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Abstract: We present a theoretical model of laser heating carbon nanotubes to determine the
temperature profile during laser irradiation. Laser heating carbon nanotubes is an essential physics
phenomenon in many aspects such as materials science, pharmacy, and medicine. In the present
article, we explain the applications of carbon nanotubes for photoacoustic imaging contrast agents
and photothermal therapy heating agents by evaluating the heat propagation in the carbon nanotube
and its surrounding. Our model is constructed by applying the classical heat conduction equation.
To simplify the problem, we assume the carbon nanotube is a solid cylinder with the length of the
tube much larger than its diameter. The laser spot is also much larger than the dimension of carbon
nanotubes. Consequently, we can neglect the length of tube dependence. Theoretically, we show that
the temperature during laser heating is proportional to the diameter of carbon nanotube. Based on
the solution of our model, we suggest using the larger diameter of carbon nanotubes to maximize the
laser heating process. These results extend our understanding of the laser heating carbon nanotubes
and provide the foundation for future technologically applying laser heating carbon nanotubes.
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1. Introduction

Carbon nanotubes (CNTs) have an important role in nanomaterials due to its mechanical, thermal,
electrical, optical and magnetic properties [1–3]. Recently significant progress has been made on the
studies of CNTs application to biology and medicine [4,5]. The possible applications of CNTs in biology
and medicine are drugs delivery, contrast agents, and heating agents [6,7].

According to the experiments from previous works, CNTs were potential candidate for
heating agents in photothermal therapy (PTT) and also promised candidates for contrast agents
in photoacoustic (PA) imaging [8–11]. The usage of agents in both PTT and PA imaging is to increase
the temperature in the tissue as the center of interest during laser irradiation. Thus, in the case of
PA imaging, the PA signal will be enhanced and in the case of PTT, the temperature rise during laser
irradiation will be high enough to kill the cancer cells. The combination of diagnostic and therapy at
the same time is called theranostics [12–14]. In this research, we call heating agents of PTT and contrast
agents of PA imaging as theranostics agents.

The cancer cells can be destroyed by increasing its temperature to the 41–47 ◦C [15]. Furthermore,
the PTT using heating agents should be able to increase the temperature of cancer cells at least up to
41–47 ◦C. This optimum temperature causes the cancer cells to become hyperthermic and damaged
due to the destitute of blood supply [16].

CNTs were suggested for heating agents due to the high and broad optical absorption spectra
in the visible as well as near-infrared (NIR) regions [17]. High optical absorption implies that CNTs
absorb more incident light and converting absorbed light into heat. The broad absorption spectra of
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CNTs describes that the wavelength of laser to irradiate CNTs can be varying in the visible and NIR
wavelength. The peak positions of the optical absorption spectra of CNT lie in the NIR region [17].
We suggest using the NIR laser to irradiate the CNTs since the penetration of NIR light into tissue are
more efficient than visible light [18,19]. Correspondingly, by using the NIR laser and CNTs as heating
agents, the deep tumor can be treated. Both PTT and PA imaging use visible or near-infrared (NIR)
laser. Consequently, both mechanisms are laser heating process.

A theoretical simulation of laser heating CNTs in PTT has been performed in previous work.
Toshiyuki Nakamiya et al. investigated the thermal analysis of CNTs film during pulsed laser heating
by solving classical heat conduction equation using the finite element method [20]. However, they were
not calculating the thermal analysis of the single molecule CNTs.

Even though, the experimental and theoretical results from previous works have supported
the possibility of CNTs as theranostics agents, the theoretical explanation of temperature profile in
the CNTs and its surrounding during laser heating process was not well described. Furthermore,
the interface temperature is crucial since this temperature is in contact directly with the cancer cells
or tissue. Moreover, the optimum specification of CNTs for theranostics agents based on theoretical
approach was not clearly well defined.

