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Weighted Stochastic Block Models 
of the Human Connectome across 
the Life Span
Joshua Faskowitz   1,2, Xiaoran Yan3, Xi-Nian Zuo4,5,6 & Olaf Sporns1,2,3

The human brain can be described as a complex network of anatomical connections between distinct 
areas, referred to as the human connectome. Fundamental characteristics of connectome organization 
can be revealed using the tools of network science and graph theory. Of particular interest is the 
network’s community structure, commonly identified by modularity maximization, where communities 
are conceptualized as densely intra-connected and sparsely inter-connected. Here we adopt a 
generative modeling approach called weighted stochastic block models (WSBM) that can describe 
a wider range of community structure topologies by explicitly considering patterned interactions 
between communities. We apply this method to the study of changes in the human connectome 
that occur across the life span (between 6–85 years old). We find that WSBM communities exhibit 
greater hemispheric symmetry and are spatially less compact than those derived from modularity 
maximization. We identify several network blocks that exhibit significant linear and non-linear changes 
across age, with the most significant changes involving subregions of prefrontal cortex. Overall, we 
show that the WSBM generative modeling approach can be an effective tool for describing types of 
community structure in brain networks that go beyond modularity.

The human brain forms a complex network of anatomically interconnected neurons and brain regions, the con-
nectome1 that can be modeled and analyzed with the tools of network science and graph theory2. Modeling the 
brain as a network allows us to explore local as well as distributed properties of brain organization, using both 
descriptive3 and generative modeling approaches4. A hallmark of complex networks, including the human con-
nectome, is the presence of subnetworks, also called communities or modules5. The set of communities that com-
prise a given network is referred to as the network’s community structure. This structure is useful for describing 
both large-scale and local patterns of the network6. At large-scale, we can measure differential connectivity trends 
between communities, e.g. across age7 or in relation to cognition8. Locally, we can use metrics such as the partic-
ipation coefficient to assess node-wise aspects of the community structure9,10.

In many extant studies, network communities are operationalized as modular subnetworks, i.e. as groups of 
nodes that are more densely connected within, and more sparsely connected between groups. However, the pro-
cess of identifying modules in networks, community detection, is an ill-defined problem with no universal defi-
nition11–15. Modular network communities are merely one plausible lens through which to analyze brain network 
communities. In fact, recent evidence demonstrates that the presence of diverse community structure connec-
tivity patterns beyond modular configurations correlates with behavioral task performance16 For this investiga-
tion, we employ an alternative to the modularity approach by adopting a model from a family of methods called 
stochastic block models (SBM)17–20. The SBM splits nodes into blocks, within which all nodes are stochastically 
equivalent in terms of how they connect to the rest of the network. As a generative model, it has a well-defined 
likelihood function with consistent parameter estimates. It is also highly flexible, capable of modeling a wide 
variety of community structures, including the conventional modular, but also disassortative, core-periphery or 
mixed community structures (Fig. 1). Recent theoretical developments in SBM models have also enabled them to 
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capture degree distributions20, overlapping communities21, and weighted edge weights22,23 as well as statistically 
principled model selection criteria24,25.

In this study, we employ the stochastic block modeling framework to analyze, cross-sectionally, how brain 
networks, and the community structure of these networks, are modulated across the human life span. Over 
the human life span the brain matures nonlinearly, from development to young adulthood, and into old age26. 
Notably, morphological changes in the cortical grey matter are heterogeneous, as spatially distinct regions of the 
cortex develop, mature, and decline at different time points and rates27,28. Additionally, the white matter archi-
tecture that supports connections between these distinct cortical regions develops at variable rates29–31. To char-
acterize these changes in brain networks across the human life span several recent studies have applied tools of 
complex network analysis7,32–35. Using resting state functional connectivity MRI networks, studies have shown 
increases in connectivity between modules increases with age while connectivity within modules decreases7,36. 
The modularity of these networks has been shown to decease over the life span35. Concurrently, overall structural 
connectivity (total number of recovered streamlines) decreases as a function of age7,37, hypothesized to be a result 
of preferential detachment of short structural connections within modules37.

SBMs offer great flexibility as the way in which communities are defined transcends the narrower defini-
tion inherent in classical modularity maximization. Despite their methodological advantages, SBMs have only 
recently been applied to the analysis of brain networks16,38–41. Here we apply a weighted variant of the stochas-
tic block model, called the Weighted Stochastic Block Model, or WSBM22,23,42, to whole-brain anatomical net-
works extracted from diffusion imaging and tractography data acquired across a major portion of the human 
life span. After designing a robust strategy for applying WSBMs to weighted connectome data, we fit WSBMs 
to group-averaged connectomes, as well as to individual connectome networks. We find patterns of age-related 
changes that unfold in specific sub-blocks of SBMs, representing bundles of connectome edges that exhibit signif-
icant linear or non-linear changes across the life span. We also demonstrate how to measure community structure 
change across age by conceptualizing community structure as a vector. Finally, we discuss the patterns of change 
we detected in this study in the context of previous work reporting on modularity and age-dependent changes in 
functional connectivity.

Methods
Data description.  Our data was generated from 620 human subjects (63% female) from the enhanced 
Nathan Kline Institute-Rockland Sample (NKI-RS; fcon_1000.projects.nitrc.org/indi/enhanced/)43. Institutional 
Review Board approval was obtained for this project at the Nathan Kline Institute (#226781 and #239708) 
and at Montclair State University (#000983 A and #000983B) in accordance with relevant guidelines. Written 
informed consent was obtained for all study participants. Written consent and assent was also obtained from 
minor/child participants and their legal guardian. In the present study, human data used was de-identified and 
provided open-access via an Amazon S3 Bucket (fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html). 
The NKI-RS dataset is a cross-sectional community sample that covers a wide range of the human life span 
(6–85 years old; std. dev: 20.88). Both T1-weighted (T1w) and diffusion (dMRI) images were collected for each 
study participant on a 3 T Siemens Magnetom Tim Trio scanner (Siemens Medial Solutions USA: Malvern PA, 
USA) using a 12-channel head coil. T1-weighted magnetization rapid acquisition gradient-echo (MPRAGE) were 
acquired with the following scan parameters: echo time (TE): 2.52 ms; repetition time (TR): 1900 ms; flip angle 

