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  Article  

 Introduction 

 The extracellular matrix (ECM) is a functionally impor-
tant, yet a commonly overlooked, complex structure of 
the brain and central nervous system (CNS), compris-
ing nearly 20% of the neural tissue volume.  1 , 2   Playing 
both structural and functional roles in the maintenance 
of the brain, ECM is comprised of many different mol-
ecules. The ECM forms the interstitial space in 
between the cellular elements, but also forms a sharp 
boundary, the so-called basement membrane, 
between the neural and vascular compartments.  3 , 4   In 
addition to its structural role, ECM acts as a sink for 
growth factors that modulate cellular events and gene 
expression through juxtacrine, or contact dependent, 
cell signaling.  5 , 6   The ECM plays an integral role in cellular 

events and signaling, yet a comprehensive quantifi ca-
tion of the spatial and regional distribution of the ECM 
in the brain has not yet been done, although some 
characterizations have been reported.  7            –  13   These anal-
yses, however, are often restricted to a small area of 
interest or are semi-quantitative. A thorough character-
ization of the ECM will defi ne both its regional and cellular 
distribution, including the area covered by these mol-
ecules and the percentage of major neural phenotypes 
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  Summary 
 The structure and functions of the extracellular matrix (ECM), its spatial distribution and pericellular association of ECM 
molecules remain poorly understood. Colocalization of ECM molecules with cell phenotypes through immunohistochemistry 
can provide crucial insights into their juxtacrine signaling role as well as their structural relevance to tissue architecture. As 
manual quantification of images introduces intra- and inter-user bias and is cumbersome for high-throughput approaches, 
we implemented an automated high-throughput method to quantify the spatial distribution and cellular association of one 
ECM molecule, thrombospondin 1 (TSP1) with two major cell phenotypes, neurons, and astrocytes. The distribution of 
TSP1 was homogeneous throughout the striatum and cortex along the anterior – posterior axis. TSP1 occupied 8.85% of 
the striatum and 7.40% in the cortex. TSP1 also associated with 94.58% and 88.45% of neurons in the striatum and cortex. 
The association with astrocytes was significantly lower at 47.55% and 28.09%. These findings highlight the key role that 
TSP1 plays in neuron physiology in a healthy brain, but also highlights key regional difference in astrocytes secreting ECM 
molecules. The semiautomated approach implemented here will improve the throughput and reliability of measuring the 
distribution and cellular colocalization of ECM molecules.    (J Histochem Cytochem 66:643 – 662, 2018)  
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that associate with these molecules. This information 
can then provide insight into how much these promi-
nent ECM molecules associate with cells in the normal 
brain and can later serve as a basis for comparison in 
pathology. One such ECM molecule of interest is 
thrombospondin 1 (TSP1), as it has roles in CNS plas-
ticity and synaptic repair after tissue damage.

TSPs are one family of ECM molecules and are 
comprised of five different TSPs (1 to 5) with TSP1 and 
TSP2, who share very similar structural domains, 
present in the adult CNS.7 Although TSP1 is produced 
and secreted by astrocytes, it has been shown to play 
roles in neuronal development, such as the aforemen-
tioned synaptic plasticity, encouraging neurite out-
growth, and cell migration.3,7,14–16 It had been found 
that, in early postnatal development, TSP1 is active in 
the brain and associates with most astrocytes.7 In the 
adult brain, however, TSP1 levels are much lower than 
in the developing brain and associations with astro-
cytes have been reported to be downregulated or com-
pletely absent.7,17 In line with its role in synaptic and 
behavioral recovery, TSP1 levels significantly increase 
and associate more with reactive astrocytes and 
microglia post-ischemia.7,15,18 Despite its role in neuro-
nal cell events, the association between TSP1 and 
neurons has not been sufficiently investigated. These 
types of changes in associations with specific pheno-
types during pathology are difficult to define without a 
more complete quantification of these associations in 
the normal brain. We, here, focus on TSP1 in the nor-
mal brain, as a quantification of its spatial distribution 
and cellular associations in the normal brain has not 
previously been quantified.

Previous quantifications of TSP1 have focused on 
Western Blots or mRNA to assess general tissue lev-
els, although no regional comparison have been per-
formed. To quantify cellular associations and regional 
distributions, time-consuming immunohistochemistry 
and image analysis is required. However, large-scale 
quantification of histological images across multiple 
phenotypes and regions is cumbersome and ineffi-
cient when done through manual counting, including 
stereology. Manual counting can also introduce intra-
user bias and if there is more than one counter, there 
is additionally the chance for inter-user bias.19,20 A ver-
satile high-throughput approach is most appropriate 
for a comprehensive quantification and eliminates 
intra- and inter-user error, as the same results will be 
produced regardless of the time they are analyzed or 
by whom the analysis is run.21 Complete automation, 
however, can introduce other potential errors in cor-
rectly detecting and classifying cells, such as false 
negative and false positive detection.21 Some analyses 
may benefit from complete automation, where time 

and consistency are most important, while others may 
benefit from the introduction of manual checks done 
by the user where accuracy is most important. 
Eliminating human judgment in automated counting is, 
in one respect, beneficial when judgment varies within 
(i.e., same user counting the same image on 1 day vs. 
the next) or between users (i.e., user 1 counting the 
image vs. user 2). However, these types of manual 
checks are superior to complete automation when 
images are not of optimal quality or when there are 
image artifacts that an automated program is not able 
to account for.19,21–23 Thus, the automated method 
must be validated for accuracy against manual counts 
for a small sample subset, with the manual counts 
commonly being considered the gold standard 
method.19,20 Automation also allows more images to 
be processed, thus increasing the sample size and the 
confidence in the reliability and accuracy of the results.

Here, we focus on TSP1, as it plays significant roles 
in early synaptogenesis as well as in synaptic recovery 
after damage (such as stroke), and its distribution in 
the striatum and cortex.7,15,18 The striatum and cortex 
are two large adjacent and interconnected regions 
affected by pathologies, such as stroke, but also have 
distinct histological and cellular features. A high 
throughput, automated approach can be implemented 
to perform consistent image processing for both small 
and large batches of images.24 We here assess the 
feasibility and validity of an automated and quantita-
tive approach that measures the spatial distribution of 
TSP1 and its association with neurons and astrocytes 
in normal rat brain striatum and cortex.

