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Abstract

The exposome encompasses an individual’s exposure to exogenous chemicals, as well as 

endogenous chemicals that are produced or altered in response to external stressors. While the 
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exposome concept has been established for human health, its principles can be extended to include 

broader ecological issues. The assessment of exposure is tightly interlinked with hazard 

assessment. Here, we explore if mechanistic understanding of the causal links between exposure 

and adverse effects on human health and the environment can be improved by integrating the 

exposome approach with the adverse outcome pathway (AOP) concept that structures and 

organizes the sequence of biological events from an initial molecular interaction of a chemical 

with a biological target to an adverse outcome. Complementing exposome research with the AOP 

concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the 

relative contributions from various components of the exposome, determine the primary risk 

drivers in complex mixtures, and promote an integrative assessment of chemical risks for both 

human and environmental health.
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Introduction

The exposome expands our perception of lifetime exposure because it integrates exogenous 

chemicals with genetic and external factors that generate chemicals inside the body and 

thereby may pose threats to human health (Miller and Jones 2014; Rappaport and Smith 

2010; Wild 2012). The external contribution to the human exposome is determined by 

environmental exposure, also termed the eco-exposome (Lioy and Smith 2013), such as 

exposure via food, water, dust, air, and use of consumer products (Figure 1). Apart from 

environmental pollutants and their biotransformation products, the exposome includes 

endogenous metabolites and markers of the adaptive cellular stress responses, as well as 

chemicals that are generated in response to psychosocial stress and lifestyle factors. These 

joint exposures can be related to adverse health effects via exposome-wide association 

studies (EWAS; Rappaport 2012) without attempting to identify mechanistic causes (Figure 

1). Importantly, these associations capture the joint effect of many stressors acting in 

concert, which invokes mixture effects not only in chemical space of exogenous and 

endogenous compounds, but also mixtures in time, including the time dependence of effects. 

The exposome has thus been advocated as a key to cumulative risk assessment (Smith et al. 

2015).

During the last decade, the exposome approach has mainly been considered in epidemiology, 

while the complementary concept of Adverse Outcome Pathways (AOP) has emerged in 

(eco)toxicology (Ankley et al. 2010). The AOP concept links the exposure of chemicals to 

their cellular concentrations and molecular initiating events (MIE), through network/

pathway disturbances and key events (KE) to responses at the cellular, organ, organism and, 

finally, population and ecosystem levels (Figure 1). The AOP concept aims to enhance the 

utility of mechanistic data for understanding and predicting adverse effects. It also aligns in 

this goal with systems toxicology (Sturla et al. 2014) and the Tox21 program, a joint 

initiative of the US National Institute of Environmental Health Sciences (NIEHS) and the 

US Environmental Protection Agency (EPA) (Betts 2013; National Research Council 2007). 
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While the concepts of AOP and cellular toxicity pathways (Patlewicz et al. 2013) account for 

multiple pathways triggered by a chemical or stressor and are per definition chemical 

agnostic, most examples that applied these concepts in risk assessment to date are limited to 

individual chemicals, lacking an explicit treatment of internal biotransformation and of 

combined effects resulting from non-chemical stressors and chemical mixtures. Moving 

from linear AOPs to AOP networks is one step closer towards the idea of integrating both 

the exposome approach and the AOP concept (Figure 1). We argue that the AOP concept can 

expand applications of the exposome beyond EWAS to establishing mechanistic 

understanding of the causal linkages between chemical exposures and adverse effects. In 

turn, the exposome approach can help the AOP concept grow beyond single chemicals to 

include the effect of jointly acting mixtures that include both chemical and non-chemical 

stressors.

In addition, we may profit from the analogy of the environmental and human exposure via 

the food chain and other uptake pathways via water, air, dust, and consumer-products 

(Figure 1). We consider experimental tools that can connect both research arenas to better 

understand well-conserved effects on the cellular level - emphasizing commonalities and 

differences between the anthroposphere and the ecosphere.

Here we first explore the history of the exposome and AOP concepts and then propose to use 

tools from systems chemistry and systems biology to integrate exposome and AOP concepts. 

We then conclude with recommendations for further research.

Defining relevant exposure

Exposome.

