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Abstract

The thousands of chemicals present in the environment (USGAO 2013) must be triaged to identify 

priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic 

(TK) data that are necessary for relating exposures to tissue concentrations that are believed to be 

toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These 

data have been combined with biomonitoring data to estimate an approximate margin between 

potential hazard and exposure. The most “at risk” 95th percentile of adults have been identified 

from simulated populations that are generated either using standard “average” adult human 

parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. 

population, we developed a population simulation using physiologies based on distributions of 

demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control 

and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed 

incorporation of inter-individual variability, including variability across relevant demographic 

subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the 

correlation structure in physiological parameters. To identify portions of the U.S. population that 

are more at risk for specific chemicals, physiologic variability was incorporated within an open-

source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on 

estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT 

screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were 

extrapolated to doses that produce equivalent concentrations in body tissues using a reverse 

dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific 

parameters derived from in vitro measurements and predicted from chemical structure; and 2) with 

physiological parameters for a virtual population. For risk-based prioritization of chemicals, 
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predicted bioactive equivalent doses were compared to demographic-specific inferences of 

exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of 

NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 

12% on average for the total population when compared to previous methods. However, for some 

combinations of chemical and demographic groups the margin was reduced by as much as three 

quarters. This TK modeling framework allows targeted risk prioritization of chemicals for 

demographic groups of interest, including potentially sensitive life stages and subpopulations.
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1 Introduction1

The U.S. Environmental Protection Agency (EPA) is responsible for determining risks 

associated with chemicals in the environment. In order to address the thousands of man-

made chemicals present in environmental samples (Rager et al. 2016) and human blood 

(Park et al. 2012), the EPA requires efficient risk-based methods to prioritize, screen, and 

evaluate chemicals. A promising framework for prioritization (Thomas et al. 2013; Wetmore 

et al. 2015) identifies chemicals with greater putative risk by combining data from high-

throughput in vitro toxicity screening (HTS) assays, such as those developed and used by the 

US EPA ToxCast program (Kavlock et al. 2012), with data from high-throughput exposure 

modeling frameworks, such as US EPA ExpoCast (Wambaugh et al. 2013; Wambaugh et al. 

2014). Those chemicals more likely to pose a risk become targets for further investigation.

In vitro bioactivity HTS has been conducted for thousands of chemicals to date (Kavlock et 

al. 2012). To use in vitro HTS for chemical prioritization, methods for in vivo-in vitro 
extrapolation (IVIVE) have been developed that relate external chemical exposures to 

internal tissue concentrations (Aylward and Hays 2011; Rotroff et al. 2010). A primary 

application of IVIVE in risk prioritization has been reverse dosimetry, which uses 

toxicokinetic (TK) modeling to predict the oral equivalent dose (OED) of a chemical needed 

to produce an internal (e.g., plasma) concentration equal to a bioactive in vitro concentration 

(Rotroff et al. 2010; Tan et al. 2007; Tan et al. 2006). The ratio of OED to estimated human 

exposure is a measure of potential risk (Judson et al. 2011; Thomas et al. 2013); this ratio is 

known as the activity-exposure ratio, or AER.

Unfortunately, unlike the thousands of chemicals with predicted estimates for toxicity and 

exposure, TK data from traditional methods are available for only a few dozen chemicals 

(Wetmore et al. 2015; Wetmore et al. 2012). Alternative in vitro methods for TK have 

allowed the development of very simple prototype TK models for many hundreds of 

Abbreviations used: EPA, Environmental Protection Agency; HTS, High-Throughput Screening; IVIVE, in vivo-in vitro extrapolation; 
OED, Oral equivalent dose; AER, Activity:Exposure ratio; TK, Toxicokinetics; HTTK, High Throughput TK; NHANES, National 
Health and Nutrition Examination Survey; HTTK-package, Open source, public R tool for HTTK; HTTK-Pop:, HTTK-package with 
human variability informed by NHANES; MC, Monte Carlo; GFR, Glomerular filtration rate (kidney); Fup, Fub, Fraction of chemical 
unbound in plasma or blood; CLint:, intrinsic chemical clearance by hepatocytes; Css, The plasma concentration resulting from 
steady-state exposure. 
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chemicals (Rotroff et al. 2010; Wetmore et al. 2015; Wetmore et al. 2012). These simple 

“high throughput” TK (HTTK) models are useful precisely because they are simple – they 

can be rapidly parameterized using in vitro measurements of chemical clearance by 

hepatocytes and plasma protein binding (Rotroff et al. 2010) as well as bioavailability data 

(Wetmore et al. 2012). With additional data, more elaborate models have been generated 

(Wambaugh et al. 2015), including simulation of population variability in metabolizing 

enzymes (Wetmore et al. 2014). However, these data cannot currently be rapidly generated 

for large numbers of chemicals. The minimal HTTK data used for characterizing chemicals 

constrains models built on these data in how they may describe variability between 

individuals. However, these HTTK data and models have been useful for identifying those 

chemicals that are more likely to pose a human health risk (Thomas et al. 2013; Tonnelier et 

al. 2012; USEPA 2014; Wetmore et al. 2015; Wetmore et al. 2012).