Figure 1.  Three representations of network data: graph, adjacency matrix, block model. The graph is visualized 
as a force-directed84 graph layout, the adjacency matrix is visualized as a square matrix with entries for each 
edge between nodes, and the block model is visualized as a square matrix with entries for each edge-existence 
parameter between communities. (a) Random network (b) Modular network (c) Core-periphery network (d) 
Disassortative network (e) Mixed network, based on an example fit to brain network data of a single hemisphere 
(f) An illustration of a binary (unweighted) edge for each network data representation.
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(FA): 9 degrees; FOV: 176 sagittal slices at 250 × 250 mm, with 1 mm spacing; GRAPPA acceleration factor of 2; 
acquisition time: 4:18 min. DWI were acquired with the following scan parameters: TE: 85 ms; TR: 2400 ms; FA: 
90 degrees; FOV: 64 axial slices of 212 × 212 mm, with 2 mm spacing; multi-band acceleration factor: 4; 128 direc-
tions in single-shell; b-value 1500 s/mm2; 9 non-weighed diffusion volumes; anterior» posterior phase encoding 
direction; acquisition time: 5:58 min. 671 dMRI datasets were initially downloaded. Data exclusions included: 
13 subjects did not have viable T1w (FreeSurfer failure); 12 dMRI were visually judged as having image arti-
facts (based on viewing medial axial, coronal, and sagittal slices of fractional anisotropy map); 24 tractography 
reconstructions were visually judged as poor (~3.8% of tractographies generated; based on 6 rotated views of the 
tractogram and looking for areas of non-smooth streamline paths); 2 streamline count matrices were labeled out-
liers based on an edge density cutoff (sparsity z-scores of -4.1 and -5.6)—adjacency matrices that failed to reach a 
binary edge density of 25% were deemed too sparse.

MRI pre-processing.  T1w images were run through FreeSurfer’s (surfer.nmr.mgh.harvard.edu) recon-all 
pipeline to obtain a cortical surface reconstruction and surface mapping to the FreeSurfer fsaverage space. We 
reconstructed the Yeo17 network parcellation44 (114 cortical nodes, source: github.com/ThomasYeoLab) in the 
T1w native space using FreeSurfer’s nonlinear surface warps. We then applied FSL fast45 to the skull-stripped 
T1w to obtain grey matter (GM), white matter (WM), and cerebral spinal fluid (CSF) partial volume estimation 
(PVE) maps. The bias-corrected T1w were rigidly aligned to MNI 152 1 mm isotropic space using FSL flirt. All 
parcellations and PVE maps were aligned to MNI space by applying the flirt linear transformation. PVE maps 
were thresholded at 0.5, to obtain maps of the majority volume estimates for each voxel.

We first denoised the dMRI using a spatially adaptive denoising algorithm46. dMRI were then corrected for 
motion using FSL eddy_correct, with the normalized mutual information cost metric. The average unweighted 
diffusion volume (B0 image) was then linearly aligned to the T1w in MNI 152 2 mm space using the FSL flirt 
boundary-based registration routine47. The inverse of this transformation was applied to the T1w to bring the 
T1w into the dMRI native space. We then used ANTs SyN registration48 to nonlinearly correct the dMRI for eddy 
current distortion in the phase encoding direction. The dMRI images were finally aligned to MNI 152 2 mm space 
by concatenating and applying the eddy_correct, ANTs warp, and flirt transformations, to interpolate the dMRI 
only once. dMRI b-vectors were rotated accordingly.

We generated streamline tractography in the MNI 152 2 mm isotropic space using Dipy49. We first modeled 
the fiber orientation distribution function (fODF) at each voxel using constrained spherical deconvolution50; fit 
using a recursive calibration51 and a spherical harmonic order of 8. We placed 9 random seeds in each voxel of a 
white matter mask, generated by calculating the intersection of the PVE WM and FreeSurfer WM segmentation. 
We used Dipy’s LocalTracking module to deterministically propagate streamlines bidirectionally from each seed. 
Streamlines were generated at 0.5 mm steps, with a max turning angle of 30 degrees. Streamlines longer than 
5 mm and terminating in the GM PVE map, while avoiding the CSF PVE map52, were retained.

We constructed streamline count adjacency matrices by counting the number of streamlines that terminated 
in each region of interest (ROI) of the Yeo network parcellation. We disregarded nodes connected by only one 
streamline as noise and set these entries in the count matrix to zero. We recorded the voxel volume of each ROI 
of the Yeo parcellation and normalized the streamline count matrices by geometric mean volume of each pair of 
connected ROIs. This step was taken to remove potential edge-weight bias for larger ROIs. Hence, we recorded 
the weights of our structural connectivity matrices (connectomes) as streamline density measurements, as in 
previous studies3,16,53.

Community detection with the stochastic block model.  Communities described by the SBM, also 
called blocks, are groups of nodes that are stochastically equivalent. Hence, nodes in the same community connect 
to all other nodes with a similar pattern. An SBM block does not require nodes within a block to connect densely 
to each other, and sparsely to other blocks. Rather, the probability at which nodes in a block connect to other 
nodes in the same block is a parameter with the same importance as all other block interactions. For classic SBM, 
the probability of an edge existing between two nodes of block A and block B will be described by a Bernoulli dis-
tribution with parameter theta that describes the probability of an edge existing between any two nodes of block 
A and block B. With an SBM of k blocks, we can build a k × k affinity matrix b that describes the probability of a 
connection (edge-existence) between nodes of each block based on the Bernoulli distribution parameterized by 
the corresponding entry in affinity matrix b (see Fig. 1, panel f). The between block edge-existence parameters 
describe the connectivity of each node to each block independently.

Recently, the SBM has been extended to model networks with weighted edges, referred to as the weighted 
stochastic block model, or WSBM22,23,42. With this advancement, we can apply the SBM framework to 
weighted networks commonly encountered in the network neuroscience literature. Using openly-available 
code (tuvalu.santafe.edu/~aaronc/wsbm/)23,42, we fit the WSBM to structural connectivity matrices using a 
variational-Bayesian approximation approach. For our application, we chose to use the WSBM described by the 
following generative steps:

•	 For each node, assign a community membership
•	 For each pair of communities, assign edge-existence and edge weight parameters
•	 For each edge, draw from the Poisson distribution with the corresponding edge-existence parameter
•	 For each existing edge, draw from the normal distribution with the corresponding edge weight parameters

Community structure fitting workflow.  Fitting the WSBM on connectome data yields stochastic results 
(like other community detection algorithms such as modularity maximization). When comparing across different 
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community structures, the correspondence between specific communities could become unclear. Therefore, we 
first sought to create a representative WSBM partition of our data, to serve as a generalizable model to provide 
an initial overview of network structure in a specific age window, and to seed further age-dependent analysis. To 
create a representative matrix to infer the community structure of, we aggregated adjacency matrices from 53 
young adult subjects (25–35 years old; 51% female) and averaged the data subject to several constraints (Fig. 2, 
panel a)16,54. Specifically, the edge density of the representative matrix was set to match the average edge density of 
the input sample. Additionally, the distribution of streamline lengths across the input matrices was maintained, 
to mitigate bias against hard-to-recover long streamlines55.