In 2005, Wild coined the term “exposome” to describe the entireness of environmental 

exposure that, as a complement to the genome, may provide important clues for the 

understanding of chronic diseases. In his concept, the exposome encompasses lifetime 

environmental exposures that include lifestyle factors from the prenatal period onwards 

(Wild 2005). From this view, an accurate assessment of a complete exposure history is 

required to understand the complex interplay with genetic susceptibility, since the majority 

of genetic alterations will contribute to population disease burden only in the presence of 

specific environmental exposures (Vineis et al. 2001; Wild 2005).

Rappaport and Smih refined the approach through emphasizing the role of the chemistry in 

the organism, defining the exposome as the totality of human exposures from all exogenous 

and endogenous sources in the “internal chemical environment” (Rappaport and Smith 

2010). This latter definition takes into account that exposures are comprised not only of 

chemicals entering the body from the environment (e.g., air, water, food, dust), but also 

include compounds produced in the body by inflammation, (oxidative) stress, lipid 

peroxidation, infections, the microbiome, and other natural processes (Figure 2). The 

internal chemical environment is highly dynamic during lifetime due to (environmental) 

external and internal factors and processes such as aging, infections, lifestyle, preexisting 

diseases etc. (Rappaport 2011; Rappaport and Smith 2010).
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The above-mentioned definitions of the exposome have their specific merit depending on the 

angle from which exposure is viewed. “Bottom-up” strategies focus on pre-selected 

compounds or compound adducts following targeted hypotheses. By contrast, “top- down” 

strategies aim at measuring all chemicals or products of their downstream processing in a 

subject’s biospecimen, such as blood (Rappaport 2011; Rappaport and Smith 2010), as far as 

technically feasible. However, the full characterization of the exposome throughout the 

whole lifespan remains an outstanding challenge.

Eco-exposome.

While the exposome was originally defined to characterize human exposures, the idea can 

certainly be adapted to consider ecosystem exposure. In 2012, the National Research 

Council (NRC) of the US National Academy of Sciences defined the “eco-exposome” as 

“the extension of exposure science from the point of contact between a stressor and receptor 

inward into the organism and outward to the general environment, including the ecosphere” 

(National Research Council (NRC) 2012). Similar to the extended definitions of the human 

exposome, the eco-exposome is described by both internal and external measures of 

exposure (Lioy and Smith 2013). Naturally, the implementation of the exposome approach is 

specific for each biological species. However, conservation of targets for drugs and 

chemicals on the cellular level (Gunnarsson et al. 2008) might allow links to be found across 

species and between humans and ecosystems (LaLone et al. 2014; Rand-Weaver et al. 2013). 

The exposome narrative could establish an important link between human and ecosystem 

health by examining the effect of the totality of exposure from exogenous and endogenous 

sources over all levels of biological organization and complexity (Figure 1). Although the 

eco- exposome adds another level of complexity, shared toxicity pathways and adaptive 

stress responses can be invoked to identify commonalities (Kramer et al. 2011), and 

variations in metabolic and functional traits may explain differences (Forbes and Galic 

2016).

There are examples where elements of exposome research have been applied in 

ecotoxicology, such as monitoring contaminants in whole organisms (Houde et al. 2011; 

Lana et al. 2014; Lehnert et al. 2016) or correlative studies associating functional health 

parameters with body burdens of organic pollutants in marine wildlife (Jin et al. 2015). 

Similarly to exposome research in human health, there has been a focus on exposure 

assessment without necessarily establishing a quantitative link to adverse effects. Hence, the 

challenges of, both, the human exposome and eco-exposome are similar and there is mutual 

benefit for generating mechanistic knowledge.

Application of the AOP concept in the context of exposome research

A major motivation for developing the AOP concept was to support the risk assessment of 

chemicals by providing mechanistic knowledge that would enable to link in vitro (Andersen 

et al. 2005), in chemico (Bӧhme et al. 2009) or in silico information (Rusyn and Daston 

2010), including computational biotransformation (Ji and Schüürmann 2013) and structural 

alerts (Schüürmann et al. 2016), to toxicity in vivo (Berggren et al. 2015; Edwards et al. 

