunostaining confirmed a high rate of hepatocyte transduc-
tion across the hepatic lobule and other peripheral organs (Sup-
plementary Fig. 5b). Anti-GFP ELISA showed the liver as the
main peripheral organ transduced (Supplementary Fig. 5c) with
vector genomes detectable 5 weeks after systemic neonatal
injection (Supplementary Fig. 5d).

Impact of gene therapy on the macroscopic phenotype. A
supportive treatment based on a protein-restricted diet and daily
intraperitoneal injections of arginine and sodium benzoate was
performed in AslNeo/Neo mice as described in Methods and Sup-
plementary Fig. 6. This improved the survival of untreated AslNeo/
Neo mice (Supplementary Fig. 7a) permitting injection of 30-day-
old mice with AAV8 gene therapy (i.e. adult-injected group). A
second group of neonatally injected AslNeo/Neo mice was studied.

Survival was improved significantly in both adult- and
neonatally injected groups (Fig. 3a, b). Sustained growth
improvement was observed in adult-injected mice (Fig. 3c) with
a peak of growth velocity in the 2 weeks following the injection of
gene therapy (Supplementary Fig. 7b). In neonatally injected
mice, a significant improvement of growth was transiently
observed until day 30 (Fig. 3d) consistent with a growth speed
similar to WT animals until day 15 (Supplementary Fig. 7b).
Later in follow-up, no significant difference of weight was
observed between the surviving untreated and neonatally treated
AslNeo/Neo mice (Fig. 3e).

A specific fur pattern with sparse, brittle hair called trichor-
rhexis nodosa was observed in untreated AslNeo/Neo mice,
mimicking symptoms observed in ASA patients22. In adult-
injected mice, growth and fur pattern dramatically and
sustainably improved compared to untreated AslNeo/Neo mice
(Fig. 3f–h). The correction of the fur phenotype was observed
within 2 weeks of gene therapy (Supplementary Fig. 8a); the hair
shaft was straighter, with a more regular shape, a wider medulla
and the restoration of the ability to grow and form physiological
tips (Supplementary Fig. 8b–d). Fur aspect and growth were
improved transiently in neonatally treated AslNeo/Neo mice in the
first month of life (Fig. 3i–l).

Long-term improvement of the urea cycle after gene therapy.
At 2 months of age, plasma ammonia was similar to that of WT
in both adult- and neonatally injected mice (Supplementary
Fig. 9a). Normal ammonia values persisted until sacrifice at
12 months and 9 months after injection in adult- and neonatally
injected mice, respectively (Fig. 4a). The plasma concentration of
argininosuccinic acid was significantly decreased in adult- but not
neonatally injected mice at 2 months of age (Supplementary
Fig. 9b). These results were sustained until harvest (Fig. 4b).
Similarly, citrulline and arginine plasma concentrations were
normalised in adult-injected but not neonatally injected mice
(Supplementary Fig. 9c, d). Urinary orotic acid levels were
increased significantly in AslNeo/Neo mice at 10 weeks of age
compared with WT mice. Orotic acid concentration was nor-
malised in two adult-injected mice at 10 weeks; however, it did
not reach statistical significance in the adult- or the neonatally
treated groups (Supplementary Fig. 9e). Plasma alanine

aminotransferase levels were normalised in both adult- and
neonatally injected mice (Supplementary Fig. 9f). Liver ASL
activity in untreated AslNeo/Neo mice was 14.5 ± 4% (range 0−10
nmol ng−1 min−1) of WT activity (range 48−68 nmol ng−1 min
−1). This increased significantly to 47 ± 33.9% (range 6−53 nmol
ng−1 min−1) and 18.5 ± 4.5% (range 8−14 nmol ng−1 min−1) in
adult- and neonatally injected groups, respectively, at the time of
harvest (Fig. 4c). Retrospective power calculation of liver ASL
activity between untreated and adult-injected AslNeo/Neo mice
provided a power of 1 with an α type 1 error of 0.05. Anti-ASL
liver immunohistochemistry showed a diffuse transduction of
cells morphologically identified as hepatocytes, prominent fol-
lowing adult injection and scarce after neonatal injection
(Fig. 4d). Quantification of anti-ASL immunohistochemistry
showed a significant increase in adult-injected mice (Fig. 4d).
Quantitative PCR confirmed greater persistence of vector gen-
omes after adult vs. neonatal gene therapy (Supplementary
Fig. 9g).

Haematoxylin and eosin (H&E) staining of liver samples
showed vacuolated cytoplasm in untreated AslNeo/Neo mice;
cytoplasmic glycogen deposits were identified by periodic acid
Schiff (PAS) staining. This feature was markedly improved
following adult, but not neonatal injections (Supplementary
Fig. 10).

Long-term improvement of the NO metabolism in the liver.
Liver NO levels, assessed by nitrite/nitrate levels, were reduced in
untreated AslNeo/Neo mice. These improved in adult-injected but
not neonatally injected mice (Supplementary Fig. 11a). Liver
glutathione levels were decreased in untreated AslNeo/Neo mice but
did not improved significantly in treated mice (Supplementary
Fig. 11b).

Impact of gene therapy on cerebral NO metabolism. Cortical
ASL enzyme activity in untreated AslNeo/Neo mice was 14.1 ± 7%
(range 6−33 pmol ng−1 h−1) of WT activity (range 71−251 pmol
ng−1 h−1). In mice injected as adults, this activity was unchanged
(16.2 ± 5.2% of WT activity (range 0−52 pmol ng−1 h−1)) but
increased dramatically in mice injected neonatally with 64.8 ±
34.3% of WT activity (range 30−140 pmol ng−1 h−1) being evi-
dent at time of culling (Fig. 5a).