Fitting WSBM to data requires searching over a large parameter space. Instead of using ad-hoc greedy heu-
ristics, we adopt a multi-step fitting scheme. The first level of fitting involves fitting the model with a uniform 
prior, to broadly search the parameter space of plausible block partitions. We inferred WSBM structure with 
uniform block assignment prior parameters for 250 independent trials of the inference process. At each trial, the 
uniform block assignment is used to seed an expectation maximization algorithm42 to fit the following WSBM 
model parameters to the observed data. After 250 trials, the most likely model fit is retained (maximum posterior) 
and the most likely block assignments for each node are recorded. The second level of fitting involves fitting the 
model with increasingly stronger priors. The previously inferred block assignment was used to construct a biased 
block assignment prior parameter. That is, for each node, we assign a 100% higher likelihood for that node to be 
assigned to the previous most likely block and assign uniform likelihood to the other (k-1) blocks. With this prior, 
we ran 100 more independent trials. We iterated this second stage 10 times, incrementing the concentration of the 
most likely nodal prior assignment by 1.5 times (150%, 200%, … 600%).

We chose the number of communities (k) after repeatedly fitting the WSBM at each value of k = 6, 7 … 11 
(Fig. 2, panel b). We fit the WSBM 100 times at each k and recorded the marginal log-likelihood (which penalizes 
model complexity, ensuring that we do not fit the data better simply by increasing the number of parameters) 
at each fit. Using Bayes factors, we compare the partitions via the difference in marginal log-likelihood of each 
model fit42.

Next, we sought to derive a Bayesian consensus WSBM from multiple fits of our data56. First, we aggregated 
the results of the 100 WSBM fits at our data-driven selected k. Next, we choose a representative partition from 
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b) Find k number of blocks via Bayes Factor 
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Figure 2.  Creation of consensus WSBM model. (a) A representative adjacency matrix was constructed by 
averaging across multiple individual matrices. This averaging was performed with specific restraints to mitigate 
bias. (b) The number of blocks must be specified a priori; to identify an appropriate number of blocks (k), the 
WSBM was fit 100 times at k = 6, 7…11. We recorded the average log-evidence of 100 model fits at each k and 
used Bayes factor to determine k in a data-driven manner. (Note that the red box indicates the k = 10 parameter 
identified in this study) (c) At the k with the highest likelihood, for each of the 100 fits, we recorded the 
community assignment for each node as a vector. We then computed the least distant community assignment 
vector from the 100 fits. (d) Aligned results of the 100 fits were averaged to create a community assignment 
prior. This process was repeated until a convergence criterion was met.
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these 100 fits by determining the partition least distant from all other partitions (centroid; Fig. 2, panel c). To 
do this, we computed the pairwise distance between all 100 partitions using variation of information (VI)9,57. 
By summing across the rows of this distance matrix, we selected the partition that was least distant (minimum 
sum) from all others58. We then aligned the remaining 99 partitions to the reference partition via the Munkres 
algorithm59. The aligned partition matrix (size: 114 × 100 [nodes × number of fits]) was used to make a new 
nodal assignment prior, based on the frequencies a node was assigned to each of the k communities across 100 
fits. This new prior was used as input for 100 more WSBM fits (Fig. 2, panel d). This process was repeated until a 
convergence criterion was met60.

We also created an alternative modular community structure to compare against. To match the number of 
modular communities to the number of communities learned in the WSBM consensus model, we ran the deter-
ministic spectral modularity maximization algorithm for weighted data implemented in the Brain Connectivity 
Toolbox (sites.google.com/site/bctnet/; function modularity_und)61 across a range of gamma values (gamma: 0.5 
to 4.0, at 0.01 steps). This resulted in 351 modular partitions with varying numbers of communities. We identified 
all partitions with an equal number of communities to the WSBM consensus model and from these partitions we 
selected one least distant to the WSBM consensus model (measured by VI).

Finally, we used the consensus community structure models to seed community structure fitting on 
individual-level brain network data. The WSBM was fit to each subject’s adjacency matrix with a prior community 
affiliation based on the WSBM consensus model concentrated at a level of 3. Thus, for each node, the community 
assignment of that node in the prior was 3 times more likely than an assignment to any of the other k-1 commu-
nities. The WSBM fitting procedure was then conducted as described previously. We collected five independent 
WSBM fits for each subject and retained the centroid partition of these fits. We also extracted a modular partition 
for each subject by running the spectral modularity maximization for weighted data, sweeping over levels of 
gamma from 0.5 to 4.0 in 0.01 increments. We identified modular partitions with k communities and retained the 
partition closest to the WSBM consensus model as measured by VI, to facilitate unbiased comparison. There is 
no guarantee that a modular partition with k communities will result from our sweep across gamma values. We 
excluded subjects for which we did not find a modular partition of k communities from the subsequent individual 
fits analysis (29 subjects).

Analysis methods.  To assess how well our models fit the empirical data, we followed a generative model 
evaluation framework4. We generated synthetic data using the inferred edge-existence and edge weight param-
eters of the WSBM consensus model. To create a comparable generative model from the modular partition, we 
used the tools of the WSBM fitting toolbox to fit the modular structure with an absolute prior (100% and 0% 
probabilities), and thus, did not perform model inference. We generated 10,000 synthetic adjacency matrices 
from both models. At each iteration, we recorded four binary network statistic distributions of the synthetic 
data: degree (d), clustering coefficient (c), betweenness centrality (b), and node Euclidean distance (e). We com-
pared each synthetic statistic distribution with the empirical distribution of that statistic from the representative 
adjacency matrix (the data the model was derived from) using the Kolmogorov–Smirnov (KS) statistic, which 
measures the maximum difference between two empirical cumulative distribution functions. We computed the 
average KS statistic and conceptualized this as the energy of the synthetic network compared to the empirical 
network4.

=KS Energy mean KS KS KS KS( , , )d c b e,

Lower energy indicates a synthetic network with network statistic distributions that more closely resemble the 
empirical network statistic distributions. We define energy here as mean KS as opposed to maximum KS, as in4, 
so as not to bias the result by any one statistic that might produce systematically higher KS. In the previous study, 
the max KS was desirable because this metric was used for further optimization of the model. Here, our goal was 
to measure model performance, without changing the inferred model parameters.