The objective of the present work is to develop a simple theoretical model of laser heating CNTs
in the microscopic point of view by using classical heat conduction equation. Based on our model,
we would like to calculate the temperature profile in CNT and its surrounding during laser heating
process. Appropriately, the interface temperature between CNT and cancer cells can be determined.
Based on the solution of our model, we could suggest the effective specification of CNTs such as the
diameter for future theranostics agents. Our model can be possibly extended for the laser heating
nanotube-based materials such as double-walled CNTs, multi-walled CNTs, silicon nanotubes and
boron-nitride nanotubes.

The paper is organized as follows. Section 2 describes the theoretical model of laser heating CNT
and its simplification. The solution of model and discussion will be explained in Section 3. We also
provide experimental results to support the CNTs as theranostic agents in Section 3. The summary and
future recommendation will be given in Section 4.

2. Theoretical Model

We develop a simple model of heat propagation in the CNTs and its surrounding during laser
heating process. The CNT is modeled by a solid cylinder. This assumption is common in the CNTs
research, especially to study the mechanical properties of CNTs [21–23]. This assumption is also
reasonable since the diameter of CNTs is very small and the density of atom is high especially for
double-walled and multi-walled CNTs. The typical center of interest in theranostics is cancer cells.
In the real case, the theranostics agents are injected into the center of interest. Consequently in our
model, CNT is surrounded by cancer cells, as shown in Figure 1. The Radius of CNT is denoted by a.
The farthest considered distance (b) is 100 times larger than CNT radius and its temperature (Tb) is the
temperature of normal human body 37 ◦C.

In order to simplify the problems, we have several assumptions. First, the length of CNT is
much greater than its diameter. This assumption is reasonable since previous work reported that the
length-to-diameter ratio of CNTs is around 1000 or more [24]. Therefore, the laser heating CNTs is
spatially only a function of radial distance. Moreover, the laser spot is also much greater than the
dimension of CNT as a consequence we can neglect the angle dependence of laser heating process.
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Figure 1. A simple theoretical model of CNT and its surrounding cancer cells during laser heating
process. The CNT is modeled by a solid cylinder with the length of CNT is much larger than its
diameter. The temperature on the outer side of the cylinder with distance b from the center (Tb) is
assumed to be the temperature of a normal human body 37 ◦C.

According to our model, the laser heating CNTs can be formulated by using the classical heat
conduction equation, which is the second order partial differential equation. The laser heating CNTs
can be formulated as,
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∂t
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1
r

∂

∂r

(
r

∂T
∂r

)
+ q(r, t), 0 < r < a, (1)
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)
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where ρc and ρt are the density of CNT and cancer cells. kc and kt are the thermal conductivity of CNTs
and cancer cells. T is temperature and r is radial distance measured from the center of the cylinder as
shown in Figure 1. t is time and q(r, t) is the heating function from the laser.

We neglect the time dependence of temperature for simplicity since we would like to obtain the
temperature profile as a function of radial distance. Consequently, the temperature during the laser
heating process is only the function of radial distance. Further, the Equations (1) and (2) become
steady-state one-dimensional conduction equation, are given by,
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Boundary and initial conditions are given by,

dT
dr

= 0, at r = 0, (5)
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(
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r=a−

= kt

(
dT
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)∣∣∣∣
r=a+

(6)

T(a−) = T(a+), (7)

T = T∞ (Tb) at r → ∞(r = b). (8)

The temperature at the center of the CNTs during laser heating should be definable, as described
in Equation (5). In Equations (6) and (7), we show that the temperature inner and outer sides of CNT
must be continuous at the interface.