To assess the effect of the improved ASL activity on the NO
metabolism in brains of neonatally treated AslNeo/Neo mice, we
measured nitrite/nitrate levels. Compared to WT brains, nitrite/
nitrate levels were increased in untreated AslNeo/Neo mice and in
adult-injected mice by 3.4 and 2.5 times, respectively, whereas in
neonatally injected AslNeo/Neo mice the levels were not signifi-
cantly different from WT mice (Fig. 5b). To examine if this
decrease in nitrite/nitrate levels in neonatally treated mice was
correlated with a modification of the oxidative/nitrosative stress,
we quantified cortical nitrotyrosine staining. There was no
significant difference between neonatally injected mice and WT
mice. In contrast, adult-injected mice and untreated AslNeo/Neo

mice showed a significant increase in the percentage of
immunoreactivity (Fig. 5c, d). To assess the NO/cGMP pathway,
cGMP levels in brain homogenates were measured. Compared to
WT brains, cGMP levels in untreated and adult-treated AslNeo/Neo

mice were significantly higher and normalised in two out of three
samples of neonatally treated mice although this did not reach
significance (Supplementary Fig. 12).

Effect of gene therapy on behaviour and cerebral cell death.
Behavioural testing was performed to assess open field explora-
tion. At 3 months of age, there was a significant reduction in the
walking distance measured in the untreated AslNeo/Neo mice,
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whereas an improvement was seen in both adult- and neonatally
injected groups (Fig. 6a). Performance with an accelerating rotarod
at the same age was tested and showed a significant reduction in
untreated AslNeo/Neo mice but not significantly different from WT
in both adult- and neonatally injected groups (Fig. 6b). This is even
more remarkable, when the fact that heavy mice can perform worse
than light ones23 is taken into consideration.

Cell death was assessed by TUNEL staining and was found to
be significantly increased in the cortex of untreated AslNeo/Neo

mice compared to WT. Cell death was reduced in adult-injected
compared to untreated AslNeo/Neo mice. In neonatally injected
mice, this parameter was further improved compared to adult-
injected mice with no significant difference compared to WT
mice (Fig. 6c, d).
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Neo (Untr) and neonatally injected AslNeo/Neo mice (GT). Unpaired two-tailed Student’s t test **p < 0.01, ***p < 0.001, neonatally injected vs. untreated
AslNeo/Neo mice. # 30% and ##<15% of untreated AslNeo/Neo mice still alive; scale bar f−l 1 cm
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Discussion
This study provides new insight into the pathophysiology of the
brain disease in ASA. This work highlights the role of a neuronal
disease not caused by hyperammonaemia, which supports repe-
ated clinical observations that ASA patients present poor neu-
rocognitive performance even without hyperammonaemia.
Systemic AAV-mediated gene therapy provides proof-of-concept
of hepatocerebral phenotypic correction of the hypomorph Asl-
Neo/Neo mouse model, which open avenues for gene therapy in
ASA.

Compared to other urea cycle defects, the neurological disease
in ASA is a paradox since low rates of hyperammonaemic
decompensation are accompanied by high rates of neurological
complications, including neurocognitive delay, abnormal neu-
roimaging, epilepsy and ataxia16. We characterised the previously
unreported neuropathology in the AslNeo/Neo. NO plays a com-
plex and ambiguous role in the brain, involved in both
inflammation-related neurotoxicity and cGMP-mediated neuro-
protection24. Cerebral NO levels (assessed by nitrite/nitrate
levels) were increased in some brain areas (cerebrum, dience-
phalon, midbrain) but not in the hindbrain. Increased NO and
cGMP in the brain of AslNeo/Neo mice suggests a persisting phy-
siological upregulation of the NO/cGMP pathway, which is
observed with appropriate coupling of NOS17. This has been
observed in animal models and patients with hyperammonaemia
caused by hepatic encephalopathy with increased cortical gua-
nylate cyclase activity25. Different alterations of NO metabolism
in specific brain areas might explain why the analysis of whole
brain lysates might reveal no differences in this pathway. For
instance, Erez et al. found no difference in nitrite and nitro-
sothiols levels when comparing brain lysates from WT and Asl-
Neo/Neo mice13. However, previous studies in AslNeo/Neo mice have
demonstrated the uncoupling of NOS likely promoted by low
tissue L-arginine content, which is associated with the increase of

systemic biomarkers of oxidative stress18. NOS uncoupling causes
oxidative/nitrosative stress in vitro with the production of per-
oxynitrite, which in turn contributes to decrease of antioxidants,
inhibition of the mitochondrial respiratory chain, opening of the
permeability transition pore and cell death20. This is consistent
with our observation of increase of both neuronal nitrotyrosine
staining and nitrite/nitrate levels. In the brain, hyper-
ammonaemia increases nNOS and iNOS-mediated NO synthesis
via an increase in extracellular glutamate, and activation of the
glutamate-NO-cGMP pathway via N-methyl-D-aspartate recep-
tors26. High levels of NO can lead to oxidative stress21. In our
study, correction of hyperammonaemia alone did not modify the
oxidative/nitrosative stress, suggestive of an independent brain-
specific causative mechanism. A measurable reduction in cell
death in the cortex was observed when neuronal ASL activity is
restored. Neurons are more vulnerable to oxidative stress than
astrocytes in vitro, as they cannot overexpress γ-glutamyl trans-
peptidase to replenish their intracellular glutathione content27.
Therefore, they rely on the paracrine glutathione supply from
astrocytes when exposed to reactive nitrogen species and oxida-
tive stress27. This might explain the neuronal staining observed
for nitrotyrosine and the efficacy of neuronal-targeted gene
therapy. This nitrosative stress caused by peroxynitrite, generat-
ing nitrotyrosine, has been implicated previously in the patho-
physiology of various neurodegenerative diseases: Parkinson’s
disease28, Alzheimer’s disease29 and amyotrophic lateral sclero-
sis30. In urea cycle defects, a neuronal disease caused by oxidative
stress as a consequence of low tissue arginine has been hypo-
thesised as playing a role in the brain pathophysiology31.
Although the precise biochemical mechanisms regulating
NO metabolism in different cerebral cell types in ASA remain
elusive, compelling evidences from this study and the
literature16,22,26,31–33 support the coexistence of NOS coupling
and uncoupling in the brain AslNeo/Neo mice accounting for both
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Months after injection of gene therapy

Neonatally injected AslNeo/Neo
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Adult injected AslNeo/Neo
Untreated AslNeo/Neo