We also sought to evaluate whether the set of inferred parameters of the generative models was meaningful 
for reducing the energy of the generated synthetic matrices. It could be that the mere modeling of distributions 
between blocks, regardless of the parameters, would be sufficient to generate synthetic networks with low energy. 
To test this, we generated 10,000 synthetic adjacency matrices and randomly permuted the intact models’ param-
eters of the edge-existence and edge weight distributions at each iteration.

Next, we wanted to evaluate the extent to which each community structure preserved hemispheric symmetry. 
We proceeded under the assumption that at this level of analysis, it would be plausible to expect to find homo-
topic organization34; that is, that large patterns of organization of the right and left hemisphere organization 
should appear similar. To measure how the community structure captures laterality, we measured three weighted 
community-based network statistics: participation coefficient, within-community z-score, and assortativity. 
These three network measurements produce node-wise statistics that are relative to a given community struc-
ture. We measure each statistic given each consensus partition in each of the 620 subjects. For each subject, we 
compute the KS statistic between the left and right hemispheric distributions of the community-based network 
statistics.

We evaluated how the connectivity patterns between communities change over time. Our first approach 
involved measuring the total edge weight between communities. For each of N subject’s brain network data, 
we created a k × k block matrix recording the total weight between each community of the community struc-
ture being analyzed. As our brain network data are symmetric, we analyzed the upper triangle plus main diag-
onal of the block matrix, totaling (k2 − k)/2 + k tests. To examine age-related trends in in the values of these 
block strengths, we employed a multiple linear regression (MLR) analysis to model block strength as a linear 



www.nature.com/scientificreports/

6SCIeNtIfIC RepOrTS |  (2018) 8:12997  | DOI:10.1038/s41598-018-31202-1

combination of predictors. The MLR model was formulated as one of three models: (1) linear, (2) quadratic curve, 
(3) Poisson curve (as in31):

β β β ε= + × + × +y age G (1)G0 1

y age age G (2)G0 1 2
2β β β β ε= + × + × + × +

y age e G (3)age
G0 1

2β β β ε= + × × + × +β− ×

where y is the dependent variable, in this case a vector [number of measurements (n) × 1] of block strengths 
between communities i and j, β1 and β2 (if necessary) are weights estimated by ordinary least squares regression, 
G is a matrix [n × 2] nuisance covariates (sex, total network strength) with βG [n × 2] also representing weights 
estimated by ordinary least squares regression, and ε is a vector [n × 1] of residual error. We also conducted 
tests with an additional nuisance parameter indexing motion across the DWI acquisition, which would make G 
and βG size [n × 3]. We implemented the MLR by first linearly regressing out the nuisance covariates from the 
covariate of interest and using the residuals to regress against age. We fit each MLR model to each block strength 
vector and calculated model accuracy using leave-one-out cross validation (LOOCV). We calculated the root 
mean-squared-error (RMSE) of each fit and chose the model (linear, quadratic, Poisson) with the lowest error. To 
obtain a p-value, we randomly permuted age across 10,000 least-squares fit iterations. We retained trends with a 
computed p-value that passed Bonferroni correction for 55 comparisons (α = 0.0009). For each MLR model we 
report the coefficient of determination (R2) calculated from the LOOCV procedure29:
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where n is the number of measurements, y [n × 1] is vector of dependent variables, and y′ [n × 1] is the vector of 
model predictions.

For our second approach to assess how overall community structure changes across age, we pursued mathe-
matical comparisons that measured all community interactions simultaneously. To do this, we utilized the block 
matrix, which is a k × k matrix, in which each entry i,j is a measure of the edges (e.g. total strength, average 
strength) between communities i and j. Thus, a block matrix provides a condensed information about network 
connectivity, given a community structure. We unrolled the upper triangle plus main diagonal of the average 
block matrix into a vector of length = +−l kk k

2

2
. We then used this vector as an l dimensional representation of 

the overall pattern of community structure and measured these vectors similarity and distance to our consensus 
models. For this analysis, we used the block matrix of average strength between communities, as opposed to total 
strength as in the previous analysis, to mitigate the effect of community size for this analysis.

We measured how similar/distant each subject’s community structure vector was to the consensus model 
community structure vector. In the WSBM evaluation, we used the affinity parameters of the WSBM consensus 
model to obtain the WSBM consensus model vector. For the modular evaluation, we measured the empirical 
block matrix based on the modular fit to the representative adjacency matrix to obtain the modular consensus 
model vector. For each of N subjects, we unrolled the upper triangle (including diagonal) of an average strength 
block matrix given each partition. We compared each of N community structure vectors to the consensus model 
vector using cosine similarity and city block distance62. We then used the MLR scheme detailed previously to 
assess the proportion of the variance in subject-level vector similarity/distance that is due to age.

To analyze individually fit community structures, we employed the previously described vector comparison 
scheme with individually fit community structures. We recorded the distance of individual vectors to the model 
prediction vectors, as described previously and employed MLR to measure trends in age versus subject-level 
vector similarity/distance.

Additionally, we measured nodal versatility across individually fit partitions63. Nodal versatility is an index of 
how consistently nodes are classified in the same community across repetitions of a community detection algo-
rithm. We used this measure to obtain a versatility index for each of the 114 nodes in use. Instead of measuring 
nodal versatility across repetitions of an algorithm, we measured the node versatility across subjects to evaluate 
differences in community detection techniques. We employed a permutation test to create a distribution of null 
versatility differences to test for statistical significance. If there is no difference between the methods, exchanging 
subject A’s WSBM community vector for subject A’s modular community vector would not affect the node ver-
satility index. Therefore, for each permutation we constructed two complementary node × subject matrices, in 
which we shuffled the type of community vector included. We computed the node versatility of each node × sub-
ject matrix and took the node versatility difference at each node. We measured the empirical versatility difference 
against the null distribution of versatility differences at each node to obtain a p-value, and report nodes that pass 
Bonferroni correction for 114 comparisons (α = 0.0004).

Results
Model fitting workflow.  Our consensus fitting procedure was intended to aggregate the results of 100 
WSBM model fits. We found that our method was consistent despite internal stochastic elements of the code; if 
given the same data, the process produced the same output in each of 20 repetitions. We also ran the process on 
100 additional independent runs at k = 10 to create a new frequency prior and observed that the resulting com-
munity structure had a 0.80 normalized mutual information (NMI) to the obtained WSBM consensus model. As 
a final test, we bootstrap-sampled the results of the 100 fits to create different initial frequency priors. Comparing 
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the results of this process with the obtained WSBM consensus model resulted in NMI measurements with a mean 
of 0.97 (±0.04, range = 0.86–1.0).