Materials and Methods

Animals and Tissue Preparation

All animal procedures complied with the Institutional 
Animal Care and Use Committee (IACUC) as well as 
National Institutes of Health (NIH) guidelines. Male 
Sprague-Dawley rats (n=5, 350–400 g, Taconic Labs) 
were perfused at 12 weeks old. Animals were eutha-
nized by intraperitoneal injections of Pentobarbital 
Sodium (10 mg/100 g body weight, Fatal Plus, Vortech) 
and perfused transcardially with a peristaltic pump 
(MasterFlex, Cole Parmer) to flush out blood using ice 
cold Phosphate Buffered Saline (0.01 M PBS, P4417 
Sigma) followed by tissue fixation using paraformalde-
hyde (4% in 0.01 M PBS, 15714 Electron Microscopy 
Sciences). Excised brains were postfixed in 4% para-
formaldehyde overnight and then cryoprotected in 30% 
Sucrose (Sigma) along with the antimicrobial agent 
Sodium Azide (S2002 Sigma) at 4C. Fixed brains were 
embedded in frozen sectioning compound (Surgipath 
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FSC 22, Leica) and sectioned at 50 µm thickness at 
500 µm series intervals on a cryostat (Leica). Individual 
series were stored as floating sections in Tissue 
Cryopreservation Solution (TCS, 30% Ethylene Glycol, 
25% Glycerol, 0.5% Sodium Azide in PBS) at −20C.

Immunohistochemistry

Sections were removed from storage in TCS and 
mounted onto glass slides. Sections were washed 3 × 
5 min in PBS before overnight (16 hr, 4C) incubation 
with primary antibodies: NeuN for neurons, GFAP for 
astrocytes, and TSP1 for TSP1 (Table 1). These were 
diluted in PBS/0.5% Triton X-100 (Sigma) to the appro-
priate concentrations. Following overnight incubation, 
sections were washed 3× with PBS before application 
of corresponding AlexaFluor secondary antibodies in 
PBS (1:500, Molecular Probes) for 1 hr at room tem-
perature (21C). Secondary antibodies were then 
removed and sections were washed 3× with PBS 
before counterstaining with the nuclear marker 
Hoechst (1 µg/mL in PBS, Sigma) for 5 min. Sections 
were washed a final 3× with PBS before being cover-
slipped with Vectashield (H1000, Vector Labs) mount-
ing medium. All steps, except overnight incubation, 
were carried out on a rotator at minimum speed.

Validation of immunohistochemistry was performed 
using negative controls, where the primary antibodies 
were omitted, on rat tissue to determine potential 
unspecific staining of secondary antibodies. No unspe-
cific staining of the pre-adsorbed secondary antibod-
ies was evident (Supplementary Fig. 1A). To avoid 
mouse-on-mouse staining, a preconjugated primary 
antibody of the same clone (A6.1; 1:300; sc-599887 
AF594, Santa Cruz) was used to stain mouse liver tis-
sue in wild-type and TSP1 knockout mice to validate 
the specificity of the antibody for TSP1. Autofluorescence 
in mouse livers was quenched using Sudan Black 
(1.5% in 70% industrially methylated spirit for 20 min),25 
before application of the preconjugated TSP1 antibody 
and 4’,6-diamidino-2-phenylindole (DAPI) costaining. 
No binding of the TSP1 antibody was evident in TSP1 
knockout tissue (Supplementary Fig. 1B). This clone 
from different providers has been widely used and 
cross-validated to study TSP1,26–28 including brain.29

Image Acquisition

Images were acquired using an AxioImager M2 micro-
scope (Zeiss) in conjunction with Stereo Investigator 
software (MBF) interfaced with a 120 W metal halide 
arc lamp (012-63000, X-Cite) light source. Whole 
hemisphere images were acquired using automated 
image stitching in the VirtualTissue module and a 10× 
objective (420341-9911, numerical aperture [NA] = 
0.3; Fig. 1A). To afford a comparison between manual 
and computational analyses, 15 fields of view (FOVs) 
were acquired per region (striatum and cortex) using a 
20× objective (420650-9901, NA = 0.8) with fixed 
acquisition parameters between images and animals 
(Table 2). FOVs were spread out evenly throughout the 
regions along the anterior-posterior axis (four sections 
per animal at 1.0, 0.5, 0.0, and −0.5 mm from Bregma; 
Fig. 1A). To afford a regional visualization and occu-
pancy of TSP1, images were taken in both the striatum 
and cortex (Fig. 1B). High magnification z-stacks to 
demonstrate the extracellular nature of TSP1 were 
acquired in the striatum and cortex with a 40× oil 
immersion objective (420460-9900, NA = 1.3).

Image Processing

Images were processed using a pipeline of modules 
developed in the biological image analysis software, 
CellProfiler (2.1.1 rev. 6c2d896 for Mac; see http:// 
cellprofiler.org/).24 The pipeline generated automated 
counts of cell phenotype populations and their asso-
ciation with TSP1, which was then used to calculate 
the percentages of specific cell phenotypes that asso-
ciate with TSP1. Images are first taken based upon 
region—either the striatum or cortex—and then 
acquired with consistent acquisition settings (Table 2) 
before being processed by the pipeline (Fig. 2A). 
Detailed settings are summarized in Table 3. Staining 
of extracellular molecules was shown to be extracel-
lular to the cells, shown in Fig. 2B and C for neurons in 
the striatum and cortex, respectively. Orthogonal views 
obtained from the z-stacks at higher magnification 
(40× oil immersion objective) show TSP1 is peripheral 
to the phenotype staining (NeuN, shown in Fig. 2B and 
C). Intensity profiles of these orthogonal view planes 
further confirm this, with the phenotype and nuclear 
stains localized in the center and the TSP1 stain local-
ized outside of this center.

Iterative Pipeline Development and Validation. A conceptual 
pipeline was developed to account for image acquisi-
tion, background removal and cell and TSP1 identifica-
tion, as well exporting of the data for analysis (Fig. 3A). 
Specific module combinations were made from various 

Table 1. Antibodies Used for Immunohistochemistry.