Untreated AslNeo/Neo Adult injected
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Neonatally injected
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Fig. 4 AAV8.EFS.mAsl controls hyperammonaemia and restores a functional urea cycle. Concentration of (a) plasma ammonia and b argininosuccinic acid
in dried blood spots overtime in WT, untreated, adult-injected and neonatally injected AslNeo/Neo mice. c Liver argininosuccinate lyase (ASL) activity at
culling. d Representative images of ASL-stained sections of liver in WT, untreated, adult-injected and neonatally injected AslNeo/Neo mice (n= 5) and
computational quantification of ASL immunostaining. Horizontal lines display the mean ± SEM. One-way ANOVA with Dunnett’s post-test compared to
a, b WT and c, d untreated AslNeo/Neo. ns—not significant; *p < 0.05; **p < 0.01; ***p < 0.001. d Scale bars 500 μm. WT n= 13–20 (littermates aged 9 or
13 months); untreated AslNeo/Neo n= 10–12 (littermates aged 1–13 months as less than 10% of the animals had survived at the end of the study); adult-
injected AslNeo/Neo n= 4–5 (aged 13 months); neonatally injected AslNeo/Neo n= 3–5 (aged 9 months)
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the physiological glutamate-NO-cGMP pathway and nitrosative/
oxidative stress, respectively (Fig. 7) as observed in Alzheimer’s
disease34. No evidence of neuroinflammation was observed in
astrocytes and microglial cells, as assessed by GFAP and CD68
immunohistochemistry, suggesting that these cell types are not
primarily involved. NO supplementation was reported in one
ASA patient18: this dramatically normalised refractory arterial
hypertension, likely by restoring impaired vasoregulation and
correcting peripheral NO deficiency. This was associated with
improvement in some neurocognitive tests although the IQ was
unchanged. An improved regulation of the cerebral blood flow
might explain some of the cognitive amelioration, although the
authors did not exclude biased results by practice effect. This
does not discount the role of a nitrosative stress-related cerebral
disease and an ongoing clinical trial assessing NO supple-
mentation in the neurocognitive function of ASA patients
(NCT 03064048) might provide further understanding of the
neurological phenotype of ASA. Thus neuronal oxidative/
nitrosative stress seems to play a key-role in the ASA brain
disease.

In murine models, AAV8 is known for its ability to widely
transduce the brain after intracranial administration32,33. After
systemic injection, most of the organs and especially the liver are
successfully targeted35 but the neurotropism is influenced by the
age of infusion and the dose of vector administered. For instance,
successful brain transduction with AAV8 and a CMV promoter

after systemic delivery has been previously reported no later than
day 14 of life (1.5×1011 vg per mouse)36. However brain trans-
duction was barely detectable in adult mice after a similar
experiment (1×1011 vg per mouse)35. Increasing the dose of
vector improved brain transduction in adult mice. Indeed intra-
venous injection in adult mice with AAV8 and EF1α promoter
showed mild brain cell transduction at 3×1011 to 1.8×1012 vg per
mouse37, but widespread neuronal and astrocytic transduction at
7.2×1012 vg per mouse (approximately 2.9×1014 vg kg−1)38. The
transient ability for AAV vectors to cross an immature
blood–brain barrier in the neonatal mouse brain is not well
understood and could be due to immaturity or receptor-mediated
transcytosis36,39. The age at injection does not only allow an
increased brain transduction but influences the cell types trans-
duced. A predominant neuronal transduction is observed when
the vector is administered during the first 48 h of life whereas a
preferential astrocytic transduction is noticed from day 3
onwards33. These observations were made with an
AAV9 serotype, in mice40,41 and non-human primates42, with a
long-standing transgene expression of up to 18 months in mice
after a single systemic neonatal injection36. For this study, the
choice of EFS promoter was made on the basis of various
advantages: relatively ubiquitous expression and strong promoter
activity43, resistance to silencing44, reduced potential risk of
insertional mutagenesis compared to other ubiquitous pro-
moters45, already used in clinical trials46. In the brain, the AAV8.
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**p < 0.01. b Graph displays not transformed data. Statistical analysis used log-transformed data. WT n= 6–8 (littermates aged 9 or 13 months); untreated
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EFS.GFP vector targeted mainly neurons due to its promoter
specificity47 and the neonatal timing of injection33.

Long-term correction of ammonaemia levels was observed in
mice injected as adults or neonates demonstrating successful
restoration of ureagenesis. Adult-injected mice exhibited a more
complete correction with prolonged improvement of other typical
features of the deficient urea cycle: growth, fur, blood amino acid
concentrations and in some, orotic aciduria and liver intracellular
glycogen deposits. The correction of the phenotype correlated
with the liver ASL activity. AAV vectors deliver nonintegrating
transgene copies, persisting as episomes in the transduced cell.
The transient nature of the majority of the metabolic effects after
neonatal injection is likely caused by a loss of transgene vector
genomes in the rapidly growing liver during the first weeks of life
and is consistent with previous studies9,48. These results are
consistent with previous experiments using AAV-derived vectors
in murine models of urea cycle defects9,10. In this study, an
increase from 14.5 to 18% of WT liver ASL activity was observed
9 months after neonatal injection. This provided a persistent
correction of ammonaemia but was not sufficient to normalise
other biochemical parameters of the disease (plasma amino acids,
orotic aciduria). In ASA, the increased urine secretion of the
argininosuccinic acid that removes two nitrogen moieties may
explain the reduced tendency to develop hyperammonaemic
episodes compared to proximal urea cycle defects14. AAV-
mediated correction of other models of urea cycle disorders has
shown that a small improvement (approximately 3%) in liver
enzyme levels and ureagenesis can restore survival and improve
ammonia levels49. Controlling orotic aciduria in the Spfash mouse
model of ornithine transcarbamylase deficiency however required
five times more vector compared to that necessary to normalise
ammonaemia50. In that respect, our study provides a