2016). The AOP concept supports the validation of predictive models based on underlying 
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molecular mechanisms. This would allow a more efficient use of high throughput screening 

(HTS) to prioritize a large number of compounds for detailed testing and/or reducing the 

number of animal experiments (Hartung et al. 2013b). Furthermore, within a regulatory 

framework of integrated assessment, AOPs can support a new, more targeted safety testing 

regimen that is focused on the most probable and relevant hazards (Rovida et al. 2015; 

Tollefsen et al. 2014). Rather than apical endpoints typically assessed for regulatory 

purposes, subchronic or sublethal endpoints, as well as in vitro bioassays related to acute 

and chronic adverse effects, may be used for establishing AOPs. The AOP concept has the 

inherent promise to evolve from a tool for structuring knowledge or prioritization of testing 

to a quantitative predictive tool to relate exposure data to adverse outcomes (AO). However, 

challenges remain that concern for example the incorporation of toxicokinetics as important 

determinant of toxicity in AOPs and extrapolations to higher levels of biological 

organization and across species (Groh et al. 2015). Thus, substance or species-specific 

differences in the toxicokinetics and genetically based differences across species can 

influence single events or processes within an AOP cascade, in consequence augmenting or 

mitigating apical adverse effects.

How could the exposome approach and the AOP concept cross-fertilize each other?

Initially, the exposome and the AOP concepts evolved separately in the fields of human 

toxicology and ecotoxicology, respectively. The inclusion of biological response in exposure 

assessment is where AOPs integrate into the exposome; the consideration of endogenous and 

non-chemical stresses as well as mixture effects is where the exposome can enrich the AOP 

concept. Per definition, the exposome is specific for individuals and integrates lifetime 

exposure while the AOP is conceptually focused on biological mechanisms and pathways. 

The temporal aspects of the exposome are at least partially implemented in the AOP 

concept. For instance, life-stage specificity or chronic toxicity would address effects that are 

related to long-term or potentially repeated exposure scenarios and biological responses.

The system-wide analysis of biological responses employing toxicogenomics represents an 

unbiased approach to detect chemical effects, integrating from MIEs along toxicity pathways 

(Berninger et al. 2014; Ellinger-Ziegelbauer et al. 2009). However, large numbers of signals 

compromise the response signatures (Vidal-Dorsch et al. 2016) and may lead to over-fitted 

associations with exposure characteristics. This calls for a reduction in data dimensionality 

through mechanistic reasoning and biomarker identification (Blaauboer et al. 2012) to 

discriminate relevant signals from epi- phenomena and random responses (Hartung et al. 

2012). In this respect the combination of AOP and exposome is revisiting previous 

approaches to apply biomarkers in epidemiology (Toniolo et al., 1998). A biomarker may 

represent a KE leading to adverse outcomes but may also represent events that are without 

direct relevance to the adverse effect, e.g. representing a compensatory reaction. However, 

the AOP concept is more strict and clear with respect to the relation of events that are 

directly related to adverse effects and hence, its combination with the exposome could 

improve the relation of exposome signals to impacts on health.

Escher et al. Page 5

Environ Int. Author manuscript; available in PMC 2018 August 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



AOPs could further help to anchor system-wide responses to dominant modes or 

mechanisms of action (Ellison et al. 2016), and thus increase the confidence in a hypothesis 

by providing mechanistic plausibility (Braun et al. 2016).

Aggregated exposure pathways (AEPs), AOPs, and the exposome.

The exposome may also be considered as the integration of AEPs and AOPs on (complex) 

mixtures if the source and pathways leading to the internal exposure are included (Figure 3). 

The AEP concept has been developed complementary to the AOP describing the KEs from 

source via external exposure (including environmental and dietary exposure) to exposure in 

the organism, termed target site exposure (Teeguarden et al. 2016), which is the crucial step 

linked to the molecular initiating events of the AOP. Similar to AOPs, the AEPs help to 

organize exposure information from exogenous source to internal site of action, setting the 

stage for inferring chemical concentrations at the internal target site and informing about 

expected biological effects.

The chemicals in the exposome constitute not only the exogenous chemicals transported into 

the body and their metabolites, but also adducts with cellular constituents and other 

endogenous compounds, as well as signaling molecules formed as part of the pathway of 

toxicity (Kleensang et al. 2014) or adaptive stress responses (Simmons et al. 2009; Smirnova 

et al. 2015) (Figure 3). The formation of chemical adducts can be considered as MIE, while 

endogenous chemicals (e.g. ROS, nitric oxide, ATP, glutathione) formed or changed in their 

levels as part of the stress response belong to the KE. Aligning the chemicals in the 

exposome to the various steps of the AEP/AOP (Figure 3) will help to establish a clearer a 
priori mechanistic link between the exposome and adverse health outcomes, with some 

endogenous chemicals of the exposome involved in defense against rather than in the 

development of the disease. However, the internal chemical response of stressed/perturbed 

organisms (e.g., due to an infection or an unhealthy lifestyle) may potentially lower the 

repair capacities, which may result in the next downstream event. These specific cases 

should be addressed in future studies.