Antibody Host Company Catalog No. Concentration

NeuN Rabbit Abcam ab177487 1:500
GFAP Chicken Abcam ab4674 1:3000
TSP1 Mouse Abcam ab1823 1:100

Abbreviations: GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.

http://cellprofiler.org/
http://cellprofiler.org/
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Figure 1. Regional visualization of TSP distribution and FOVs. (A) FOVs were taken on stitched whole brain images along the anterior 
to posterior axis with representative sections at indicated Bregma values shown. (B) Example FOV for both the striatum and the cortex, 
taken with a 20× objective, showing the qualitatively even distribution of TSP. Scale bar is 200 μm. Abbreviations: FOV, field of view; 
GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.
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CellProfiler image-processing tools to achieve removal 
of background in individual channels, to identify indi-
vidual phenotype populations colocalizing with cell 
nuclei, and to define cell phenotype pericellular asso-
ciations with TSP1 (Fig. 3B). It is important to note that 
the nucleus or cell body is being digitally identified as 
an object that does not represent the entire cell. For 
example, in identifying neurons, it is not the entire neu-
ron (including the cell body, axon, etc.) that is being 
identified, but a localized area where the phenotype 
stain NeuN has visualized the cell body. Relying on the 
immunostaining, this identification can provide a defini-
tion of the area occupied by the cell. To validate the 
combination of modules and chosen settings, each 
module combination was tested for accuracy/trueness 
by comparing the manual counts done on the images 
before pipeline development to the automated counts 
generated by CellProfiler for a set of 10 images. The set 
of 10 images were chosen to best represent the possi-
ble variability within each stain to produce a pipeline 
that is as robust as possible. We considered the preci-
sion of measurements to be affected by random errors 
reflected in the variance of measuring the same image 
multiple times. Accuracy, that is, a description of sys-
tematic errors that defines the proximity of measure-
ments results to the true value (as defined by 
ISO5725-1),30 was determined by calculating Pear-
son’s r for a correlation between the two sets of counts 
for the same 10 images. In order for a module combina-
tion to be accepted for the final pipeline, a Pearson’s r 
> 0.90 was required with a p value<0.05 (Type I error, 
that is, a cell being identified as belonging to a certain 
population when it does not). A power of >80% was 
considered sufficient to avoid Type II errors, that is, a 
cell that belongs to a certain population not being iden-
tified as such. If a module combination did not pass this 
threshold, iterative modifications and retesting were 
performed until the criteria were reached. The pipeline 
for analyzing images from the striatum was developed 
first and was then adapted to analyze images from the 

cortex. The same iterative method of development was 
used to adapt the pipeline settings to analyze the cor-
tex images and no new modules were added. Pipelines 
are available from the authors upon request.

Individual Image Processing and Analysis Modules
Background Removal. General background removal 

consisted of three modules to convert the individual 
24 bit red, green, blue (RGB) channel images to 8 bit 
grayscale images, enhance features, and to perform 
an automatic threshold. Images from individual fluo-
rescent channels are converted to grayscale to be pro-
cessed by subsequent modules. Features of the image 
(features meaning specific staining within the image) 
are treated as Speckle type features and enhanced 
to increase the contrast between specific staining and 
background, without losing image integrity. Remain-
ing background with nonzero intensity was removed 
using the ApplyThreshold module. Background was 
removed on a tile basis, where the threshold is cal-
culated and applied individually for tiles of the image 
(the size of the tile being customizable), rather than a 
single threshold calculated and applied to the whole 
image, using the Adaptive strategy. The threshold 
was calculated using the RobustBackground method, 
which assumes that the background intensity distribu-
tion approximates a Gaussian normal distribution. The 
top and bottom 5% of pixel intensities were trimmed 
before calculating the mean and standard deviation of 
the rest of the image. The threshold was determined to 
be the mean plus double the standard deviation.

Direct Object (Cell) Identification. For nuclear stains (e.g., 
Hoechst) or stains that are oval shaped and encompass 
the nucleus and some of the cytoplasm (e.g., NeuN 
for neurons), cell populations can be directly identi-
fied from the histology images. Once background was 
removed, images were processed by a single module 
(IdentifyPrimaryObjects) that identified primary objects 
(objects with no current relationship to other objects) 

Table 2. Emission/Exposure Settings for Image Acquisition.

Objective Channel (nm) Antibody Exposure (ms)

10× DAPI (350) Hoechst 64
GFP (488) NeuN 226
dsRED (555) TSP1 150
Cy5 (660) GFAP 2,657

20× DAPI (350) Hoechst 8 (striatum and cortex)
GFP (488) NeuN 27 (striatum and cortex)
dsRED (555) TSP1 60 (striatum and cortex)
Cy5 (660) GFAP 496 (striatum), 200 (cortex)

For all settings, gain was set to 0. Abbreviations: DAPI, 4’,6-diamidino-2-phenylindole; dsRED, Discosoma sp. red fluorescent protein; GFAP, glial 
fibrially acid protein; GFP, green fluorescent protein; TSP1, thrombospondin 1.
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(continued)
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Figure 2. Confirmation of the extracellular nature of TSP in the striatum and cortex. (A) Example of visualization of the striatum 
with 10× and then 20× objectives in a whole hemisphere stitched image. Qualitatively, the TSP marker appears extracellular. Scale bar 
is 200 μm. (B) z-stack with a 40× objective in the striatum. White arrows indicate the cell (neuron) highlighted in the yellow box for 
each orthogonal view. Intensity profiles are shown for each orthogonal view, demonstrating the nuclear colocalization of Hoechst and 
the phenotype marker (NeuN, here) and the extracellular association of the cell with TSP. Scale bar is 100 μm. (C) z-stack with a 40× 
objective in the cortex. The same views are shown as in B, but for the cortex. Intensity profiles confirm the extracellular nature of the 
TSP marker. Scale bar is 100 µm. Abbreviations: GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.

Table 3. Key Parameters for CellProfiler Modules.