hierarchization in the significance of biomarkers, according to the
ASL residual activity in ASA. Plasma amino acids and urine
orotic acid required a liver ASL activity of >18% for normal-
isation whereas ammonaemia was seen to normalise when ASL
activity was only 14.5–18% of WT activity. However these figures
might be biased by the persistence of the nonintegrating trans-
gene delivered by AAV vector. As reported previously in shRNA-
induced hyperammonaemic Spfash mice50, the AAV-encoded
enzymatic activity required to normalise ammonaemia might be
higher than the endogenous residual activity required in a non-
hyperammonaemic subject. Indeed the reduced transgenic
expression from nonintegrated episomes compared to endogen-
ous chromosomal alleles has been suspected recently from results
of a liver-directed clinical trial51. The fur phenotype observed in
ASL- and argininosuccinate synthase-deficient mice is likely to be
caused by hypoargininaemia as arginine represents up to 10% of
hair composition15. The long-term phenotypic improvement of
the fur in adult-injected mice is consistent with the improved
plasma arginine levels. The vector dose administered intrave-
nously (3×1011 vg in a 1.5 gram-weighted neonatal mouse) is
similar to intravenous doses (2 × 1014 vg kg−1) recently published
in a successful clinical trial delivering intravenous AAV9 gene
therapy for spinal muscular atrophy52.

A small but significant increase of the nitrite/nitrate levels was
observed in the livers of adult-injected mice thereby suggesting
that restoration of ASL activity had a positive effect on the
function of both urea and citrulline-NO cycles. Reflecting
increased cellular levels of oxidative stress, reduced glutathione
levels are decreased in untreated AslNeo/Neo mice but were not
significantly improved after gene therapy suggesting that addi-
tional factors could play a role such as the rate of hepatocyte
transduction. While systemic NO deficiency13 and increased
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Fig. 6 AAV-mediated gene therapy improves behavioural testing and is inversely correlated with cortical neuronal loss in treated animals. a Open field test
and b accelerating rotarod performed in 2-month-old mice. c, d Apoptotic cells at time of culling in WT (aged 9–13 months), untreated (aged 21 days −
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oxidative stress18 have been described previously, it was shown
that long-term correction of neuronal ASL achieved a marked
decrease of the cortical oxidative/nitrosative stress, independent
of improvement in ammonia levels.

ASA patients are at high risk of developing neurological
complications even if hyperammonaemic episodes do not
occur16. Our data provide further evidence for a neuronal disease
with oxidative/nitrosative stress independent of ammonaemia,
and illustrates the pathophysiological importance of disturbed
NO metabolism in the ASA brain. Any therapy aiming to pre-
serve the neurological status of ASA patients needs to protect the
brain from two potential insults, hyperammonaemia and dis-
turbed cerebral NO metabolism. Current best-accepted ther-
apeutic guidelines aim to normalise ammonia levels and correct
hypoargininaemia, but do not target systemic NO imbalance53.
Similar to liver transplantation54, any novel therapeutic approach
targeting only hepatocytes will cure the urea cycle defect but will
not correct the symptoms related to ASL deficiency in extra-
hepatic tissues, especially the brain18, and will be unlikely to
improve the long-term neurological outcome of these patients.
This study provides proof-of-concept for phenotypic correction
of the AslNeo/Neo mouse model using AAV technology at clinically
relevant doses. Acknowledging that clinical translation will
require optimisation of the current vector, these promising results
raise the possibility of combining two sequential systemic injec-
tions: (i) a first early (neonatal) injection of a gene therapy vector
that would transiently restore the urea cycle in the liver and will
transduce neurons to modify the long-term natural course of the
neuronal disease, and (ii) a second injection in infancy or
adulthood targeting the liver for long-term correction of the urea

cycle. The potential for humoral immune response generated by
the first AAV injection will need to be considered for the second
injection55. It is possible however, similarly to what is reported
for neonatal rodents56, that the immaturity of the immune system
in humans at the time of neonatal injection might prevent the
induction or diminish the magnitude of humoral response against
the AAV capsid57. An alternative AAV capsid, which does not
cross-react with neutralising antibodies developed, might be a
valid option58. Several inherited metabolic diseases with hepato-
cerebral phenotype might benefit from a similar dual targeting
approach such as mitochondrial diseases caused by nuclear
genetic defects (e.g. POLG1, MPV17, DGUOK genes) and some
lysosomal storage disorders (e.g. neuronopathic Gaucher disease,
mucopolysaccharidosis type I and II). Depending on the patho-
physiology of the disease, specific brain cell-types can be selec-
tively targeted in modifying either promoter and/or age at
injection32,33.

Methods
Animals. The AslNeo/Neo mice (B6.129S7-Asltm1Brle/J) were purchased from Jackson
Laboratory (Bar Harbor, ME). For the initial experiments studying the neurological
phenotype, WT and AslNeo/Neo littermates were maintained on standard rodent
chow (Harlan 2018, Teklab Diets, Madison, WI; protein content 18%) with free
access to water. For gene therapy experiments, all WT and AslNeo/Neo mice were
started on a supportive treatment including a reduced-protein diet (5CR4, Labdiet,
St. Louis, MO; protein content 14.1%) from day 15 to day 50. Untreated and adult-
injected AslNeo/Neo mice received daily intraperitoneal injections of sodium
benzoate (0.1 g kg−1 d−1) and L-arginine (1 g kg−1 d−1) from day 10 to day 30
(Supplementary Fig. 6). CD-1 mice were purchased from Jackson Laboratory (Bar
Harbor, ME). For all experiments, WT and AslNeo/Neo littermates were housed in
the same cages. Injected pups cannibalised by the dam were excluded from the
analysis. Cross-fostering with CD-1 dams overcame this issue. Mouse experiments
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were approved by institutional ethical review and performed under UK Home
Office licences 70/6906 and 70/8030.

Experimental design. Two groups of AslNeo/Neo mice were treated with gene
therapy at either adult or neonatal age and compared to WT or untreated AslNeo/
Neo littermates. Adult-treated and untreated AslNeo/Neo littermates received daily
supportive treatment (Supplementary Fig. 6) allowing improved survival until day
30 (Supplementary Fig. 7a) but with no improvement on growth. Some AslNeo/Neo

mice received a single intraperitoneal injection of AAV8.EFS.mAsl (2.5×1011 vg per
mouse). Arginine and sodium benzoate injections were withdrawn the following
day for all AslNeo/Neo mice that had received gene therapy (adult-injected AslNeo/Neo

mice) or not (untreated AslNeo/Neo mice). These mice were monitored until sacrifice
at 12 months after injection. Neonatally treated AslNeo/Neo mice were injected
within 24 h of birth with a single intravenous injection of AAV8.EFS.mAsl
(3.2×1011 vg per mouse). The neonatally injected and untreated littermates mice
did not receive any supportive treatment and were monitored until sacrifice at
9 months after injection. All untreated AslNeo/Neo mice were analysed together.