Putative AOPs in exposome assessment.

The AOP concept has been moving from the initial ideas of linear pathways to networks of 

pathways (Knapen et al. 2015), which accommodates the idea of multiple causes for adverse 

effects. Some scientists criticize that AOPs are presently often incomplete. However, partial 

information on KEs and their relation even in case of weak evidence can provide initial steps 

to prioritize areas that require further investigation, and to identify the most relevant 

(internal) exposure situations. The AOP definitions and development are supported and 

guided by the OECD on a global level (Worth et al. 2014). Putative AOPs can be validated 

by the same principles that apply to AOPs in general, that is, their consistency with scientific 

literature and evidence for mechanistic links has to be demonstrated (Bell et al. 2016; 

Hartung et al. 2013a). Furthermore, putative and partially incomplete AOPs with high 

confidence relationships between KEs can be useful in specific applications, such as 

predicting an adverse outcome based on an easily tested KE (Perkins et al. 2015).
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Grouping of exposures with converging AOPs.

Given the large chemical variability, a full characterization of all possible MIEs and 

pathway-specific KEs remains one of the greatest challenges of future research. However, 

many AOPs converge at a higher level of biological organization and the AOP-based 

assessment could be conducted at more downstream KEs using cellular or organ responses. 

Examples include neuroactive pesticides or compounds disrupting the thyroid axis. Many 

pesticides act by interfering with specific steps in neural signal transduction that converge at 

the level of the cardiovascular system leading to a respiratory failure syndrome and finally 

death of the organism (Bradbury et al. 2008). Hence, characterization of behavioral 

responses could allow the integration of various mechanisms and to comprehensively 

describe exposure to neurotoxic compounds. Compounds disrupting the thyroid hormone 

system provide related examples in human toxicology. While various different MIEs are 

known, they finally converge at the intracellular or systemic thyroid hormone level (Murk et 

al. 2013). Hence, an integrative assessment could be based on test systems that target 

hormone levels in an organism, e.g., by assessment of compensatory responses to reduced 

thyroid hormone levels (Fetter et al. 2015).

Quantitative versus qualitative AOPs.

Most AOPs are initially developed based on qualitative, mechanistic evidence without 

consideration of toxicokinetics, i.e. the uptake, distribution and metabolism/elimination of a 

compound in an organism. However, the cellular concentration is a major driver of the 

magnitude of the final adverse effect. In the case of, e.g., a limited uptake or rapid 

metabolism, adverse effects may be mitigated even for a high affinity to the molecular target 

(Patlewicz et al. 2013).

Quantitative AOPs (qAOP) build on approaches for toxicokinetic-toxicodynamic (TKTD) 

modeling (MacKay et al. 2013) as was shown very recently for a qAOP developed for 

effects of synthetic glucocorticoids in fish (Margiotta-Casaluci et al. 2016). If the AOP 

cannot be fully described, hazard rates may be established to obtain a quantitative link to the 

final adverse effect (Ashauer et al. 2015).

Networks of AOPs for mixtures.

If bioassays can be mapped to KEs in AOPs of specific chemical domains, AOP networks 

might be used for assessing the complex mixtures of the exposome. Studies on extracts of 

environmental samples have demonstrated how complex chemical mixtures can be 

characterized using a battery of different mechanistic bioassays (Escher et al. 2014) or 

transcriptomic tools (Berninger et al. 2014). The levels of single chemicals will often fall 

below detection limits (both for chemical analysis and biological responses), but their 

combined exposure may nevertheless generate detectable biological responses (Altenburger 

et al. 2012; Silva et al. 2002). An AOP-based approach could help to interpret effects of 

mixtures without necessarily resolving each component, e.g., if a mixture of chemicals is 

extracted from biospecimens and the resulting extract is applied to cell-based bioassays 

(Altenburger et al. 2015). Bioanalytical assessment of these extracts with cell-based 

bioassays may support the identification of the most relevant chemicals and toxicity 

pathways interfering with human and wildlife health, provided that the bioassays are 
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anchored in a defined step of the AOP (Busch et al. 2016). Identification of such risk drivers 

could define new target chemicals in (bio)monitoring programs.