The heating function describing heat source from the laser can be defined as,

q(r) = (1− R)I0α exp(−αz), with z = a− r. (9)

where I0 is the laser intensity, α is optical absorption coefficient of CNTs, R is the reflectivity since a
few percent of light will be reflected by CNTs, and z is the depth measured from the interface to the
center of the cylinder as shown in Figure 2a. The heating function is the function of radial distance
r. The heating function will be decayed as a function of depth measured from a surface as shown in
Figure 2b. However, we neglect the exponential term and assuming the heat source is constant for
simplicity. This assumption seems to be reasonable since the decay of heating function is not very
strong as shown in Figure 2b. This assumption is fair since in the real case, CNT is not solid cylinder,
there is empty space on the inner side of the nanotube. By neglecting exponential term, the calculated
temperature profile on the inner side of the cylinder is slightly higher than its expected temperature.
The simplified heating function is defined as,

q = (1− R)I0 α. (10)

In order to solve the heat equations, Equation (3) should be integrated. The result of integration is
given by,

dT
dr

= − qr
2kc

+
ck1

r
, (11)

with ck1 is constant and its value should be zero, in order to satisfy the boundary conditions in
Equation (5). Correspondingly, the Equation (11) becomes,

dT
dr

= − qr
2kc

. (12)

The general solution for 0 < r < a can be obtained by integrating Equation (12). The general
solution is given by,

T(r) = − qr2

4kc
+ ck2, (13)

where ck2 is constant. On the other hand, the solution of the heat equation in r > a region can be
obtained by integrating Equation (4). The result of integration can be defined as,(

dT
dr

)
=

ct1

r
, (14)

with ct1 is constant. By integrating Equation (14), we get the general solution, and is given by,

T(r) = ct1 ln r + ct2, (15)
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where ct2 is constant. By satisfying Equation (6) in boundary condition, the ct1 can be obtained. ct1

can be defined as,
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(
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)
= kt

(
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dr

)
at r = a,
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a
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(16)

Carbon Nanotube

z=0
z=a

(a) (b)

Figure 2. (a) The position of z = 0 and z = a in the model measured from the interface between CNT
and cancer cells. (b) The exponential term in the heating function with the radius of CNT is 5 nm.
We assume the heating function is constant to simplify the problem.

By substituting Equation (16) into Equation (15), the general solution become,

T(r) = − qa2

2kt
ln r + ct2. (17)

Constant ct2 can be formulated by substituting Equation (8) in boundary conditions into general
solution in Equation (17), and defined as,

Tb = − qa2

2kt
ln b + ct2

ct2 = Tb +
qa2

2kt
ln b

(18)

By Substituting Equation (18) into Equation (17), the real solution for r > a region can be obtained.
The solution is

T(r) = − qa2

2kt
ln r + qa2

2kt
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= qa2
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)
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(19)

By considering the continuity from boundary conditions in Equation (7), the ck2 can be
formulated as,
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Finally, by substituting Equation (20) into Equation (13), we can obtain the real solution for the
0 < r < a region. The solution is

T(r) = − qr2

4kc
+ qa2

2kt
ln
(

b
a

)
+ Tb +

qa2

4kc

= q
4kc

(
a2 − r2)+ qa2
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(

b
a

)
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(21)

3. Results and Discussion

According to the solution of our model, the temperature of CNT as a function of radial distance
during laser heating process can be formulated as,

T(r) =


q

4kc

(
a2 − r2

)
+

qa2

2kt
ln
(

b
a

)
+ Tb for 0 ≤ r ≤ a,

qa2

2kt
ln
(

b
r

)
+ Tb for r > a.

(22)

Based on Equation (22), the maximum temperature is located at the center of CNT. Then,
the temperature decreases from center to the interface of CNT and cancer cells. However, the results
are obtained by assuming the heating function is constant as shown in Equation (10). Consequently,
the calculated temperature at the center of CNT is higher than its fact.

The temperature during the laser heating process is proportional to the radius of CNT (a) as
shown in Equation (22). Thus, we suggest using the larger diameter of CNT to maximize the laser
heating process in many application such as PA imaging contrast agents and PTT heating agents.
We plot the temperature profile during laser heating process as shown in Figure 3a,b. We select the
radius of CNT is 5 nm. The physical parameters can be seen in Table 1.

Table 1. Physical parameters of cancer cells, CNTs and laser.