Behavioural testing. Rotarod: After a period of acclimatisation including 3 trials
per day for 3 consecutive days, the test was performed on a Rotarod LE 8200
(Panlab, Harvard apparatus, Cambridge, UK) with 3 attempts per day for 5 con-
secutive days. The latency to fall from the rod under continuous acceleration from
4 to 40 rpm over 5 min was recorded.

Open field test: The animal was placed in the centre of a plastic box (40 × 40 cm
floor) and video-recorded for 5 min. Computational analysis of the distance
walked was performed automatically using the MouseLabTracker v0.2.9
application on Matlab software (Mathworks, Natick, MA, USA)59.

Reagents and antibodies. All chemicals were from Sigma-Aldrich unless stated
otherwise. Antibodies used in this study include the following: rabbit polyclonal
anti-GFP (1:10,000 for immunohistochemistry (IHC), 1:4000 for immuno-
fluorescence (IF); Ab290, Abcam, Cambridge, UK), chicken polyclonal anti-GFP
(1:1000 for IF; Ab13970, Abcam, Cambridge, UK), mouse polyclonal anti-
nitrotyrosine (1:800 for IHC; 06-284, Merck Millipore, Temecula, CA, USA),
mouse monoclonal anti-nitrotyrosine clone 1A6 (1:100 for IF and western blot
(WB); 05-233, Merck Millipore, Temecula, CA, USA), rabbit polyclonal anti-nNOS
(1:200 for IHC, 1:100 for IF; bs10197R, Bioss antibodies, Woburn, MA, USA),
rabbit polyclonal anti-iNOS (1:500 for IHC, 1:100 for IF; NBP1-50606, Novus
Biologicals, Abingdon, UK), mouse purified anti-eNOS (1:300 for IHC, 1:100 for
IF; 610296, BD Transduction Lab), mouse monoclonal anti-GFAP (1:500 for IHC,
1:250 for IF; MAB3402, Merck Millipore, Temecula, CA, USA), rat monoclonal
anti-GFAP (1:250 for IF, 13-0300, ThermoFisher Scientific, Rockford, IL, USA), rat
monoclonal anti-CD68 (1:100 for IHC and IF; MCA1957, Bio-Rad, Oxford, UK),
rabbit polyclonal anti-ASL (1:1000 for IHC; Ab97370, Abcam, Cambridge, UK),
rabbit polyclonal anti-Olig-2 (1:100 for IF; Ab9610, Abcam, Cambridge, UK),
mouse monoclonal anti-NeuN (1:1000 for IF; Millipore, Billerica, MA, USA),
rabbit monoclonal anti-NeuN (1:1000 for IF; Ab177487, Abcam, Cambridge, UK),
mouse monoclonal anti-CD31 clone 390 (1:20 in IF, ThermoFisher Scientific,
Rockford, IL, USA) and goat anti-rabbit secondary antibody (1:1000 for IHC and
WB; Vector, Burlingame, CA, USA). All secondary antibodies used for immuno-
fluorescence were Alexa Fluor conjugates diluted at 1:500 (Life Technologies). 4′,6-
diamidino-2-phenylindole (DAPI) was used for nucleus counterstaining.

Genotyping. DNA extraction from tail or ear clips was performed by adding 25
mM NaOH, 0.2 mM EDTA adjusted to pH 12 prior to heating the sample at 95 °C
for 10 min. An equal volume of 40 mM Tris (adjusted to pH 5) was then added.
DNA was amplified using a Taq DNA Polymerase PCR kit (Peqlab, Germany)
according to the manufacturer’s instructions using the following primers: 5′-
GGTTCTTGGTGCTCATGGAT-3′ (sense), 5′-GCCAGAGGCCACTTGTG
TAG-3′ (WT, antisense) and 5′-CATGACAGCTCCCATGAAGA-3′ (AslNeo/Neo
mice, antisense) provided by Jackson Laboratory (Bar Harbor, ME). Amplification
conditions were 95 °C for 10 min then 40 cycles of 94 °C for 30 s, 63 °C for 30 s, 72 °
C for 1 min.

Cell culture. Human embryonic kidney (HEK) 293 cells were maintained in
Dulbecco’s modified Eagle medium (Gibco, Invitrogen, Grand Island, NY) sup-
plemented with 10% (vol/vol) fetal bovine serum (JRH, Biosciences, Lenexa, KS)
and maintained at 37 °C in a humidified 5% CO2-air atmosphere.

Vector production and purification. The murine Asl (mAsl) gene (Vega Sanger
Asl-0003 transcript OTTMUST00000085369) inserted in a pCMV-SPORT6 gate-
way vector was purchased from Thermo Scientific (Loughborough, UK). A single-
stranded AAV2 backbone plasmid containing an expression cassette with the EFS
promoter, a modified simian virus 40 (SV40) small t antigen intron, the human
vacuolar protein sorting 33 homologue (hVPS33B) cDNA, Woodchuck hepatitis
post regulatory element (WPRE) sequence, SV40 late polyA (courtesy of P. Gissen)
was digested with EcoRV-Nhe1 to remove the hVPS33B cDNA. Subsequently, the
mAsl cDNA was digested with EcoRV-Nhe1 and ligated into this vector. Vector

production was performed by triple transfection in HEK293T cells following
polyethylenimine transduction as described previously60. Vector purification was
performed by affinity chromatography on an ÄKTAprime plus (GE Healthcare UK
Ltd, Buckinghamshire, UK) with Primeview 5.0 software with a HiTrap AVB
Sepharose column (GE Healthcare UK Ltd, Buckinghamshire, UK) according to
the manufacturer’s instructions. Vector quantification was performed by electro-
phoresis on an alkaline gel61. An AAV8 vector encapsidating a single-stranded
DNA sequence containing the GFP gene under the transcription activity of the EFS
promoter, the SV40 intron upstream and WPRE and polyA downstream GFP was
generated. The vector genomes tested contained 40 bp (TGTAGTTAATGATTA
ACCCGCCATGCTACTTATCTACGTA) downstream of the 5′ITR and 45 bp
(ATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACA) just
proximal of 3′ITR from the liver-specific enhancer-promoter element identified by
Logan et al. in the wild-type AAV2 genome62.