The requirements for AOPs to be used for mixtures do not deviate principally from those for 

AOPs for single compounds (Altenburger et al. 2015). However, similar adverse outcomes 

may be triggered by different MIEs that could jointly affect the same KE or more complex 

interactions could arise as is delineated by the complex role of low-dose mixtures in 

carcinogenesis (Goodson et al. 2015). Hence, experimental methods should focus on those 

KEs that can be expected to aggregate the bioactivity of different compounds that bind to 

different target sites but still converge into the same adverse outcome (Figure 4A, Vogs and 

Altenburger 2016).

Current understanding of mixture effects offers this reasoning as an explanation of why 

mixtures act according to concentration addition or independent action and may still show a 

combined effect where the individual components occur at sub-threshold concentrations 

(Altenburger and Greco 2009). So far, the predictive power of mixture models has been 

demonstrated mainly for artificially designed mixtures and defined apical endpoints (e.g., 

growth, survival) (Kortenkamp et al. 2009). More complex and environmentally relevant 

mixtures have occasionally been evaluated using the concentration addition assumption 

(Tang et al. 2013). In the past, mixture analysis that used endpoints anticipated to strongly 

relate to an MIE, such as toxicogenomic responses, were often based on poorly designed 

studies and therefore remained inconclusive (Altenburger et al. 2012). For the extension of 

the principles of mixture toxicity to the AOP concept it is thus necessary to explore how 

AOPs originating from different MIEs may converge at the KE and/or AO level and whether 

AOPs can be formulated for complex mixtures that cannot be resolved to an individual 

mechanism of action. However, even when a mixture effect would appear to be linked to an 

individual AOP, this AOP may not allow one to trace back to a certain chemical or chemical 

class due to the large number of chemicals and complex interactions within the overall 

exposome. Still, such a diagnosis would be informative because it would establish a 

mechanistic link between exposure and adverse effects.

Furthermore, toxicodynamic models are at present not available for mixtures. They would be 

an asset to quantitatively model and predict adverse outcomes or diseases resulting from 

mixtures for which exposure information is limited or where quantitative knowledge is 

available only for a limited number of KEs (Figure 4B). Such models would also open an 

avenue towards approaching temporal issues in adverse outcome assessment such as non-

continuous or sequential exposures.

The role of systems biology and chemistry in exposome and AOP research

The methodological “glue” that links the exposome and AOPs consists, largely, of systems 

biological and chemical methods (Figure 3). Systems biology is characterized by (i) an 

initial massive parallel experimental approach, aimed at determining one or more levels of 

molecular signatures (e.g., transcriptome, proteome, metabolome etc.); (ii) an iterative 

integration of experimental approaches and computational data analysis, and modeling, and 
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(iii) the computational generation of experimentally testable hypotheses (Garcia-Reyero and 

Perkins 2011; Hood et al. 2012; Ideker et al. 2001).

The complementary view on systems involving molecules with their compartmental 

partitioning and reaction networks is called systems chemistry. It addresses the organization 

of molecular feedback, amplification and information gain, and how these translate into the 

emergence of system-level properties (Ludlow and Otto 2008; Nitschke 2009; Whitesides 

2015). In the context of the exposome, systems chemistry may describe the interplay 

between exogenous and endogenous compounds including their dependence on the spatially 

varying dose as well as on reactivity, time, and further system properties.

Since chemistry underpins biological processes both in organisms and in the environment, a 

way forward is to combine omics and analytics with computational tools. Interdisciplinary 

approaches and bioinformatics tools may serve to identify perturbations in organisms and in 

the environment, to define biomarkers of exposure and disease, and to integrate information 

from all relevant levels of organization (Smith et al. 2015). AOPs can be regarded as 

biological roadmaps along which chemistry mediates the development of toxicological 

effects. Identification and quantification of AOPs involve chemicals as both triggers and 

modulators of toxicity, and employ systems biology methods to reconstruct regulatory 

pathways, and to assess perturbations and rewiring in biological networks (Figure 3).

What to measure?