Consensus community structure.  Using the consensus method outline above, we inferred WSBM com-
munity structure from the representative brain network data (edge-existence density = 30.1%). We identified 10 
bilateral communities with mixed topology profiles and attributes (Table 1). Sizes of the communities ranged 
from 6 to 21 nodes. The WSBM model estimates parameters that govern the distribution of edge and edge weight 
between communities; these parameters are visualized in panels d and e of Fig. 3. Generally, the WSBM mod-
eled a positive relationship between edge existence and edge weight; in other words, block interactions with low 
edge existence were modeled with low edge weight or high edge existence with high edge weight. One block 
interaction, 4–10, stands out as having been modeled with a low edge existence but high edge weight (red arrow, 
panel e, Fig. 3). This interaction is predicted to be connected at a probability of 13% and its edges are predicted 
to have a strength (average streamline density) of 0.29. Three block interactions are notable for having high edge 
weight and edge-existence parameters: 3–3, 6–6, and 7–7. In the modular community structure, not all commu-
nities identified were bilateral; that is, some communities were confined to only one hemisphere. The modular 
communities range in size from 2–22 nodes. Measuring the total Euclidean distance between nodes of commu-
nities in each partition, in each subject, we find that the modular community structure consists of communities 
much more spatially compact (M = 8.29 × 10 3mm, SD = 89.01) than the WSBM partition (M = 8.68 × 10 3mm, 
SD = 62.54 mm; two-tailed paired t-test with unequal variances; t(1.11 × 103) = 88.35, p < 10−9).

We also measured how the high strength nodes were distributed amongst communities in the different com-
munity structure models. We recorded in which communities the top 25%-degree (binary degree and weighted 
degree) nodes for each subject appeared and then measured how consistently these high strength nodes were 
dispersed among the communities across subjects (Table 2). We find that the WSBM model most consistently 
groups high degree nodes in a similar pattern across subjects, as measured by the intraclass-correlation coeffi-
cient, ICC(3,1)64.

Model fitting comparison.  We found significant differences between the community structures identi-
fied through WSBM inference and modularity maximization. The mean generative energy of the WSBM model 
(M = 0.391, SD = 0.011) was significantly lower than the mean of the modular model (M = 0.404, SD = 0.009) 
(two-tailed paired t-test with unequal variances; t(1971) = −88.03, p < 10−9). This WSBM generative energy 
distribution had a significantly lower mean than the mean of the randomized WSBM generative energy dis-
tribution (M = 0.402, SD = 0.377; t(1630) = 52.16, p < 10−9) whereas the mean of the randomized modular 
generative energy distribution (M = 0.400, SD = 0.360) was lower than its distribution from the intact model 
(t(1443) = −17.68, p < 10−9). The individual distributions averaged over to calculate generative energy are also 
shown in panel c of Fig. 4.

Community 
Label

Mean within-community 
strength

Mean between-community 
strength

Mean community 
participation coef. Community assortativity

WSBM

1 0.11 (0.096 ± 0.018) 0.042 (0.04 ± 0.0066) 0.77 (0.73 ± 0.027) −0.035 (−0.027 ± 0.025)

2 0.095 (0.08 ± 0.027) 0.035 (0.032 ± 0.0076) 0.82 (0.76 ± 0.022) 0.011 (−0.006 ± 0.032)

3 0.33 (0.28 ± 0.076) 0.054 (0.05 ± 0.0093) 0.78 (0.75 ± 0.022) 0.19 (0.16 ± 0.078)

4 0.051 (0.046 ± 0.029) 0.038 (0.033 ± 0.0086) 0.73 (0.64 ± 0.054) −0.084 (−0.084 ± 0.054)

5 0.11 (0.12 ± 0.032) 0.035 (0.034 ± 0.006) 0.79 (0.73 ± 0.027) 0.032 (0.034 ± 0.033)

6 0.4 (0.37 ± 0.12) 0.056 (0.051 ± 0.009) 0.78 (0.75 ± 0.025) 0.26 (0.24 ± 0.13)

7 0.33 (0.33 ± 0.049) 0.021 (0.022 ± 0.0041) 0.48 (0.45 ± 0.05) 0.25 (0.24 ± 0.055)

8 0.11 (0.1 ± 0.021) 0.033 (0.032 ± 0.0067) 0.77 (0.71 ± 0.03) 0.029 (0.026 ± 0.022)

9 0.19 (0.19 ± 0.098) 0.052 (0.049 ± 0.0086) 0.85 (0.79 ± 0.032) 0.098 (0.082 ± 0.094)

10 0.084 (0.063 ± 0.017) 0.032 (0.027 ± 0.0046) 0.7 (0.66 ± 0.03) −0.0068 (−0.018 ± 0.019)

Modular

1 0.2 (0.19 ± 0.057) 0.05 (0.048 ± 0.0095) 0.81 (0.75 ± 0.028) 0.066 (0.051 ± 0.058)

2 0.11 (0.1 ± 0.024) 0.034 (0.03 ± 0.0059) 0.7 (0.63 ± 0.039) 0.015 (0.018 ± 0.028)

3 0.3 (0.25 ± 0.061) 0.042 (0.041 ± 0.0083) 0.72 (0.68 ± 0.034) 0.21 (0.15 ± 0.069)

4 0.27 (0.23 ± 0.07) 0.034 (0.033 ± 0.0073) 0.7 (0.66 ± 0.051) 0.19 (0.14 ± 0.075)

5 0.19 (0.19 ± 0.035) 0.043 (0.041 ± 0.0084) 0.71 (0.66 ± 0.04) 0.062 (0.059 ± 0.049)

6 0.19 (0.18 ± 0.063) 0.046 (0.042 ± 0.011) 0.78 (0.7 ± 0.044) 0.049 (0.05 ± 0.073)

7 0.35 (0.35 ± 0.055) 0.025 (0.026 ± 0.0055) 0.52 (0.49 ± 0.042) 0.28 (0.27 ± 0.061)

8 0.14 (0.14 ± 0.024) 0.029 (0.028 ± 0.0061) 0.57 (0.52 ± 0.055) 0.068 (0.058 ± 0.027)

9 0.5 (0.49 ± 0.48) 0.057 (0.054 ± 0.015) 0.87 (0.81 ± 0.036) 0.35 (0.34 ± 0.45)

10 0.14 (0.1 ± 0.019) 0.026 (0.025 ± 0.0042) 0.55 (0.55 ± 0.038) 0.085 (0.044 ± 0.023)

Table 1.  Table of community statistics for the WSBM and modular consensus partitions. Statistics from the 
representative young adult matrix; across-subject mean ± standard deviation in parentheses.
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We studied how the community structures under investigation capture symmetric network structure across 
hemisphere, as measured by node-wise network statistics (Fig. 5). We measured the histogram distances between 
the left and right hemisphere histograms of participation coefficient, within-community z-score, and assortativ-
ity using the KS statistic. We found the mean of participation coefficient and node-assortativity KS distributions 
to be significantly lower for the WSBM community structure compared to the KS distribution for the modular 
community structure. Statistical comparisons are shown in Table 3.

