Skip to main content
. 2018 Jun 29;9(30):6390–6394. doi: 10.1039/c8sc01568f

Table 1. Optimization of reaction conditions a .

Inline graphic
Entry Variations from the ‘standard’ conditions Yield of 3a (%)
1 Without Cu(OPiv)2 Trace
2 Cu(OAc)2 instead of Cu(OPiv)2 17
3 Without MesCOOH 68
4 PivOH instead of MesCOOH 74
5 AgSbF6 (0.5 equiv.) 53
6 AgNTf2 instead of AgSbF6 9
7 80 °C instead of 90 °C 34
8 100 °C instead of 90 °C 74
9 DCE instead of 1,4-DCB Trace
10 Toluene instead of 1,4-DCB
11 [Ir] instead of [Rh] Trace
12 [Ru] instead of [Rh] 36
13 [Rh] (2.5 mol%) 70
14 2-Butenone (1.0 equiv.) 33
15 2-Butenone (3.0 equiv.) 62
16 Cu(OPiv)2 (1.0 equiv.) 49
17 Cu(OPiv)2 (2.0 equiv.) 71
18 Under air 39

aReaction conditions: 1a (0.05 mmol) and 2a (0.25 mmol) in 1.5 mL of solvent under argon in a closed flask; 1,4-DCB = 1,4-dichlorobutane; Cu(OPiv)2 = copper pivalate; AgSbF6 = silver hexafluoroantimonate(V); MesCOOH = 2,4,6-trimethylbenzoic acid; PivOH = pivalic acid; AgNTf2 = silver bis(trifluoromethanesulfonyl)imide; DCE = 1,2-dichloroethane; [Ir] = [Cp*IrCl2]2; [Ru] = [Ru(p-cymene)Cl2]2. Yield determined by 1H NMR spectroscopy using dibromomethane as an internal standard.