Physical Parameters

Thermal conductivity of human tissue kt 0.567 W/mK [25]
Thermal conductivity of CNTs kc 3000−3500 W/mK [26]
Initial temperature T∞ 37 ◦C
Reflectivity R 0.1
Absorption coefficient of CNTs α 2.4 × 107 m−1 [27]
Laser intensity I0 1× 106 W/cm2 [28]
Radius of SWNT a 5 nm
The farthest considered distance b 100 a

The temperature at the interface CNT and cancer cells is important because it is in contact to the
cancer cells as a center of interest. The temperature at the interface as a function of CNT radius during
laser heating process can be formulated as,

T(a) =
qa2

2kt
ln
(

b
a

)
+ Tb. (23)

The temperature at the interface is proportional to the radius of CNT as shown in Equation (23).
There is also dependence to the natural logarithm of the ratio between the farthest distance (b) and the
radius of CNT (a). In this research, we select the farthest distance is 100 times larger than CNT radius.
In Figure 3c, we show the temperature at interface between CNT and tissue during laser heating
process as a function of the radius of CNT.
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(a) (b) (c)

Figure 3. (a) The temperature profile of CNT and its surrounding as a function of radial distance
relative to the radius of CNT during laser heating process. (b) The temperature profile in the regions of
0 < r < a. (c) The interface temperature during laser heating as a function of CNT radius. The physical
parameters can be seen in Table 1.

4. Laser Heating Experiment

We develop the experiment of laser heating to support our theoretical model. The CNT sample
is commercially available CoMoCAT SWNT (6,5) powder. CNTs are not dissolve in water [29].
Consequently, we use Polyethylene glycol (PEG)-400 as a solvent. The method to prepare the
sample can be found in Ref. [17]. In Figure 4a, we show the optical absorption of CNT measured
using Ultraviolet-Visible (UV-VIS) spectrometer. The UV-VIS spectra confirms that CNT has strong
absorption in the visible and infrared regions. The first peak is located in 500 nm–570 nm (visible) and
the location of second peak is 650 nm–950 nm (visible-infrared).

The ultrasound phantom is created to describe the real case of laser heating CNT in the tissue.
The ultrasound phantom is made by polyvinyl alcohol (PVA) as basic material and dimethyl sulfoxide
(DMSO) as a solvent. The size of phantom is 3 cm × 3 cm × 3 cm with the tube in the center of cube
as shown in Figure 4b. We put the sample in the tube. The specification of laser are pulse repetition
frequency (PRF) 10 kHz, wavelength 532 nm (green), pulse duration 5.9 ns and the power of laser
2.5 Watt.

The sample is irradiated by laser and we measure the temperature of sample every 30 s in
3 min. The rise in temperature during laser irradiation can be seen in Figure 4c. The CNT has higher
temperature rise than water with the gradient 0.14 ◦C/s. The water has gradient 0.007 ◦C/s.

3 cm

3 cm

3 cm

3.5 mm

(a) (b)
Carbon nanotube

Water

R
2
 = 0.838

R
2
 = 0.750

(c)

Figure 4. (a) The optical absorption of (6,5) SWNT, (b) the schematic diagram of the phantom for laser
heating experiments, and (c) the temperature of the samples as a function of the laser heating duration.

5. Conclusions

We have successfully developed the theoretical model of laser heating CNTs by modeling the CNT
as a solid cylinder. The temperature profile in CNT and its surrounding during laser heating process is
obtained by solving classical steady state one-dimensional heat conduction equation. According to our
calculation results, the maximum temperature during laser heating process is located at the center of
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CNT because we neglect the exponential term of heating function. Correspondingly, the calculated
temperature inside the CNT is higher than its fact.

The temperature during laser heating process is proportional to the CNT radius. The suggested
specification of CNTs for theranostic agents is the CNTs with larger diameter to maximize the laser
heating process. These results bring additional understanding of the laser heating CNTs and provide
the foundation for future technological application of laser heating CNTs.

Our experimental results support the ability of CNTs as theranosics agents. The gradient of CNT
temperature during laser heating process is 0.14 ◦C/s and the gradient temperature of water is only
0.007 ◦C/s.
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