Changes across the life span.  We used multiple linear regression (MLR) to measure trends of block inter-
action strength across age. We observe strong quadratic relationships for within-community trends for both the 
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Figure 3.  The WSBM consensus model, fit to a representative matrix averaged across 53 young adult subjects. 
LH = left hemisphere; RH = right hemisphere. (a) The adjacency matrix ordered by the blocks of the WSBM 
consensus model. On-diagonal blocks are outlined in red, off-diagonal blocks are outlined in light-red. (b) The 
adjacency matrix of the young adult data with the on-diagonal blocks colored to match the inflated surface view 
(in panel c). (c) The community structure of the consensus model visualized on the inflated surface of the left 
and right hemispheres. (d) The predicted edge-weight and edge-existence matrices; the entries of these matrices 
contain the consensus model predictions for the average edge-weight and edge-existence for each block 
interaction. To calculate the consensus model’s average block interaction prediction, these two matrices can 
be multiplied element-wise. (e) We plot the paired parameters of the block interactions (z-score transformed). 
From this plot, we observe a general linear relationship between predicted edge-existence and predicted edge 
weight for each block interaction. We highlight how the WSBM fit densely connected and densely weighted 
areas (purple dotted circle) as well as non-modular block interactions (red arrow). (f) Visualization of 
alternative modular community structure, visualized as adjacency matrices and on the cortical surface in the 
same manner as WSBM model. The labeling of these alternative community structures (represented as colors) 
are aligned to closely match the labeling of the WSBM model using the Munkres algorithm.

Community 
structure model

Binary degree ICC  
(95% confidence interval)

Weighted degree ICC 
(95% confidence interval)

WSBM 0.83 (0.82–0.84) 0.74 (0.73–0.75)

Modular 0.64 (0.62–0.65) 0.59 (0.58–0.61)

Table 2.  How consistently high strength nodes (top 25%) appear in the same community, measured across 
subject with the intraclass correlation coefficient; confidence interval computed with 500 bootstrap iterations.
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Figure 4.  Comparison of WSBM and modular generative capabilities and characteristics. (a) We compared the 
mean KS energy between generated synthetic data based on the community structure models and empirical 
data; we observe that the WSBM generates synthetic data with a lower mean KS statistic—demonstrating that 
WSBM synthetic networks have network statistic distributions more representative of the empirical data. (b) 
We compare each model energy distribution with the energy distribution from a randomized model containing 
the same affinity parameters; we observe that the mean energy of the WSBM model is significantly lower than 
the WSBM randomized model; we observe that the mean energy of the modular model is higher than the 
modular randomized model (c) We show the KS statistics of each network statistic that comprises the KS energy 
formulation.
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Figure 5.  Evaluation of the laterality of the WSBM and modular community structures. (a) We compute 
community-based network statistics on the subject network data, yielding node-wise statistics; we then 
calculate separate distributions of these statistics based on each node’s laterality; we then measure the distance 
between these two distributions (note the shaded grey distribution illustrates the full, bilateral network statistic 
distribution) (b) We compare the laterality of each community structure by illustrating the KS between 
hemispheric distributions of community-based network statistics. We observe that the WSBM partition balances 
the participation coefficient and node-wise assortativity distributions across hemispheres better than the modular 
partition. The modular partition preserves within-community z-score better than the WSBM partition.
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WSBM and modularity models. We report the top 4 MLR trends for each model in Fig. 6, and the top 12 trends 
for each model in Fig. S3. The inverted-U shaped quadratic trend for block interaction 3–3 had the largest R2 for 
both the WSBM and modular partitions (R2: 0.25 and 0.20 respectively). Community six was involved in the sec-
ond strongest trends for both the WSBM and modular partitions. Fewer on-diagonal MLR trends were significant 
for the WSBM partition than for the modular partition (4 and 6 block interactions respectively).

When measuring community structure as a vector and computing vector similarity and distance from each 
subject to a consensus partition, we observed differences based on community partition used and observed strong 
MLR trends across age. Cosine similarity between subject and WSBM consensus vectors (M = 0.96, SD = 0.027) 
was significantly higher than the cosine similarity between subject and modular consensus vectors (M = 0.92, 
SD = 0.066; two-tailed paired t-test with unequal variances; t(823.75) = 20.46, p < 10−9). Using the city block 
distance measurement also displayed a significant overall difference (t(960.89) = −24.44, p < 10−9) between using 
the WSBM (M = 1.00, SD = 0.19) or modular vectors (M = 1.38, SD = 0.34). These trends did not change substan-
tially after regressing out covariates (sex, total network strength, movement; Fig. 7 panel b).

Individual vector similarity between subject and consensus partition varied strongly with age using the 
WSBM and modular consensus vectors. When measuring the similarity of subject to WSBM vector across age, 
we observed a Poisson curve with an R2 of 0.24. For the analogous trend using the modular vector, we observed 
a Poisson curve with an R2 of 0.11. The asymmetry of the Poisson curve allowed a fit to the data that suggested a 
pattern of high similarity between individual and consensus partition from childhood through approximately age 
60, followed by a steep decline. When measuring the distance between subject and consensus vector across age, 
we observe in both the WSBM and modular cases a U-shaped trend (WSBM R2: 0.17; modular R2: 0.02).

When measuring individually-fit community structure vectors to each consensus vector, we again find that 
the WSBM derived community structure vectors are both more similar (t(1.20 × 103) = 22.07, p < 10−9) and less 
distant (t(1.12 × 103) = −25.84, p < 10−9) than the modular consensus vectors. We find that using the WSBM fit 
explains more of the variance in vector similarity than using the modular fit. However, the MLR trend was weak 
for regressions of both vector distances versus age (R2: 0.06 for both cosine similarity and city block distance). 
Using the modular fit, we observe that trends that do not, or negligibly, explain the variance in vector similarity 
or distance (R2: 0 cosine similarity and R2: 0.01 for city block distance).