TK, hazard, and exposure are known to vary between individuals, life stages, and 

populations with varying genetics, ontogeny, and physiology (Belle and Singh 2008; Hines 

2007; Jamei et al. 2009a; Lipscomb and Kedderis 2002; McNally et al. 2014; Wambaugh et 

al. 2014). Therefore, to better describe vulnerable life stages and populations, HT risk-based 

chemical prioritization needs to incorporate inter-individual variability in predictions of both 

hazard and exposure. The open-source, publicly available R package ‘httk’ (hereafter 

referred to as “HTTK-package”), was developed to facilitate HTTK modeling for IVIVE 

(Pearce et al. 2016). Currently, the HTTK-package incorporates the ability to simulate inter-

individual physiological variability by Monte Carlo (MC) sampling of the HTTK model 

parameters using uncorrelated normal distributions characterized by means and coefficients 

of variation (Wambaugh et al. 2015); these distributions typically reflect the physiology of a 

healthy young Caucasian adult (Birnbaum et al. 1994; Valentin 2002).

Here, we incorporate the inter-individual variability of the modern U.S. population into 

high-throughput risk-based chemical prioritization. To do this, we develop a population 

physiology simulation that makes demographic-specific predictions of chemical risk, using 

data collected as part of the ongoing National Health and Nutrition Examination Survey 

(NHANES) performed by the Centers for Disease Control (CDC) (http://www.cdc.gov/nchs/

nhanes.htm) (Johnson et al. 2014). This new tool, which we refer to here as “HTTK-Pop,” 

has been publicly released for use by the TK and risk assessment communities.

HTTK-Pop uses a correlated MC approach to simulate inter-individual physiological 

variability across demographic groups. We evaluate our approach using predictions of 

steady-state plasma concentrations (Css) derived from in vivo measurements for 95 

pharmaceutical (Obach et al. 2008) and other (Wetmore et al. 2012) compounds. We further 

assess predictions of inter-individual variability in Css using published in vivo measurements 

from 86 studies of 14 compounds (Howgate et al. 2006; Johnson et al. 2006).

We demonstrate the impact of human variability using an example framework for chemical 

risk prioritization (Wetmore et al. 2015). We simulate ten important demographic groups of 

the U.S. population informed by the NHANES. For each demographic group, we use 

chemical bioactivity HTS data and our new description of physiology for individuals within 

each demographic to predict the population distributions of doses needed to cause 
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bioactivity for 50 chemicals. We then estimate the group-specific AERs as a measure of 

potential risk. Finally, we identify chemicals and groups within the U.S. population with 

greater predicted risk of chemical exposure-induced bioactivity, as characterized by high 

throughput methods.

2 Methods

2.1 High Throughput Toxicokinetics data

All the TK data and models for HTTK-Pop used in this analysis are open source and 

publicly available as R package “httk” (Pearce et al. 2016) v1.5. This version included 

literature data on 543 chemicals, but our analysis was limited to 50 chemicals for which both 

HTS bioactivity data (Section 2.8) and exposure inferences (Section 2.9) were available. In 

the HTTK-package the chemicals are described by physico-chemical properties (molecular 

weight and hydrophobicity) obtained from EPI Suite (USEPA), as well as ionization 

equilibria (Strope et al. 2015). The chemicals are further described by in vitro measurements 

of pooled human hepatocyte clearance and plasma protein binding, as in Wetmore et al. 

(2015; 2012). Absorption is assumed to be fast (1/h) and bioavailability is assumed to be 

100%. The MC population simulation methods included in previous versions of the HTTK-

package were replaced in version 1.5 by the HTTK-Pop methods described here.

2.2 Model used for reverse TK

The HTTK-package includes several TK models. For our analysis, we used a general TK 

model from previous HT risk prioritization studies (Wetmore et al. 2014; Wetmore et al. 