Module Parameter

Value

Striatum Cortex

Background removal—Hoechst
 EnhanceOrSuppressFeatures Feature type Speckles Speckles

Feature size 50 50
 ApplyThreshold Threshold strategy Adaptive Adaptive

Threshold method Robust background Robust background
Smoothing Automatic Automatic
Threshold correction 0.99 0.99
Size of adaptive window 100 100

Background removal—NeuN
 EnhanceOrSuppressFeatures Feature type Speckles Speckles

Feature size 40 100
 ApplyThreshold Threshold strategy Adaptive Adaptive

Threshold method Robust background Robust background
Smoothing Manual: 1 Manual: 1
Threshold correction 1.00 1.00
Size of adaptive window 325 300

Background removal—GFAP
 EnhanceOrSuppressFeatures Feature type Speckles Speckles

Feature size 100 100
 ApplyThreshold Threshold strategy Adaptive Adaptive

Threshold method Robust background Robust background
Smoothing Manual: 1 Manual: 1
Threshold correction 0.70 0.80
Size of adaptive window 100 500

Background removal—TSP1
 EnhanceOrSuppressFeatures Feature type Speckles Speckles

Feature size 50 50
 ApplyThreshold Threshold strategy Adaptive Adaptive

Threshold method Robust background Robust background
Smoothing Manual: 1 Manual: 1
Threshold correction 0.40 0.50
Size of adaptive window 325 325

Direct object identification—Nuclei
 IdentifyPrimaryObjects Typical diameter range 10–50 10–50

Threshold strategy Global Global
Threshold method Otsu—Three classes Otsu—Three classes
Threshold smoothing Manual: 3 Manual: 3
Threshold correction 1.0 1.0
Bounds on threshold 0.02–1.00 0.02–1.00
Declumping smoothing Manual: 5 Manual: 5
Distance to suppress local maxima 10 10

(continued)
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based on intensity distributions. For this type of iden-
tification, the global threshold strategy (calculating a 
single threshold value based on the whole image) with 
a three-class Otsu thresholding method was used. This 
method calculates the threshold based on separating 
pixel intensities into three classes, minimizing the vari-
ance within each, and determines the threshold that 
separates the lower two classes. For molecules whose 
histological visualization is not localized akin to nuclear 
or nuclear-like stains, direct object identification cannot 
be used. For example, GFAP visualizes intermediate 

filaments of astrocytes and each identified astrocyte 
may have several immediate filaments protruding from 
the nuclear area stained. Use of the direct object iden-
tification method on GFAP would identify many objects 
along the stained intermediate filaments as the stain 
intensity varies along the filaments and is not localized 
to a small area, creating vast inaccuracies. Thus, phe-
notypes whose histological visualization is not nuclear, 
or localized to the nucleus, and identifiable by direct 
object identification must be identified using the asso-
ciation method.

Module Parameter

Value

Striatum Cortex

Direct object identification—Filtered neurons
 IdentifyPrimaryObjects Typical diameter range 13–50 20–80

Threshold strategy Global Global
Threshold method Otsu—Three classes Otsu—Three classes
Threshold smoothing Manual: 3 Manual: 3
Threshold correction 0.9 0.9
Bounds on threshold 0.02–1.00 0.02–1.00
Declumping smoothing Manual: 5 Manual: 5
Distance to suppress local maxima 10 10

 MeasureObjectNeighbors on 
neuron objects

Method to determine neighbors Adjacent Adjacent

 FilterObjects on neuron 
objects

Filtering mode Measurements Measurements
Filtering method Limits Limits
Measurement filter Neighbors > Percent 

Touching > Adjacent
Neighbors > Percent 

Touching > Adjacent
Filter using maximum value 35 40

Association—Filtered astrocyte nuclei
 ApplyThreshold on 

background removed GFAP 
stain

Output image type Binary Binary
Threshold strategy Manual: 0.07 Manual: 0.07

 MaskObjects (objects: nuclei, 
mask: binary GFAP)

Remove based on fractional overlap 0.1 0.16

 ApplyThreshold on 
background removed NeuN 
stain

Output image type Binary Binary
Threshold strategy Manual: 0.05 Manual: 0.05

 MaskObjects (objects: 
astrocyte nuclei, mask: binary 
NeuN)

Remove based on fractional overlap 
with inverted mask

0.9 0.9

Association—Neurons and astrocytes that associate with TSP1
 ApplyThreshold on 

background removed TSP1 
stain

Output image type Binary Binary
Threshold strategy Manual: 0.09 Manual: 0.07

 MaskObjects (objects: filtered 
neurons, mask: binary TSP1)

Remove based on fractional overlap 0.05 0.07

 MaskObjects (objects: filtered 
astrocyte nuclei, mask: binary 
TSP1)

Remove based on fractional overlap 0.15 0.1

Abbreviations: GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.

Table 3. (continued)
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Association. Association of a visualized molecule with 
previously identified cell objects was achieved through 

masking with a binary image and based on an overlap 
of the molecule with an object. Following background 

Figure 3. (A) Flowchart of image acquisition through processing to acquiring the final counts. Images are acquired after immunohis-
tochemistry and are loaded into CellProfiler before undergoing background removal. A conceptual overview of image processing is 
presented. (B) Images are processed through several routes, depending on which stain is in the image. For example, Hoechst is used 
to identify nuclei objects before being associated with a phenotype stain (GFAP) to identify a phenotype population (astrocytes). This 
phenotype population is then masked with the binary version of the ECM molecule (TSP) which has gone through background removal, 
to identify the amount of that phenotype population that associates with the ECM molecule (astrocytes associating with TSP). There 
may be double checks, if possible, to exclude incorrectly identified objects. For astrocytes, identified astrocyte nuclei were masked with 
the stain for neurons (NeuN) to ensure that no identified objects were also being identified as neurons. The final counts were then 
exported. Abbreviations: ECM, extracellular matrix; GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.



652 Liu and Modo 

removal and direct object identification of the objects 
to associate with the molecule, the histological image 
was converted to binary using a manual threshold. The 
binary image can then be used as a mask over the 
desired objects. Based on a user specified fractional 
overlap (Table 3) with the mask (stain) image, objects 
are accepted (or rejected) as objects that associate 
with the stain and identified as a subpopulation. This 
can be used to both identify phenotype populations 
as subpopulations of all nuclei and populations of a 
certain phenotype that associate with TSP1 as sub-
populations of the phenotype population.