We recorded the versatility at each node for each community detection method. We observed that nodal 
versatility across nodes is higher when using the WSBM method (M = 2.66, SD = 0.32) compared to modularity 
maximization (M = 0.32, SD = 0.31; two-tailed paired t-test with unequal variances; t(225.89) = 8.40, p < 10−9). 
The pattern of node versatility differences (range: −0.35–0.95) shows differential influence of spatial proxim-
ity between the community detection methods. We note that along the temporal lobe nodes reach the largest 
difference between the two methods (right temporal-occipital node), with a mean difference of 0.75 in nodes 
labeled “temporal”.

Additional parcellation analyses.  We also inferred WSBM and modular consensus community struc-
tures using an alternative parcellation scheme, based on anatomical node definitions3. We report results of these 
evaluations in the Supplementary Information and show converging results with the analysis performed using 
the Yeo parcellation (Figs S4–S6). Additionally, we evaluated the degree of spatial similarity between community 
structures across parcellation selection. We find that both the WSBM and modular partitions across parcellation 
selection are statistically similar, compared to randomized community structures65,66.

Discussion
Communities in brain networks have been hypothesized to form “building blocks” of the global network archi-
tecture and form functionally specialized systems that support specific subsets of cognitive tasks or information 
processing67–70. It is important to understand that the methodological approaches and conceptual assumptions 
employed when running community detection on brain network data affect the community structure outcome. 
A community detection approach ideally suited for all applications does not exist14,71 and the modular, internal 
density approach represents only one plausible lens through which to view network communities12,15. The main 
contributions of the current study are to demonstrate the usage and utility of a generative modeling approach to 
community detection in brain network data, with a specific application to measuring changes in structural net-
works across the human life span.

Node-wise network statistic
Mean ± standard 
deviation t-statistic p-value

WSBM participation coefficient 0.14 ± 0.04

Modular participation coefficient 0.24 ± 0.06

t(1128) = −34.10 p < 10−9

WSBM within-module z-score 0.17 ± 0.06

Modular within-module z-score 0.14 ± 0.04

t(1139) = 9.24 p < 10−9

WSBM assortativity 0.14 ± 0.05

Modular assortativity 0.2 ± 0.07

t(1107) = −20.61 p < 10−9

Table 3.  Statistical comparisons between community structure-based node statistics.
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Here we demonstrate an application of a block modeling approach to community detection in brain networks. 
The key advantage of this approach is the capacity to parse a brain network into a diverse set of communities16; 
with communities possibly exhibiting modular, core-periphery, or disassortative topologies. In the WSBM con-
sensus partition, we see evidence of this mixed topology. Community seven in the model is an example of a 
disassortative community that modularity maximization would not be able to find. The community, consisting 
of nodes along the cingulate cortex, is weakly connected within-community and more strongly connected to 
communities six and ten. Three WSBM communities, one, four, and ten, have at least one off-diagonal average 
strength that exceeds the on-diagonal average strength. Importantly, we should note that using the WSBM does 
not preclude the identification of traditionally modular communities, such as the highly inter-connected nodes 
of community seven, containing nodes of the visual area. Additionally, interesting differences exist between the 
WSBM and modular partitions. WSBM community one contains bilateral prefrontal cortex nodes, whereas the 
prefrontal nodes of the modular partition are divided between communities one and six. Community nine of 
the WSBM partition indicated that the bilateral nodes of the PCC and precuneus connected in a stochastically 
equivalent manner, whereas in the modular partition the precuneus nodes form a small and segregated two-node 
community. The WSBM community eight contained temporal nodes of both hemispheres, whereas the modular 
community eight, contains a large community spanning the right hemisphere.
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Figure 6.  Results of multiple linear regression analysis on edge strengths of community interactions in the 
WSBM (a) and modular community (b) structures. The strongest quadratic relationship between age and 
community interaction edge strength is the 3–3 block interaction. All community interaction regressions that 
are statistically significant are shown. The top 4 MLR trends are visualized for each community structure model; 
the bootstrapped 95% confidence interval is shaded in grey.



www.nature.com/scientificreports/

1 2SCIeNtIfIC RepOrTS |  (2018) 8:12997  | DOI:10.1038/s41598-018-31202-1

We measured the extent to which each community structure captured patterns in our brain network data and 
demonstrated that the WSBM partition represented group averaged and group level data better than the modular 
partition. Using a generative modeling evaluation framework4 we demonstrate that parameters of the WSBM gen-
erate synthetic brain networks that deviate less from empirical data than do synthetic brain networks created with 
parameters estimated from the modular community structure. The WSBM model performed most poorly mode-
ling the clustering coefficient distribution, which is expected given the design of both modular and SBM models 
and has been confirmed by previous work38. In an additional evaluation of how these community structures 
align with the brain network data, we show that the WSBM partition modeled the symmetry of the brain better 
than the modular model. The statistical analysis confirms a visually obvious difference between the partitions: 
the WSBM partition is more symmetrically dispersed across the brain hemispheres than the modular partition.

When evaluating how these community structures change over the life span, we observe that the strength 
between communities follows inverted-U trends—patterns which align with previous life span studies7,29,30,33,72. 
Here we show that these patterns extend to communities identified with a WSBM approach that covers a much 
wider space of possible network partitions. We found the strongest age-related change in strength between the 
nodes of community three, which cover the frontal cortex in modularity- as well as WSBM-derived partitions. 
This finding is in line with previous studies that have shown that ventromedial prefrontal white matter connecting 
ventromedial prefrontal nodes is particularly vulnerable to aging processes73,74. Within-community connectivity 
of WSBM community six, containing bilateral nodes of somatomotor cortex and postcentral cortex, also displays 
a strong inverted-U quadratic trend (Fig. 6, panel a) that is likely due to age-related changes involving the integ-
rity of corpus callosum connections31,33,75. In the modular partition, this trend, which appears at the connection 
between communities six and ten, is attenuated (Fig. 6, panel b).