2015; Wetmore et al. 2012) to predict steady-state plasma concentrations (Css):

Css =  
ko

GFR   × Fub +
Qliver × Fub × CLint,  h
Qliver + Fub × CLint,  h

Equation 1

In Equation 1, ko represents the dose rate (mg/kg/h); Fub, the fraction of parent compound 

unbound in blood; Qliver, the hepatic portal vein blood flow per kg body weight (L/h/kg); 

GFR, the glomerular filtration rate per kg body weight (L/h/kg); CLint,h, the whole-liver 

intrinsic clearance rate per kg body weight under first-order metabolism conditions (L/h/kg). 

The model is equivalent to the steady-state concentration in a three-compartment (liver, gut, 

and body blood) model. It assumes zero-order uptake of a daily dose from the gut with 

100% oral bioavailability, includes passive renal clearance, and assumes a first-order hepatic 

clearance modeled using the “well-stirred” approximation (Wilkinson and Shand 1975). 

Because this model is a steady-state model (i.e., sufficient time has passed for free chemical 

concentration in plasma to equilibrate with all tissues) tissue partitioning is not included in 

Equation 1. This model has been shown to predict Css similarly to a more detailed, 

perfusion-limited PBTK model for all but a few highly bioaccumulative compounds 

(Wambaugh et al. 2015). The model includes both physiological parameters (GFR and 

Qliver) and chemical-specific parameters (Fub and CLint.h). When chemical-specific estimates 

of Fub and CLint,h are available, the model can be parameterized for that chemical.
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Fub was estimated from in vitro measurements of the fraction of chemical unbound in 

plasma (Fup), by assuming a constant ratio of blood concentration to plasma concentration 

(Rb2p).

Fub =
Fup
Rb2p

Equation 2

Rb2p was in turn calculated according to Equation 3, using hematocrit (Hct) and the partition 

coefficient between red blood cells and plasma (KRBC2p). KRBC2p was predicted from 

physico-chemical properties using Schmitt’s method (Schmitt 2008).

Rb2p = 1 ‐ Hct  +   Hct × KRBC2p × Fup Equation 3

Whole-organ intrinsic hepatic clearance per kg body weight (CLint,h) was scaled from 

intrinsic clearance rates measured in vitro in human hepatocytes (CLint) using the following 

equation:

CLint, h = CLint × hepatocellularity ×Mliver Equation 4

where Mliver represents liver mass in kg, and hepatocellularity is millions of cells per kg of 

liver tissue.

2.3 Simulating inter-individual variability in the TK model

To simulate inter-individual variability in the TK model, a MC approach is used: the model 

parameters are sampled from known or assumed distributions, and the model is evaluated for 

each sampled set of parameters. To simulate variability across subpopulations, the MC 

approach needs to capture the parameter correlation structure. For example, kidney function 

changes with age (Levey et al. 2009), thus the distribution of GFR is likely different in 6-

year-olds than in 65-year-olds.

To directly measure the parameter correlation structure, all parameters need to be measured 

in each individual in a representative sample population. Such direct measurements are 

extremely limited. However, the correlation structure of the physiological parameters can be 

inferred from their known individual correlations with demographic and anthropometric 

quantities for which direct population measurements do exist. These quantities are sex, race/

ethnicity, age, height, and weight (Howgate et al. 2006; Jamei et al. 2009a; Johnson et al. 

2006; McNally et al. 2014; Price et al. 2003). Direct measurements of these quantities in a 

large, representative sample of the U.S. population are publicly available from NHANES. 

NHANES also includes laboratory measurements, including both serum creatinine, which 

can be used to estimate GFR (Levey et al. 2009), and hematocrit. For conciseness, sex, race/
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ethnicity, age, height, weight, serum creatinine, and hematocrit will be called the NHANES 

quantities.

HTTK-Pop’s correlated MC approach begins by sampling from the joint distribution of the 

NHANES quantities to simulate a population. Then, for each individual in the simulated 

population, HTTK-Pop predicts the physiological parameters in Equations 1–4 from the 

NHANES quantities using regression equations from the literature (Barter et al. 2007; 

Baxter‐Jones et al. 2011; Bosgra et al. 2012; Koo et al. 2000; Levey et al. 2009; Looker et al. 

2013; McNally et al. 2014; Ogiu et al. 1997; Price et al. 2003; Schwartz and Work 2009; 

Webber and Barr 2012). Correlations among the physiological parameters are induced by 

their mutual dependence on the correlated NHANES quantities. Finally, residual variability 

is added to the predicted physiological parameters using estimates of residual marginal 

variance (i.e., variance not explained by the regressions on the NHANES quantities) 

(McNally et al. 2014).