Stereoscopic fluorescence microscopy. At 5 weeks of age, CD-1 mice injected
intravenously at day 0 with 1.7×1011 vg per mouse of AAV8.EFS.GFP and control
littermates were culled by terminal exsanguination and perfused with PBS. GFP
expression was assessed using a stereoscopic fluorescence microscope (MZ16F;
Leica, Wetzlar, Germany). Representative images were captured with a microscope
camera (DFC420; Leica Microsystems, Milton Keynes, UK) and software (Image
Analysis; Leica Microsystems).

Free-floating and paraffin-embedded immunohistochemistry. Brain tissue was
fixed in 4% paraformaldehyde (PFA) over 48 h then stored in 30% sucrose at 4 °C.
Cryo-sectioning was performed with a Microm freezing microtome (Carl Zeiss,
Welwyn Garden City, UK). Immunohistochemistry was performed on free-floating
sections blocked in Tris-buffered saline–Triton (TBST)/15% normal goat serum
and incubated overnight at 4 °C using primary antibodies diluted in TBST/10%
normal goat serum. After three washes with Tris-buffered saline (TBS), a 2 h
incubation with a biotinylated secondary antibody at room temperature was fol-
lowed by three TBS washes before a 2-h incubation with avidin-biotinylated
horseradish peroxidase (ABC; 1:100; Vector, Peterborough, UK) at room tem-
perature. After three TBS washes, detection was performed with a 0.05% 3,3′-
diaminobenzidine (DAB) solution diluted in TBS. The reaction was stopped by the
addition of ice-cold TBS. Three TBS washes were performed before mounting the
tissue on chrome-gelatin-coated slides. Slides were cover-slipped with DPX-new
(Merck Millipore Corporation, Temecula, CA, USA).

Systemic organs were fixed with 10% formalin for 48 h and stored in 70%
ethanol at 4 °C. Paraffin-embedded sections were dewaxed, dehydrated in an
ethanol gradient. Blocking was performed with 1% hydrogen peroxide in methanol
for 30 min followed by antigen retrieval using 10 mmol l−1 sodium citrate buffer
pH 7.4. Nonspecific binding was blocked with 15% normal goat serum (Vector,
Burlingame, CA, USA). After three washes in PBS, sections were incubated with
primary antibodies overnight at 4 °C. Detection was performed with Polink-2 HRP
Plus Rabbit Detection System for Immunohistochemistry (GBI labs, Mukilteo, WA,
USA) as per the manufacturer’s instructions. After dehydration in a gradient of
ethanol and three washes in xylene, slices were cover-slipped with DPX-new
(Merck Millipore Corporation, Temecula, CA, USA). Images were captured with a
microscope camera (DFC420; Leica Microsystems, Milton Keynes, UK) and
software (Image Analysis; Leica Microsystems).

Free-floating immunofluorescence. Free-floating sections were blocked in TBST/
15% normal goat serum and incubated overnight at 4 °C with primary antibodies
diluted in TBST/10% normal goat serum as described previously41. After three
washes with TBS, samples were incubated for 2 h with secondary antibodies diluted
in TBST/10% normal goat serum. After a further three washes, sections were
incubated with DAPI (1:2000; Invitrogen) and mounted on chrome-gelatin-coated
slides and cover-slipped with Fluoromount (Southern Biotech, Birmingham, AL,
USA). For NOS isoforms and nitrotyrosine, blocking and incubation of antibodies
were performed with 2% casein in TBST only.

All immunofluorescence images were acquired using an inverted Leica TCS
SPE3 confocal microscope using ×20 (multi immersion with numerical aperture
(NA) 0.6) and ×63 (oil immersion with NA 1.3) objectives and a 1.5 optical zoom
for both objectives. The pinhole was set to one Airy Unit. The scan format was set
at 1024 × 1024 pixels. Leica Application Suite Advanced Fluorescence software was
used for basic analysis of the confocal images. Fiji software (ImageJ 1.50d) was used
to project the z-stacks made on the ×63 objective in 2D using the Fiji tool: Image >
Stacks > Z projection63. Both types of projection: Maximum intensity or Sum slices
were used depending on the background level of each stack. Representative images
are shown in all experiments. Colocalisation was performed using the Fiji plugin
JACoP 626 and was represented by Pearson’s coefficient calculated on images at
×20 objectives, after Costes randomisation and automatic threshold calculation64.

TUNEL staining. TUNEL staining was performed as described previously65 using
the Roche kit (Roche, Welwyn Garden City, Hertfordshire, UK). Briefly, sections
were incubated in 3% hydrogen peroxide in methanol for 15 min and washed in
0.1 M phosphate buffer (PB) before incubation with terminal deoxytransferase
(TdT) and deoxyuridine trisphosphate (dUTP) in a solution of 0.1% TdT, 0.15%
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dUTP, 1% cacodylate buffer at 37 °C for 2 h. The reaction was stopped by incu-
bating the section in TUNEL stop solution (300 mM NaCl, 300 mM sodium citrate)
for 10 min. Sections were then washed in 3 × 0.1 M PB solution, incubated with
avidin-biotinylated horseradish peroxidase (ABC; 1:100; Vector, Peterborough,
UK) at room temperature for 1 h, washed four times in 10 mM PB and visualised
with DAB enhanced with cobalt nickel. The reaction was stopped in 10 mM PB and
washed twice in double-distilled (ddH2O) water.

Nissl staining. Brain sections were fixed in 4% PFA for 24 h then in 70% ethanol
for 24 h. On day 3, sections were incubated in Cresyl Violet solution (BDH, East
Grinstead, West Sussex, UK) for 3 min followed by dehydration in an ethanol
gradient (70%, 90%, 96%, 96% with acetic acid, 100%), isopropanol, and three
washes in xylene before being cover-slipped with DPX-new (Merck Millipore
Corporation, Temecula, CA, USA).