To assess overall community structure changes, we employed vector similarity/distance comparisons. 
Employing the cosine similarity measure, we observe a pattern where individual subjects maintain similarity to 
the consensus partition until around the 6th decade of life, where a steep drop-off occurs. This trend could indi-
cate a range of the life span with a stable community structure regardless of connectivity strength, since cosine 
similarity is a measure of vector orientation but not magnitude. When employing the city block distance, we can 
then observe a U-shaped trend in distances to the consensus partition, which is likely due in part to connectivity 
strengths modulated across age. Given that the WSBM partition results in MLR models in which age explains 
more of the variance in our outcome measures, the WSBM partition appears to be a representative group model 
for the brain network data across a large age range.
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Figure 7.  Measuring community structure vector similarity/distances. (a) Regression of age versus vector 
measurements using the static community structure measured on subject-level data. Bootstrapped 95% 
confidence interval of trend shaded in grey. (b) Regression of age versus vector distance adjusted for covariates. 
The trends do not change with the adjustment for covariates. (c) Regression of age versus vector measurements 
of individually fit community structure to the consensus partitions. (d) Maps displaying across subject nodal 
versatility for WSBM and modular fit partitions. (e) Map of versatility differences between the two methods. In 
the difference map, only nodes with statistically significant differences are colored.
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We also fit the WSBM and modular community structures to individual brain networks. This analysis ren-
dered much weaker trends with age; indicating that individually fit community partitions vary substantially 
from our consensus model and data. We also used these individually fit community structures to analyze the 
variability of the fit partitions. In panel d of Fig. 7, we report differences in nodal versatility measured across 
subjects. The difference in nodal versatility maps between the WSBM and modularity maximization methods 
demonstrates a difference in flexibility between the methods. Recall that the WSBM aggregates nodes with sim-
ilar connectivity patterns into a community, whereas modularity maximization parses the network into densely 
connected subnetworks. Unfortunately, the process of detecting modular communities may be influenced by a 
distance-based bias in the structural brain network data76, which results in a spatially compact lateralized com-
munity structure. This bias most-likely affects the overall spatial layout of each community structure; we found 
smaller within-community distance between nodes of the modular than for the WSBM partition. To get closer 
to the biological reality would likely require several interconnected steps, including a systematic investigation of 
spatial and/or geometric bias in tractography, how these biases are expressed across age33, and how they affect the 
detection of streamlines and tracts that vary in length, curvature and trajectory77. Future work is needed to fully 
address these challenges.

In the present study, we show how a generative modeling approach to community detection in brain networks 
might differ (and confer some modeling advantages) compared to a modular approach. However, we would like 
to reinforce the notion that the choice of community detection algorithm should depend on factors related to the 
observed data and analytical goals11. These two community detection perspectives satisfy differing algorithmic 
criteria to define communities with different properties12,15. A nuanced, but crucial, point to consider is that 
community structures reflect a plausible grouping of nodes14. This organization, sometimes referred to as the 
mesoscale of a brain network16, in conjunction with community-based network statistics (such as participation 
coefficient) can elucidate patterns or trends in a brain network9,10. To infer a community structure from brain 
network data is to parse the data—which can always be trivially organized into some grouping. Whether that 
organization is biologically and functionally meaningful requires further experimental evidence or metadata78. 
Thus, we would not assert that the WSBM perspective is ‘better’ at capturing the underlying anatomic organ-
ization than the modular perspective of communities in brain networks14. In fact, we present evidence in the 
supplemental materials that both algorithmic approaches capture non-random spatial configurations, across par-
cellation scheme (Fig. S7). The modular approach is certainly valid for network neuroscience applications5, and 
has been employed, for example, to help explain how brain networks might be efficiently embedded in space69, to 
characterize functional MRI during learning8 and to differentiate between clinical groups79. In the current study, 
the modular partition does as well as the WSBM partition to capture the block interaction (3–3, Fig. 6) with the 
highest R2 value. Additionally, while modularity maximization is designed to consider on-diagonal block interac-
tions, some unmodeled off-diagonal interactions in our evaluation still display statistically significant trends. This 
considered, recent work has demonstrated a theoretic convergence of the statistical modeling and modularity 
maximization approaches in special cases of the SBM80,81. Future advances along this line of research could better 
clarify the tradeoffs between inference of SBM and modular partitions.

In the current study, we applied new methods to resolve a consensus model from many community structure 
solutions of the WSBM inference. Although we measured the consistency of our method, we do note that stochas-
ticity in the current framework still exists. We recognize that there are further parameters of the model that could 
be optimized, such as prior distribution parameters and parameters governing the convergence criterion for 
the multiple loops of the variational-Bayes approximation approach. Additionally, we recognize that the WSBM 
inferred on our data has shortcomings. When using a normal distribution to model edge weights between com-
munities, using the WSBM tools at our disposal we cannot assure that the model will completely avoid modeling 
negative weights. However, because there are no actual negative edges in our brain network data, we can assume 
that modeling too many negative edge weights would create lower likelihood, meaning such a model would not 
be retained by the WSBM inference. Because of this concern, we conducted our generative model analysis with 
binary network statistics based on edge-existence. Thus, the generative modeling validation could be improved 
upon by using non-negative weight distributions in future work.

Finally, we note that diffusion imaging and tractography perform computational inference rather than direct 
measurement of brain connectivity and thus must be interpreted with care77. We made efforts in the current study 
to mitigate against certain biases. We used streamline density as an edge-weight to mitigate against the bias of 
large regions of interest and we seeded multiple streamlines randomly in each white matter voxel to obtain thor-
ough streamline coverage across the brain. Additionally, we used anatomically-constrained streamline filtering 
process to recover only streamlines terminating in grey matter52. Despite these efforts, future work is needed to 
further improve the accuracy and sensitivity of structural connectivity measurements derived from noninvasive 
neuroimaging. In particular, objective quality control metrics can be used increase dMRI data fidelity, which 
could lead to more accurate associations between dMRI-derived data and age82.

In conclusion, we describe a method for applying the WSBM to brain networks, with an application across 
the life span. We hope to demonstrate the utility of a generative modeling approch to more fully characterize the 
community structure of brain networks, beyond simple modularity. Our study opens new avenues for using the 
WSBM for brain network analysis as well as introduces frameworks through which WSBM partitions could be 
associated with phenotypic characteristics or variations in cognition/behavior16,78,83. Future work should use this 
model to identify how community structure regimes, such as modular, core-periphery, or disassortative models 
(or a mix of these regimes), relate to aspects of behavior and cognition. Our study shows that the WSBM can 
provide a flexible and versatile model of brain network community structure and may offer new insights beyond 
those delivered by modularity analysis.
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Data availability statement
Subject-level adjacency matrices are made availabe at https://doi.org/10.6084/m9.figshare.6983018. Code is avail-
able at https://github.com/faskowit/Faskowitz2018wsbmLifeSpan.
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