2.4 Pre-processing NHANES data for use in HTTK-Pop

Data were combined from the three most recent publicly-available NHANES cycles: 2007–

2008, 2009–2010, and 2011–2012. For each cycle, some NHANES quantities — height, 

weight, serum creatinine, and hematocrit — were measured only in a subset of respondents. 

Only these subsets were included in HTTK-Pop. The pooled subsets from the three cycles 

contained 29,353 unique respondents. Some respondents were excluded from analysis: those 

with age recorded as 80 years (because all NHANES respondents 80 years and older were 

marked as “80”); those with missing height, weight or hematocrit data; and those aged 12 

years or older with missing serum creatinine data. These criteria excluded 4807 respondents, 

leaving 24,546 unique respondents; their breakdown by race/ethnicity and sex is given in 

Table 1. Each NHANES respondent was assigned a cycle-specific sample weight, which can 

be interpreted as the number of individuals in the total U.S. population represented by each 

NHANES respondent in each cycle (Johnson et al. 2013). Because data from three cycles 

were combined, the sample weights were rescaled (divided by the number of cycles being 

combined, as recommended in NHANES data analysis documentation) (Johnson et al. 

2013). To handle the complex NHANES sampling structure, the R survey package was used 

to analyze the NHANES data (Lumley 2004). More details of NHANES data processing are 

available in the Supplementary Material (Section S1.1).

To allow generation of virtual populations specified by weight class, we coded a categorical 

variable for each NHANES respondent. The categories Underweight, Normal, Overweight, 

or Obese were assigned based on weight, age, and height/length (Grummer-Strawn et al. 

2010; Kuczmarski et al. 2002; Ogden et al. 2014; WHO 2006; 2010). More details about 

weight class are available in the Supplementary Material (Section S1.1.7).

2.5 HTTK-Pop algorithms for sampling NHANES quantities

We implemented two population simulation methods within HTTK-Pop: the direct-

resampling method and the virtual-individuals method. The direct-resampling method 

simulated a population by sampling NHANES respondents with replacement, with 

probabilities proportional to the sample weights. Each individual in the resulting simulated 
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population was an NHANES respondent, identified by a unique NHANES sequence number. 

By contrast, the second method generates “virtual individuals” — sets of NHANES 

quantities that obey the approximate joint distribution of the NHANES quantities (calculated 

using weighted smoothing functions and kernel density estimators; see Section S1.2.2 in the 

Supplementary Material), but do not necessarily correspond to any particular NHANES 

respondent. The direct-resampling method removed the possibility of generating unrealistic 

combinations of the NHANES quantities; the virtual-individuals method allowed the use of 

interpolation to simulate subpopulations represented by only a small number of NHANES 

respondents. Further details are given in the Supplementary Material (Section S1.2). For 

either method, HTTK-Pop takes optional specifications about the population to be simulated 

(Table 2) and then samples from the appropriate conditional joint distribution of the 

NHANES quantities.

Once HTTK-Pop has simulated a population characterized by the NHANES quantities, the 

physiological parameters of the TK model (Equation 1–4) are predicted from the NHANES 

quantities using regression equations from the literature. Liver mass was predicted for 

individuals over age 18 using allometric scaling with height from Reference Man (ICRP 

2002), and for individuals under 18 using regression relationships with height and weight 

published by Ogiu et al. (1997). Residual marginal variability was added for each individual 

as in PopGen (McNally et al. 2014). Similarly, hepatic portal vein blood flows (in L/h) are 

predicted as fixed fractions of a cardiac output allometrically scaled with height from 

Reference Man (ICRP 2002), and residual marginal variability is added for each individual 

(McNally et al. 2014). Glomerular filtration rate (GFR) (in L/h/1.73 m2 body surface area) is 

predicted from age, race, sex, and serum creatinine using the CKD-EPI equation, for 

individuals over age 18 (Levey et al. 2009). For individuals under age 18, GFR is estimated 

from body surface area (BSA) (Johnson et al. 2006); BSA is predicted using Mosteller’s 

formula (Verbraecken et al. 2006) for adults and Haycock’s formula (Haycock et al. 1978) 

for children. Hepatocellularity (in millions of cells per gram of liver tissue) is predicted from 

age using an equation developed by Barter et al. (2007). Hematocrit is estimated from 

NHANES data for individuals 1 year and older. For individuals younger than 1 year, for 

whom NHANES did not measure hematocrit directly, hematocrit was predicted from age in 

months, using published reference ranges (Lubin 1987).