Quantitative analysis of immunological staining. Ten random images per
sample were captured with a microscope camera (DFC420; Leica Microsystems,
Milton Keynes, UK) and software (Image Analysis; Leica Microsystems). Quanti-
tative analysis was performed with thresholding analysis using the Image-Pro
Premier 9.1 software (Rockville, MD, USA).

Blood chemistry. Plasma ammonia and alanine aminotransferase (ALAT) were
analysed by Chemical Pathology Great Ormond Street Hospital, London.

Mass spectrometry. Blood was spotted onto a Guthrie card and allowed to dry at
room temperature for 24 h. Amino acids were measured in dried blood spots by
liquid chromatography-tandem mass spectrometry (LC-MS/MS). A 3-mm-
diameter punch was incubated for 15 min in a sonicating water bath in 100 μL of
methanol containing stable isotopes used as internal standards (2 nmol l−1 of L-
Arginine-13C; CK isotopes, Ibstock, UK) and L-Citrulline-d7 (CDN istotopes,
Pointe-Claire, Quebec, Canada). A 4:1 volume of methanol was added to pre-
cipitate contaminating proteins. The supernatant was collected and centrifuged at
16,000 × g for 5 min. Amino acids were separated on a Waters Alliance 2795 LC
system (Waters, Midford, USA) using a XTerra® RP18, 5 µm, 3.9 × 150 mm column
(Waters, Midford, USA). The mobile phases were (A) methanol and (B) 3.7% acetic
acid. The gradient profile using a constant flow rate of 0.2 mLmin−1, with initially
100% B for the first minute and gradually increasing the flow of A as follows: 85%
from 1 to 6 min, 75% from 6 to 8 min, 5% from 9 to 15 min, 100% from 16 to 25
min. The column was reconditioned for 10 min at the end of each run. Detection
was performed using a tandem mass spectrometer Micro Quattro instrument
(Micromass UK Ltd, Cheshire, UK) using multiple reaction monitoring in positive
ion mode and ion transitions published previously66. The temperature of the
source and for desolvation were 120 and 350 °C, respectively. The capillary and
cone voltages were 3.7 and 35 V, respectively. The cone gas flow was 50 L h−1 and
the syringe pump flow 30 µLmin−1. The mass spectrometer vacuum was 4.3 × 10
−3 mbar. The multiplier and extractor voltages were 650 and 1 V, respectively. Data
were analysed using Masslynx 4.1 software (Micromass UK Ltd, Cheshire, UK).
Calibration curves ranging from 0 to 500 μM were constructed to enable
quantification.

Analysis of ASL enzyme activity. Liver and brain samples were snap-frozen in
dry ice at time of collection after perfusion of the animal with PBS to remove
residual blood in tissues. Protein extraction was performed on ice. Samples were
homogenised in lysis buffer (50 mM Tris, 150 mM NaCl, 1% Triton adjusted to pH
7.5) and centrifuged at 16,000 × g for 20 min at 4 °C. Protein quantification of the
supernatant was performed using the PierceTM BCA protein assay kit (Thermo-
Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s instructions.

Liver ASL activity was measured in duplicate samples. 20 μg protein was added
to a buffer solution of 20 mM Tris, 1 mM argininosuccinic acid, 0.02 nM L-
citrulline-d7 and incubated for 2 h at 37 °C. Brain ASL activity was also measured
in duplicate samples. 80 μg protein was added to a buffer solution of 20 mM Tris,
30 μM argininosuccinic acid, 0.02 nM L-citrulline-d7 and incubated for 2 h at 37 °C.
A 4:1 volume of methanol was added to stop the reaction, and centrifuged at
9500 × g for 2 min. The supernatant was analysed by the LC-MS/MS method
described above. ASL activity was calculated by subtracting the amount of
argininosuccinic acid postincubation from that preincubation.

Nitrite and nitrate measurement. Measurement of nitrite and nitrate levels were
performed using a modified Griess reaction protocol67. Samples were collected
carefully in order to minimise the risk of nitrite and nitrate contamination. All
glassware and plastic ware were cleaned with double-distilled water (ddH2O).
Animals were anaesthetised and perfused on ice. Organs and brain were collected
on ice in less than 3 min and snap-frozen on dry ice. Samples were homogenised in
two volumes of ddH2O with a grinder (Tissue Master 125, OMNI International,
Kennesaw, GA, USA) on ice and then centrifuged at 13,500 × g at room tem-
perature for 10 min in 3000 kDa cut-off filters (Merck Millipore, Darmstadt,
Germany). Enzyme stocks were made and stored as follows: Nitrate reductase was
dissolved in 1:1 phosphate buffer:glycerol to a final specific activity of 59 units mL

−1 and stored at −20 °C. Glucose-6-phosphate dehydrogenase was dissolved in 1:1
phosphate buffer:glycerol to a final specific activity of 125 units mL–1 and stored at
−20 °C. The enzyme master mix was made fresh for each experiment using a
mixture of 1 mL of phosphate buffer, 10 μL of nitrate reductase stock solution, 10
μL of glucose-6-phosphate dehydrogenase stock solution and 1.14 mg of glucose-6-
phosphate. A calibration curve, covering a range of 0–600 μmol L−1 was prepared
using serial dilutions of nitrite and nitrate standards. Analysis was performed in a
96-well plate and each sample analysed in duplicate. 60 μL of sample was mixed
with 10 μL of 10 mmol L−1 NADPH and 40 μL of enzyme mastermix. Samples
were incubated for 1 h at room temperature on a rotating shaker to allow con-
version of NO3

− to NO2
−. The Griess reaction was performed by adding 75 μL of

116 mM sulfanilamide, 5% phosphoric acid, then 75 μL of 7.7 mM N-1-naphty-
lethylenediamine dihydrochloride. The plate was read at 550 nm in a FLUOstar
Omega spectrophotometer (BMG Labtech, Ortenberg, Germany).