False Positive Corrections. For both neuron and astro-
cyte populations, additional validations to ensure that 
identified objects were indeed of the intended phe-
notype were performed. Clusters of many cells are 
not common in healthy striatum and cortex, but were 
identified from the NeuN stain. To correct for this, two 
modules were used to identify objects that were too 
close to each other for each to be a cell. The first mod-
ule measured the amount of perimeter that objects 
were touching neighboring objects, while the second 
excluded objects whose perimeters were in contact 
more than 35% (striatum) or 40% (cortex) with neigh-
boring objects (these numbers were enough to reject 
typically clumped objects), as these were most likely 
not individual cell objects and rather wrongly identified 
from the staining background.

Phenotypes that were identified by the association 
method had a greater chance of measurement error 
as there were several more processing steps involved 
than in direct object identification. Each processing 
step introduces some amount of potential error, stem-
ming from whether the processing step is robust 
enough to accurately process each image. Following 
this logic, if two phenotypes could be identified within 
the same round of histology (e.g., staining for NeuN 
and GFAP at the same time, in different channels) and 
phenotype 1 is identified using direct object identifica-
tion while phenotype 2 is identified using the associa-
tion method, then we can rely on phenotype 1 to check 
phenotype 2. Here, phenotype 1 are neurons and phe-
notype 2 are astrocyte nuclei. As there is a lower 
chance of error in identifying neurons, we can use the 
same steps as the association method to make sure 
that objects identified as astrocyte nuclei do not over-
lap with identified neuron objects. In this case, astro-
cyte nuclei were masked with a binary version of the 
NeuN stain and objects were rejected if the overlap 
was greater than 90% (Table 3).

Area Occupied by Immunohistochemical Markers. The area 
occupied by each stain (phenotypic and ECM) was 

also measured. This was done using the MeasureIm-
ageAreaOccupied module to measure the area occu-
pied by the binary versions of the phenotype and ECM 
stains after background removal and the total area of 
the image (consistent for all images). Binary images 
were taken from previous modules that had created 
binary versions of each of the stains—the GFAP stain 
from the identification of astrocyte nuclei, the NeuN 
stain from filtering wrongly identified astrocyte nuclei, 
and the TSP1 stain from identifying neurons and astro-
cyte nuclei that associated with TSP1. Each of these 
binary images was produced by applying a threshold, 
as described in previous sections. The percent area 
occupied by TSP1 can also act as a check to ensure 
consistency with staining and image processing.

Data Export and Statistics. Counts for all identified popu-
lations were exported from CellProfiler and imported 
into Excel, where the percentages of phenotypes 
associating with TSP1 were calculated based on cell 
counts. This was achieved by simply dividing the num-
ber of identified phenotype objects that associated 
with TSP1 by the total number of identified phenotype 
objects before multiplying by 100. Arithmetic means 
were calculated for all images (n=15 per section per 
animal) in a given tissue section at the same Bregma 
position for each animal. Using Prism 6 (GraphPad), 
biological replicates (n=5) were graphed as the mean 
± standard deviation as data was normally distributed. 
For accuracy counts, Pearson’s r correlation was cal-
culated with significance set at p<0.05 and 1-β at 0.8. 
For association analysis, repeated measures two-way 
ANOVA with post hoc Sidak tests and t-tests were 
used with significances set at p<0.05.

Results

Identification of Cell Nuclei and Phenotypes

To analyze the association of TSP1, phenotype popu-
lations must first be identified. Here, we identified neu-
ron and astrocyte populations, as well as the total 
number of cells, in all acquired images. This analysis 
was applied to both the striatum and cortex, as there 
are notable differences in the phenotypic localization 
of TSP1.

Cell Nuclei. To account for the total number of cells 
present within individual images and yield percent-
ages of the total amount of cells, the number of cells 
present needed to be measured. For this, cell nuclei 
were identified based on the nuclear stain Hoechst 
using direct object identification. Images of the Hoechst 
stain (blue channel) were first processed for background 
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removal before nuclei were identified (Fig. 4A). An 
example of adapting the settings (such as threshold 
lenience, binary image threshold, fractional overlap, 
etc.) of specific modules to produce automated counts 
with a high enough correlation (i.e., iterative pipeline 
development) to the manual counts is changing the 
range of acceptable sizes for identified objects (Fig. 4B). 
Once objects are identified by direct object identifica-
tion in the module IdentifyPrimaryObjects, they are 
accepted or rejected based on a user-defined size range. 
By changing the size range for identifying nuclei in an 
iterative manner, the required correlation coefficient 
with low error (<5%) was reached (Fig. 4B). An initial 
estimate of the average size of nuclei in pixels (1–30 
pixels at this magnification and resolution), yielded 
an acceptable correlation, but it was visually clear 
that larger, correctly stained nuclei were not being 
accepted (Fig. 4B). Thus, further changes to the size 
range resulted in a correlation of 0.9565 (p<0.0001) 
with an average error of 3.28%.

Neuron Cell Identification. As with Hoechst, neuronal 
staining was nuclear and hence an adaption of this 
module combination afforded the quantification of 
phenotype stains with nuclear morphology. Neurons 
were identified via direct object identification (Identify-
PrimaryObjects) after background removal on the 
NeuN stain (Fig. 5A). Due to the sometimes significant 
areas of medium intensity background in the NeuN 
stain, cell counts were often an overestimation due to 
large cell clusters being identified from background, 
and not specific, staining. To correct for this, objects 
were removed based on the percentage that their 
object perimeter was in direct contact with a neighbor-
ing object, which signified a high likelihood of being in 
an extraneous cluster that was not common for neu-
rons. This additional correction yielded a correlation of 
0.9256 (p<0.0001) with an average error of 4.97%.

Astrocyte Cell Identification. Astrocytes were identified by 
the association approach due to a lack of a nuclear 
morphology (Fig. 5B). GFAP stains underwent back-
ground removal, reducing blur due to out of focus pro-
jections, and a user specified threshold was used to 
produce binary images. These binary images were 
then used to mask previously identified nuclear objects 
(identified by direct object identification). This resulted 
in a population of identified cell objects—nuclei—
that colocalized with the phenotype histology—
GFAP (Fig. 5B). For astrocytes, an additional correction 
was performed to exclude incorrectly identified astro-
cyte nuclei objects that were actually neuron nuclei. 
This was done by creating a binary version of the 
NeuN stain—a threshold was applied to the NeuN 

image that had undergone background removal. The 
initially identified astrocyte nuclei objects were then 
masked by the binary NeuN image and objects were 
removed if there was more than a 90% overlap 
between the objects and the NeuN binary image. Iter-
ative pipeline development yielded a correlation of 
0.9442 (p<0.0001) with an average error of 4.40%.