The first step is to use advanced analytics for identifying and quantifying exogenous and 

endogenous chemicals (Figure 3). EWAS are limited by the inherent definition of ‘exposure-

wide’ that calls for untargeted analytical approaches (Patel 2016). Despite enormous 

advancement in analytical methodologies in recent years, problems persist and only a very 

small number of the thousands of compounds detectable in a sample can actually be 

identified, leaving the largest fraction of chemicals at the level of a known accurate mass (or 

molecular formula) and retention time. Any improvements here rely strongly on a better 

assignment of likely structures for these peaks based on a prediction of fragmentation, 

ionization, or chromatographic retention times supported by more comprehensive mass 

spectra databases. In contrast to non- targeted analysis, targeted approaches require initial 

hypotheses regarding classes of analytes and thus cannot carry through on the promise of 

‘exposure-wide’ detection. Currently, efforts are under way to develop automated workflows 

to analyze large analytical datasets, including multivariate statistical approaches dealing with 

patterns of chemical signals in relationship to adverse outcomes without attempting 

identification and quantification of individual chemicals (Patel 2016).

The characterization of the impact of external factors on the internal chemical environment 

calls for the use of omics and analytical techniques (Figure 3). In recent years, substantial 

progress has been made in measuring small molecules and metabolites (metabolomics) 

(Athersuch and Keun 2015), DNA adducts (adductomics) (Phillips et al. 2014; Rappaport et 

al. 2012) or large molecules, such as proteins and peptides (proteomics) (Stallman Brown 

2012).
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Transcriptomics - except emerging techniques to detect chemically modified RNA - does not 

identify products of external stress directly, but has proven valuable for characterizing 

responses to exposure at the pathway level. The transcriptome is easily assessed - also in 

cohort studies - since it can be applied even if only little material down to single cells is 

available. By combining transcriptomics with classifier analysis, more targeted endpoints 

can be developed (de Boer et al. 2015).

Also of interest is the assessment of environment-induced epigenetic changes, some of 

which have been shown to persist for prolonged periods of time (Bauer et al. 2016; Guida et 

al. 2015). Epigenomics may thus provide stable biomarkers for past exposures that are not 

detectable due to a limited sampling scheme by other omics layers. However, interpretation 

of epigenomic data remains challenging and functional assessment of epigenomic changes 

frequently requires integration with other omics data sets.

To assist in interpreting large-scale exposure data, the AOP concept may help to establish 

mechanistic links to external perturbation, for example by high-throughput screening of 

chemical interference with specific cellular toxicity pathways. Reporter gene assays based 

on nuclear receptors and transcription factors of cellular toxicity pathways have become 

popular tools not only to quantify exposure, but also to identify relevant steps of the AOP 

triggered by chemicals and their complex environmental mixtures (Figure 3).

Where to measure?

In human exposomics, several biospecimens are appropriate for assessing the internal 

chemical environment. Urine can be sampled non-invasively, but favors the detection of 

water-soluble chemicals, including metabolites and conjugates. Measuring the blood 

exposome is a sensible approach compared to organ-specific samples (Rappaport et al. 

2014). Blood transports chemicals to and from tissues and represents a reservoir of many 

endogenous and exogenous chemicals in the body at a given time (Nicholson et al. 2012). 

Blood samples are collected in most cohort studies, are therefore easily accessible, and 

sometimes a drop of blood is sufficient for biomonitoring studies (Mao and Wang 2015).

In eco-exposomics, integrating external with internal exposure has practical but also 

theoretical implications: In small aquatic invertebrates or fish embryos, the whole organisms 

need to be extracted. Analysis of whole organisms is based on extracts of a poorly defined 

mixture of lipids, proteins, carbohydrates, and bodily fluids. For larger organisms with more 

complex exposure pathways, such as mammals, larger fish or birds, the exposome may be 

investigated in body fluids similar to the human exposome approach.

The AOP components involving MIEs and pathway responses in key processes, such as 

development, are often evolutionarily conserved between human and model organism. 

Cross-species comparison focused on conserved KEs allows for AOP anchoring, assuming 

that evolutionary conserved proteins may have conserved functions. Therefore identification 

of protein orthologs through sequence similarity or other methods might be helpful to infer 

susceptibility, particularly if an AOP has already been identified (Perkins et al. 2013). 

Difference between species that cannot be captured by this approach would be toxicokinetic 

differences, especially with respect to metabolism.
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When to measure?