Nitrosothiols measurement. Brain samples from PBS perfused mice were flash-
frozen in dry ice and stored at −80 °C. Nitrosothiols were measured using a
Nitrosothiols kit (Enzo Life Sciences, Farmingdale, NY, USA) according to the
manufacturer’s instructions after filtration of samples through a 10,000 kDa cut-off
filters (Merck Millipore, Darmstadt, Germany). Samples were read at 540 nm using
a FLUOstar Omega spectrophotometer (BMG Labtech, Ortenberg, Germany).

cGMP measurement. Brain samples from PBS perfused mice were flash-frozen in
dry ice and ground in liquid nitrogen. Samples were weighed and diluted in ten
volumes of 0.1 M HCl prior to centrifugation at 600 × g for 10 min. cGMP was
measured using a cGMP complete ELISA kit (Enzo Life Sciences, Farmingdale, NY,
USA) according to the manufacturer’s instructions in a nonacetylated format
reaction. Samples were analysed in a 96-well plate and were analysed at 405 nm in a
FLUOstar Omega spectrophotometer (BMG Labtech, Ortenberg, Germany).

Glutathione analysis. Reduced glutathione was measured as described pre-
viously68. Briefly snap-frozen samples were homogenised in 20 volumes of cold 50
mM Tris buffer pH 7.4 and sonicated. Monochlorobimane (at a final concentration
of 100 μM) and glutathione-S-transferase (1 UmL−1) were added to the samples
prior to incubation at room temperature while protected from light for 30 min.
Samples were analysed in a FLUOstar Omega spectrophotometer (BMG Labtech,
Ortenberg, Germany) using an excitation wavelength of 360 nm and an emission
wavelength of 450 nm.

Green fluorescent protein ELISA. Lysis buffer was added to cover the sample
prior to grinding with a mixer after a couple of freeze/thaw cycles. The sample was
then centrifuged for 2 min at 1200 × g and the supernatant collected. The protein
concentration for each sample was measured using the PierceTM BCA protein assay
kit (ThermoFisher Scientific, Rockford, IL, USA) according to the manufacturer’s
instructions and read at 570 nm in a FLUOstar Omega spectrophotometer (BMG
Labtech, Ortenberg, Germany). Each step of the ELISA protocol was separated by
three washes of a wash buffer 0.05% Tween20 in PBS. A monoclonal anti-GFP
antibody (1:10,000; ab1218, Abcam, Cambridge, UK) was added, the plate sealed,
incubated overnight at 4 °C then blocked with 1% bovine serum albumin in PBS for
1 h at 37 °C. Analysis was done in a sealed 96-well plate and all samples were
measured in duplicate. GFP standards were serially diluted in wash buffer and
incubated alongside a buffer blank and the samples for 1 h at 37 °C. An anti-GFP
biotin-conjugated secondary antibody (1:5000; Ab6658, Abcam, Cambridge, UK)
followed by a streptavidin-horseradish peroxidase conjugate (1:20,000; SNN2004,
Invitrogen, Camarillo, CA, USA) were added to the samples. Both were incubated
for 1 h at 37 °C successively. Tetramethylbenzidine was then added for 2 min at
room temperature before the reaction was stopped with 2.5 M H2SO4. The plate
was read at 450 nm within 30 min of having stopped the reaction in a FLUOstar
Omega spectrophotometer (BMG Labtech, Ortenberg, Germany).

qPCR. Liver samples were stored frozen at −80 °C before DNA extraction with the
DNeasy blood and tissue kit (QIAgen, Crawley, UK) according to the manu-
facturer’s instructions. The WPRE sequence was amplified using the following
primers: 5′-TTCCGGGACTTTCGCTTTCC-3′ (sense) and 5′-CGACAACACC
ACGGAATTG-3′ (antisense). Amplification was detected and normalised against
glyceraldehyde 3-phosphate dehydrogenase which was amplified using the fol-
lowing primers: 5′-ACGGCAAATTCAACGGCAC-3′ (sense) and 5′-TAGTGG
GGTCTCGCTCCTGG-3′ (antisense). Amplification reactions were carried out
using 5 μL of sample, 2.5 μmol L−1 of each primer, and SYBR green master mix
using the Quantitect SYBR Green PCR Kit (QIAgen, Crawley, UK) for a 25 μL
reaction. The amplification conditions were 95 °C for 10 min followed by 40 cycles
of 95 °C for 15 s, 60 °C for 1 min, 72 °C for 30 s. Data were processed with Ste-
pOneTM software v 2.3 (ThermoFisher Scientific, Rockford, IL, USA).

Western blot. Brain samples from PBS perfused mice were flash-frozen in dry ice
and stored at −80 °C. Protein extraction was performed on ice. Samples were
homogenised in PierceTM RIPA buffer (ThermoFisher Scientific, Rockford, IL,
USA) containing cOmpleteTM, Mini, EDTA-free Protease Inhibitor Cocktail
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(Roche, Welwyn Garden City, Hertfordshire, UK) and incubated with gentle
rotation at 4 °C for 30 min. After sonication, the lysate was centrifuged at 14,000 ×
g for 20 min at 4 °C. Protein quantification of the supernatant was performed using
the PierceTM BCA protein assay kit (ThermoFisher Scientific, Rockford, IL, USA)
according to the manufacturer’s instructions. Supernatants were mixed with 5×
SDS loading buffer and boiled for 5 min. Samples were then analysed by western
blotting as previously published69. Uncropped membranes are presented in Sup-
plementary Fig. 13.

Statistics. Data were analysed using GraphPad Prism 5.0 software (San Diego, CA,
USA). Comparisons of continuous variables between two or more experimental
groups were performed using the Student’s two-tailed t test or one-way ANOVA
with Dunnett’s post-test for pairwise comparisons with WT or untreated AslNeo/Neo

mice as indicated. p values < 0.05 were considered statistically significant. For
nonnormally distributed data, a log transformation was used to compare groups.
Figures show mean ± standard error of the mean (SEM). Kaplan−Meier survival
curves were compared with the log-rank test. Retrospective power calculation was
performed by PS: Power and Sample Size Calculation programme version 3.1.2,
201470.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or are
available from the corresponding author upon request.
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