Identification of TSP1 and Cellular Attribution

To identify populations of phenotypes that associate 
with TSP1, the association method was used similarly 
to how it was used to identify astrocyte nuclei objects. 
TSP1 images (red channel) underwent background 
removal before being converted to a binary image via 
applying a user-defined threshold (Fig. 6A). The binary 
image was used to quantify the relative percent area 
that TSP1 covers and this can also be used to confirm 
uniformity of the TSP1 stain. Over the set of test 
images (n=10), the area covered was on average 
8.17% ± 2.73%. This binary TSP1 image was then 
used as a mask over the phenotype objects—those 
objects being nuclei, astrocyte nuclei, and neurons 
(identified previously through direct object identifica-
tion or association; Fig. 6B). Based on a user specified 
fractional overlap between the TSP1 stain and the 
phenotype objects (astrocyte nuclei or neuron objects), 
objects were accepted or rejected as associating with 
TSP1 (Fig. 6B). Fractional overlaps were determined 
for neurons associating with TSP1 and for nuclei asso-
ciating with TSP1 (astrocytes were identified by their 
nuclei, thus determining a fractional overlap for all 
nuclei provides a robust method to analyze any subset 
of nuclei). Iterative pipeline development yielded a cor-
relation of 0.9538 (p<0.0001) and an average error of 
5.72% for nuclei associating with TSP1 and a correla-
tion of 0.9684 (p<0.0001) and an average error of 
4.93% for neurons associating with TSP1.

Quantification of TSP Distribution and 
Association With Phenotypes

A homogeneous distribution throughout the anterior-
posterior striatum and cortex is observed, though 
there is notably stronger staining in the cortex (Fig. 
2C). Qualitatively, TSP1 associates more with neurons 
than with astrocytes. Morphologically TSP1 staining is 
present within/surrounding the cytoplasm and can be 
visualized as associating with different phenotypes 
(Fig. 7A).

Phenotypes were first identified before association 
with TSP1. In the striatum, neurons and astrocytes 
accounted for 42.54% and 17.37% of the population, 
respectively, while in the cortex, they accounted for 
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43.67% and 10.08% of the population (Fig. 7B). Neither 
the percentage of neurons nor astrocytes were significantly 
different between the striatum and cortex, though they 

differed significantly from each other (p<0.0021). In 
addition to quantifying the number of each phenotype, 
the percent area covered by each of their histological 

Figure 4. Process of identifying nuclei objects and an example of accuracy testing in the striatum are shown. (A) The fluorescent 
image of Hoechst is first converted to grayscale before the features are enhanced and background is thresholded. Then, objects are 
identified based on intensity distribution. The colors of the objects are used only to tell objects apart. The accuracy check is shown. (B) 
An example of how one parameter in direct object identification was changed to achieve accuracy is shown with the raw image and the 
manual counts (red dots) on the left. In IdentifyPrimaryObjects, a user-defined range of pixel lengths is used to accept or reject identified 
objects based on diameter. Size 1 is 1 to 30 pixels and it is clear that objects that are too large, but that are still correct cells, are being 
excluded. Despite Pearson’s r being >0.9 and p being <0.0001, it is evident that there is still error for several of the counts and that some 
automated counts being equally over- or underestimated has resulted in the high correlation. Increasing the lower and upper bounds 
of the range, as in Size 2 (20–50 pixels), then excludes smaller correctly identified cells and decreases Pearson’s r below the acceptable 
threshold. A final adjustment to Size 3 (10–50 pixels) increases correlation with the counts much closer to the trend line, indicating 
acceptable accuracy. Scale bars represent 200 µm.
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stains was measured. Neuronal staining (NeuN) cov-
ered 3.88% and 7.04% of the total area in the striatum 
and cortex, respectively, while astrocyte staining 
(GFAP) covered 4.69% and 3.83% of the total area 
(Fig. 7C). Neurons and astrocytes in both regions did 
not differ significantly along the anterior-posterior axis, 
indicating that the staining and image-processing 
methods were consistent and uniform. Only neuronal 
staining was significantly different between the stria-
tum and cortex and this was visually evident 
(p<0.0332). The percent area occupied by TSP1 was 
also calculated for all images. This percentage did not 
significantly differ anterior to posterior or between 
regions (Fig. 7D). On average, the percent area cov-
ered by the TSP1 stain was 8.85% in the striatum and 
7.40% in the cortex (Fig. 7E).

The percentage of neurons and astrocytes that 
associated with TSP1 also did not significantly differ 
along the anterior to posterior axis. The percentage of 
astrocytes that associated with TSP1 did significantly 
differ between the striatum and cortex (p<0.0001), 
while the percentage of neurons that associated did 
not (Fig. 7F). On average, the percentage of neurons 
that associated with TSP1 was 94.58% in the stria-
tum and 88.45% in the cortex (Fig. 7G). For astro-
cytes, the percentage that associated with TSP1 was 
significantly lower (p<0.0005) than that for neurons 
with 47.55% in the striatum and 28.09% in the cortex 
(Fig. 7G).

Discussion

Although the ECM is a major structural and signaling 
component of the brain, the distribution and localiza-
tion of ECM molecules remains poorly defined. 
Elucidating the association of ECM molecules with 
individual cell phenotypes will lead to a more detailed 
understanding of their physiological role in situ. We here 
described an automated computerized method that 
affords a quantitative characterization of cell phenotypes 

and their association with ECM molecules that 
removes possible inter- and intra-user bias. Specifically, 
we investigated the association of TSP1 with neurons 
and astrocytes in the striatum and cortex as well as 
the spatial distribution of TSP1 in both regions.

Automation and Validation of Image Analysis for 
Cells and ECM

In theory, completely automated quantification is the 
ideal route for quantitative analyses. Automation, as 
opposed to manual quantification, eliminates possible 
user bias, whether that is inter-user bias between dif-
ferent persons carrying out the quantification or intra-
user bias within a single person carrying out the 
quantification at different times. Automated methods 
also open up the potential for large sample size pro-
cessing and high-throughput approaches.22,31 With 
larger sample sizes and faster processing time, not 
only is the confidence in accuracy increased but the 
time to do so is also decreased. There are several pro-
grams that can give automated nuclei counts, such as 
Fiji (see https://fiji.sc/), however, nuclei counts only 
provide a general measure of cellularity of a tissue32 
and more complex information is required to provide a 
more thorough characterization of tissues composi-
tion. For example, examining the association and dis-
tribution of functional tissue components, such as 
ECM and different phenotypes (not merely all cells or 
only a single phenotype).