The human exposome is highly variable and dynamic throughout the human lifespan. The 

time-dependence of the exposome poses a challenge for the integration with the AOP 

concept. AOPs so far do not adequately reflect when KEs or KERs are only valid during a 

certain life stage or developmental phase.

Routine measurements, in particular during critical life stages, such as fetal development 

(cord blood analysis), early childhood, and puberty, are key to establishing a personalized 

picture of specific individuals’ exposures (Rappaport and Smith 2010). Time-sequenced 

information on individual exposome at different time points prior to disease onset would be 

of immense relevance for identifying environmental causes of disease.

Human life-long exposure may leave its traces in the exposome, while a retrospective 

analysis of external exposure along all uptake pathways is impossible. For small and short-

lived aquatic organisms, however, intelligent environmental sampling regimes yield time-

integrated and peak exposures, bringing us close to the ideal of an assessment of life-long 

exposure to external chemicals.

From exposome to adverse outcomes.

Systems biology and chemistry tools may be linked to prioritize compounds for chemical 

analytics by a tiered approach: Starting from a population cohort with a nested case-control 

study - “meet in the middle” approach that combines bottom-up and top-down approaches 

(Vineis et al. 2013) - omics data from epigenomics, proteomics or transcriptomics are 

generated and used to identify pathways/networks potentially affected by exposures and 

subsequently driving disease risk. For these pathways, in silico exploitation of 

(toxicological) databases and chemical bioactivity from HTS, reporter gene assays and 

docking studies will yield pathway- associated exogenous and endogenous chemicals 

(Figure 3).

Tox 21 and ToxCast have demonstrated the practicality of combining (hundreds of) HTS 

screens with in vitro bioassays for more than 8000 single compounds (Tice et al. 2013). 

While the current focus is in vitro to in vivo extrapolation using toxicokinetic models 

(Phillips et al. 2016; Wetmore et al. 2013), these in vitro bioassays can also be applied to 

monitor unknown mixtures in environmental samples from water (Escher et al. 2014) to 

biota (Jin et al. 2015) and human specimens. In this regard, in vitro assays may be useful to 

capture endogenous exposures and changes in internal of stress. Methods to link cause with 

effect, such as effect-directed analysis, are well established for the analysis of the external 

exposure in water (Brack et al. 2016) or sediment (Brack et al. 2005) and are increasingly 

applied to mammals and fish bio-fluids and tissues. Mode-of-action-specific bioassays have 

been used together with fractionation approaches and untargeted analysis to identify drivers 

of potential adverse effects in wildlife (Houtman et al. 2007; Simon et al. 2013).

Certainly, not all prerequisites for such an approach are currently available. The link 

between pathway perturbation and MIE may not be traceable for a particular omics data set, 

specifically when lacking data for the appropriate time points. However, the increasing 

capability to acquire multi-omic data sets at several time-points in population cohorts and 
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environmental populations, combined with the use of defined in vitro HTS tools (Tufi et al. 

2016), may alleviate this issue.

Systems biology challenges in exposome research.

Depending on the kinetics between initial exposure, MIEs and subsequent adaptations, 

different levels of molecular responses may require analysis (Yugi et al. 2016). Regarding 

prenatal exposure, longterm health effects might be accessible through epigenetics, whereas 

the metabolome level appears best for immediate effects induced by environmental 

chemicals.

Cross-omics data integration is particularly relevant for AOP construction: the multiscale 

nature of AOPs calls for integrating more than one omics layer. Single-cell pathway level 

effects will most likely be studied using respective proteomics or transcriptomics, whereas 

the organismal and population effects might be more easily captured using serum 

metabolomics. Currently available approaches reach their limits when the need arises to 

capture complex non-linear relationships between different omics data sets such as feedback 

loops.

Omics data used for network inference and pathway analysis should ideally be assessed in a 

time-resolved manner (Bar-Joseph et al. 2012). Most methods used for network 

reconstruction do not model time explicitly (Hempel et al. 2011) and more recent methods 

that do may demand further analysis to fully assess their potential (Le Novere 2015).

Conclusions

How the AOP concept enhances understanding the exposome and its impact on adverse 
outcome.

An inspection of publications on AOP and exposome from the past decade indicates that the 

concepts are widely accepted and intensively discussed but that examples of practical 

applications remain scarce. It can be anticipated that this will change in the near future 

provided that application of the concepts in research are intensified. While both concepts are 

in the midst of development, their integration might lead to synergy, which will be promoted 

by early harmonization of data collection and terminology.