There are some automated image analysis tools 
(e.g., CellProfiler, FARSIGHT) that afford a more 
detailed and complex investigation beyond nuclei 
counting. FARSIGHT combines several different seg-
mentation models to identify individual cell nuclei, but 
also can determine the distance between these and 
other cells as well as classify specific phenotypes.22,32 
CellProfiler, similarly, can identify different phenotypes, 
but employs a pipeline method. Different modules can 
be applied with various methods of completing each 

Figure 5. Examples of phenotype population identification in the striatum by both direct object identification (neurons) and association 
identification (astrocytes). (A) The fluorescent NeuN stain was first converted to grayscale before the features were enhanced and the 
background was thresholded. As the NeuN stain is continuous and localized to the nucleus, neuron objects were identified by direct 
object identification. The NeuN stain, however, also has notable clouds of background staining that sometimes led to extraneous iden-
tification of clusters of cells. To exclude these extra objects, a double check was performed where the percent of the perimeters that 
are touching of two identified neighboring objects was measured. Objects were then filtered by this measurement and excluded from 
the final count if the percentage was above a user-defined threshold. (B) The fluorescent GFAP stain was first converted to grayscale 
before the features were enhanced and the background was thresholded. As the GFAP stain is not continuous and localized to the 
nucleus, astrocyte nuclei objects were identified by association of previously directly identified nuclei objects and the GFAP stain. After 
background removal, the GFAP stain was converted to binary and previously identified nuclei objects for that image were masked with 
the binary GFAP stain. Objects were accepted based on a user specified fractional overlap of the nuclei objects and the stain. The neu-
ron counts were used as a double check on the astrocyte counts as these two populations should not overlap. A binary version of the 
processed NeuN stain was used as a mask over astrocyte nuclei objects where objects that overlapped beyond a user-defined threshold 
were excluded from the final astrocyte count. Scale bars are 200 µm. Abbreviation: GFAP, glial fibrially acid protein.

https://fiji.sc/
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Figure 6. The processing of ECM molecule stains and association of the stain with phenotype populations is shown (in the striatum). 
(A) The fluorescent TSP1 stain was first converted to grayscale before the features were enhanced and the background was thresholded. 
The image was then converted to binary to use as a mask with identified phenotype populations. The percent area covered by the binary 
image was also measured as another way to observe the distribution of TSP, shown here for the test images (with error bars represent-
ing the standard deviation), averaging 8.17%. (B) Subpopulations of phenotypes that associated with TSP were identified by the associa-
tion method. Here, the association of nuclei with TSP is shown. Nuclei objects were first identified from the fluorescent Hoechst image 
and the fluorescent TSP image was processed and converted to binary. The binary TSP image (white) was then used to mask identified 
nuclei objects (gray) and objects that passed a user specified fractional overlap were accepted into the final subpopulation as associating 
with TSP (yellow). Scale bars are 200 µm. Abbreviations: ECM, extracellular matrix; TSP1, thrombospondin 1.

module available (e.g., different threshold methods, 
choices in user specified parameters). This framework 
was utilized, here, where identification of phenotypes 
was generalized into two classes—direct object iden-
tification and association. This allowed for the pipeline 

to potentially cover all phenotypes—those that could 
not be identified by direct object identification would 
be able to be identified by association.

In addition to the identification of cell phenotypes, 
we here needed to analyze the distribution of the ECM 



658 Liu and Modo 

(continued)



Semiautomated Analysis of TSP1 659

in a truly quantitative manner. Existing histological 
quantifications of the normal neural ECM are com-
monly semi-quantitative in that they assign grades to 
qualitative judgments (e.g., rating how intense staining 
appears) or in that they introduce manual error checks 
(where users flip through processed images and manually 
add/delete cells from identified populations).8,11,19,22,23,32 
Although the manual error checks in some semi-
automated analyses minimize error to nearly 0% (if 
error is being measured relative to manual counts), 
this loss in time efficiency is not always desirable. For 
the analysis of percentages, such as that presented 
here, while accuracy is still important, consistency is 
equally important and minor errors will not be detri-
mental. Here, by employing iterative pipeline testing, 
we designed a pipeline that is robust enough for per-
centage comparisons without the need for manual 
error checks. In addition, the average percent error 
had to be less than 10%, as it is possible to have high 
correlation between two sets of data, even if there is 
high percent error. These values were chosen based 
on biologically plausibility, what is commonly achieved 
in other automated image analysis methods,19 and 
how much error would not be negligible in the interpre-
tation of results. With this semiautomated method, we 
decrease the possible intra- and inter-user bias and 
enable high-throughput processing.

Many existing quantifications of normal neural ECM 
based on Western Blots or PCR also lack information 
about their spatial distribution.7–9 By using histological 
images and automated background removal, we were 
able to acquire a measure of the amount of TSP1 that 
is visualized by immunostaining and, thus, an idea of 
the homogeneity of the distribution of TSP1. However, 
immunohistochemistry also imposes methodological 
limitations. With many variations in histology (different 
antibodies, various precision and accuracy of stains, 
staining methods) and image acquisition (microscope 
models, exposure times, gain), the intensity, texture, and 
quality of features and potential image artifacts demand 
analysis and validation specific to each acquisition.22 
Although one method may work very well for nuclei 
segmentation it, for example, may not work sufficiently 

well for neuron or astrocyte segmentation. This makes 
the ability to customize pipelines attractive for image 
analysis involving histology.

TSP1 Associates With Most Neurons and Some 
Astrocytes in Normal Rat Brain

With the ability to analyze the percentages of cell phe-
notype populations that associate or associate with 
other stains, the distribution of the ECM can be ana-
lyzed. Here, we specifically investigated the spatial 
distribution and association of TSP1 with two neural 
phenotypes in healthy rat brain (striatum and cortex). 
TSP1 is evenly distributed throughout the striatum and 
cortex. Using the proposed automated approach, we 
can additionally note that TSP1 associates more often 
with neurons than astrocytes. The developed pipeline 
confirms this and allows us to perform additional anal-
ysis to validate these observations in a high-through-
put fashion.