The exposome approach and the AOP concept are essentially orthogonal with the AOPs 

covering single pathways over the entire effect chain while the exposome covers a multitude 

of pathways, with the exposure in principle integrated over the lifetime but in practice as 

cross sectional studies at a fixed time over a population. Thus the crossing points of AOP 

and exposome will need to be expanded in both dimensions.

To further explore the utility and benefit of future application of AOPs in exposome 

assessment the following research topics need to be strengthened:

(1) More AOPs should be developed and deposited in central databases (e.g., https://

aopwiki.org/). With every new AOP developed the capacity of exposome 

assessment based on biological responses will increase significantly.
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(2) Evolutionarily conserved cellular toxicity pathways may serve as common 

denominators for integrated effect assessments. We advocate the use of KEs 

across species for a systems biology-assisted approach to exposome assessment.

(3) Chronic exposure (both in terms of exposure duration and delay of effects) 

represents the typical environmental situation and is most relevant for human 

health. AOPs for chronic toxicity are at present not well-described (Groh et al. 

2015). However, one example for a chronic AOP is described in the AOP wiki, 

i.e. “Chronic binding of antagonist to N-methyl-D-aspartate receptors 

(NMDARs) during brain development induces impairment of learning and 

memory abilities” (https://aopwiki.org). Furthermore, many other endpoints, 

such as reproductive dysfunction originating from endocrine disruption are of 

relevance only in case of a chronic exposure since short-term exposures may not 

lead to significant population decline. Hence, an AOP-based exposome 

assessment should target chronic endpoints and disease outcomes.

(4) The research question is an important driver of the type of exposome/AOP 

research, such as the identification of the main chemical risk drivers in relation 

to mode of action, the complex multifactorial influences of mixtures or 

identification of a threshold level that can explain adverse effects.

Mixtures.

Existing mixture models have to be adapted and tested with regard to the AOP and 

exposome concepts. How established mixture toxicity models can be applied to different 

KEs that lead to the same adverse outcome remains a key question for future research.

Exposome characterization as a driver for risk assessment.

Characterizing the exposome via untargeted measurement of an internal chemical 

environment promotes data-driven discoveries of causal factors for human diseases or effects 

on the ecosystem. To identify the sources and to develop prevention strategies, the main 

exposures have to be characterized and validated by targeted techniques. Moreover, the 

discrimination of different exposures also provides the basis for hypothesis-driven research 

to promote mechanistic understanding. A promising approach to further develop such a 

mechanistic understanding will be the use of the AOP concept as long as it is evolving 

further from a linear pathway analysis to a tool to organize the complex networks of toxicity 

pathways.
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Abbreviations:

AEP aggregated exposure pathway

AO adverse outcome

AOP adverse outcome pathway

EWAS exposome-wide association studies

KE key event

HTS high throughput screening

ΜIΕ molecular initiating event

TD toxicodynamic

TK toxicokinetic
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Figure 1: 
Multiple chemical exposures of the environment and their link via environmental media and 

the food chain to human exposure. Any type of exogenous chemical exposure will change 

the endogenous exposure, both of which will elicit effects on cellular toxicity pathways. The 

cellular level might serve as integrator to understand both, the pathways to adverse health 

outcomes as well as to ecosystem-level effects.
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Figure 2: 
Defining the exposome.
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Figure 3: 
Interface between the (eco)exposome (in red), the aggregate exposure pathway (AEP, green) 

and adverse outcome pathway (AOP, blue). The red dashed boxes represent chemical 

components of the exposome. The AEP/AOP concept allows one to disentangle key events 

and allocate them to steps from the source of exposure to adverse effects. The grey boxes 

indicate experimental methods to quantify the chemical components of the exposome and 

the biological components of the AOP. Figure partially adapted from (Teeguarden et al. 

2016).
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Figure 4. 
(A) AOP for mixtures and (B) qAOP mixture modelling concept for similar action (adapted 

with permission from Vogs, C. and Altenburger, R. (2016). Time- Dependent Effects in 

Algae for Chemicals with Different Adverse Outcome Pathways: A Novel Approach. 

Environmental Science & Technology, 50(14): 7770–7780. Copyright (2016) American 

Chemical Society.
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