As each phenotype population is being determined 
from the different phenotypic stains and methods of 
identification (either direct object identification for 
neurons or association for astrocytes), we are able to 
investigate the phenotypes themselves. We found here 
that the pipeline determined that about 40% to 45% of 
the total population are NeuN+ neurons, while about 
10% to 20% of the population are GFAP+ astrocytes. 
More astrocytes are present in the striatum than cor-
tex, consistent with the literature.33 We also deter-
mined the percent area covered by each of the 
phenotypic stains, helping to ensure consistency in 
the images acquired and processed. All covered quite 
a low area (<10%) suggesting that phenotypic stains 
are quite localized to the nucleus and not diffuse. The 
higher percent area covered by the NeuN immunos-
taining in the cortex also confirms our visual inspec-
tion, as neurons stained in the cortex were often much 
larger than that in the striatum.

Analysis of the TSP1 stain resulted in the same obser-
vation that TSP1 appears homogenously distributed 
throughout the striatum and cortex and along the  
anterior-posterior axis, with no significant difference in 

Figure 7. Quantitative results of the distribution and association of TSP1 in the striatum and cortex. (A). Examples (in the striatum) of 
correctly identified neurons and astrocytes that associate with TSP1. Scale bars are 200 µm. (B) Percentage of the total identified cell 
population that were classified as neurons (42.54%, 43.67%) and astrocytes (17.37%, 10.08%) in the striatum and the cortex, respectively. 
(C) Percent area covered by each phenotypic stain, NeuN (3.88%, 7.04%) and GFAP (4.69%, 3.83%) in the striatum and the cortex, 
respectively. The percent area covered by NeuN is significantly different in the striatum versus the cortex (p<0.0332). (D) Anterior to 
posterior distribution of the percent area covered by the TSP1 stain in the striatum and the cortex. Distributions were not significantly 
different both anterior to posterior and between regions. (E) Average of the percent area covered by TSP1 (8.42%, 7.40%) in the stria-
tum and cortex, respectively. (F) Anterior to posterior distribution of the percentage of phenotypes that associated with TSP1 in both 
the striatum and the cortex. Distributions were not significantly different anterior to posterior. (G) Averages of the percentage of phe-
notypes, neurons (94.58%, 88.45%) and astrocytes (47.55%, 28.09%) that associated with TSP1 in the striatum and cortex, respectively. 
The percentage of astrocytes that associate with TSP1 is significantly different in the striatum versus the cortex (p<0.0332). All error 
bars represent the standard deviation. Abbreviations: GFAP, glial fibrially acid protein; TSP1, thrombospondin 1.
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coverage between these areas. Similar to the pheno-
typic stains, the area covered was under 10% in both the 
striatum and the cortex, again suggesting that there was 
uniform staining and consistent image processing. In 
addition, the overall low area covered by TSP1 supports 
previous Western Blots that showed that TSP1 levels 
are quite low or absent in the healthy adult brain.7

The percentage of neurons and astrocytes associ-
ating with TSP1 indeed reflects the functional roles of 
TSP1. As TSP1 plays both a role in crucial develop-
mental events, such as presynaptic differentiation, 
and is produced by astrocytes, it was expected that 
there would be significant associations with both neu-
rons and astrocytes. The difference in the amount of 
association between phenotypes, which did not sig-
nificantly differ anterior to posterior, was very appar-
ent. Although most, if not all, neurons were found to 
associate with TSP1, the percentage of astrocytes 
that were found to associate was dramatically lower in 
both the striatum and cortex, confirming earlier quali-
tative observations. This is supported by earlier stud-
ies that have shown that while TSP1 associates with 
astrocytes early in development, that percentage 
decreases as the brain matures.7,17 The nearly total 
association of TSP1 with neurons is to be expected, 
as TSP1 is involved in synapse formation and plays a 
role in synaptic plasticity. To our knowledge, however, 
this neuronal association has not been previously 
quantified in the brain. Although the percentage of 
neurons that associate with TSP1 did not significantly 
differ between the striatum and the cortex, the per-
centage of astrocytes that associated was approxi-
mately 20% more in the striatum than in the cortex. A 
more detailed assay would be needed to investigate 
why there are differences in the percentage of astro-
cytes that associate with TSP1 in the striatum versus 
the cortex. This information more thoroughly charac-
terizes the presence of TSP1 in the normal brain and 
potentially gives insight into the components of the 
ECM that are most necessary in regenerating or 
repairing damaged brain tissue.

This method additionally eliminates the issues of 
inter- and intra-user bias and the limitations of using 
manual counting to quantify cellular associations. 
Enabling high-throughput approaches to be automated 
reduces bias, manual computation time, and allows for 
large sample sizes to be processed. Ultimately, this 
leads to more precise data and can give insight into 
how other ECM molecules are spatially organized. This 
becomes important in pathological conditions where 
ECM has been disrupted. In such conditions, such as 
stroke or other neural tissue disruptions, hydrogels and 
biomaterials are often of interest, in conjunction with 

neural stem cells, to help regenerate the lost or dam-
aged tissue.34,35

Despite being a major functional component of the 
brain, the normal distribution and localization of the 
ECM remains poorly defined. We here demonstrated 
the use of a semiautomated image analysis approach 
to reliably quantify different cell phenotypes and their 
association with TSP1. Although most neurons associ-
ated with TSP1 in both the striatum and the cortex, only 
about half and about one third of astrocytes associated 
with TSP1 in the striatum and the cortex, respectively. 
We additionally found that TSP1 occupies, histologi-
cally, little space in the striatum (~9%) and cortex 
(~7%). These findings both support previously reported 
TSP1 protein levels in the adult brain and quantify the 
amount of cellular association of TSP1 in the normal 
brain. This same approach can be applied to character-
ize the associations of other ECM molecules with cel-
lular phenotypes. Improving the description and 
quantification of the spatial distribution of ECM mole-
cules and neural phenotypes will increase our under-
standing of the structural and functional roles these 
molecules play in health, disease, and tissue repair.
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