2.6 Inter-individual variability in chemical-specific parameters

In addition to the HTTK physiological parameters, the HTTK models include chemical-

specific parameters representing the fraction of chemical unbound in blood (Fub) and 

intrinsic clearance (CLint). Because these parameters represent interactions of the chemical 

with the body, their values will vary between individuals. To simulate this variability, Fub 

and CLint were included in MC simulations, by sampling from estimated or assumed 

distributions for the parameters defining them (Equations 2, 3, and 4).

Variability in hematocrit was simulated either using NHANES data (for individuals ages 1 

and older) or using age-based reference ranges (for individuals under age 1). Fup was treated 

as a random variable obeying a distribution censored below the average limit of 

quantification (LOQ) of the in vitro assay. Specifically, Fup was assumed to obey a normal 
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distribution truncated below at 0 and above at 1, centered at the Fup value measured in vitro, 

with a 30% coefficient of variation. Below the average LOQ (0.01), Fup was instead drawn 

from a uniform distribution between 0 and 0.01. Fup was assumed to be independent of all 

other parameters. This censored normal distribution was chosen to match that used in 

Wambaugh et al. (2015).

Variability in hepatocellularity (106 cells/g liver) and Mliver (kg) were simulated. The 

remaining source of variability in CLint,h is variability in CLint, which was simulated using a 

Gaussian mixture distribution to represent the population proportions of poor metabolizers 

(PMs) and non-PMs of each substance. The true prev alenceof PMs is isozyme-specific (Ma 

et al. 2002; Yasuda et al. 2008); however, isozyme-specific metabolism data were not 

available for the majority of chemicals considered. We therefore made a simplifying 

assumption that 5% of the population are PMs, metabolizing each substance ten times 

slower than average.

With 95% probability, CLint was drawn from a non-PM distribution: a normal distribution 

truncated below at zero, centered at the value measured in vitro, with a 30% coefficient of 

variation. With 5% probability, CLint was drawn from a PM distribution: a truncated normal 

distribution centered on one-tenth of the in vitro value with 30% CV. Both CLint itself and 

the probability of being a PM were assumed to be independent of all other parameters. The 

truncated normal non-PM distribution was chosen because it has been used (with 100% 

probability) in previous work (Rotroff et al. 2010; Wambaugh et al. 2015; Wetmore et al. 

2014; Wetmore et al. 2015; Wetmore et al. 2012); the PM distribution was chosen to 

comport with the non-PM distribution.

2.7 Methodology for TK Variability Model Evaluation

To evaluate the model’s ability to predict the population median clearance, we compared 

median model-predicted Css values to Css values derived from published median in vivo 
clearance values (Obach et al. 2008) for 95 chemicals. The HTTK-Pop median CSS was 

predicted using Equation 1 for each chemical. Because Obach et al. (2008) selected for 

studies performed in healthy adult populations, model predictions were made for a non-

obese population aged 20–50 years (N=1000). HTTK-Pop was used in direct-resampling 

mode to simulate this population. Css values were derived from published median in vivo 
clearance values by assuming steady state and 100% oral bioavailability; for a dose rate of 1 

mg/kg/day, Css was then calculated according to Equation 5.

Css = dose, 1   mg/kg/day
clearance, L/day/kg Equation 5

Css was converted from units of mg/L to μM using the molecular weight of the compound in 

question.

To evaluate the model’s ability to predict population variability in clearance, we compared 

model-predicted variability in clearance to in vivo measurements of inter-individual 

variability in clearance compiled by Howgate et al. (2006) and Johnson et al. (2006). 
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Howgate et al. compiled data on clearance median and 90% CI (in units of L/h) from in vivo 
human studies of 15 pharmaceuticals, dosed by both IV and oral routes. Johnson et al. 
compiled data on clearance median and 95% CI (in units of L/h/kg bodyweight) from in vivo 
human studies of 11 pharmaceuticals, dosed by both IV and oral routes. (For consistency, we 

converted the 90% CIs reported in Howgate et al. to 95% CIs, assuming log-normal 

distributions.) The compiled data tables in Howgate et al. and Johnson et al. characterize 

each in vivo study by the total number of subjects, their age range, and for some studies, the 

number of female subjects. For some combinations of chemical and dosing route, clearance 

data from multiple studies were pooled. In these cases, the compiled data table reported the 

overall median and CI of clearance, and the number, age range, and/or gender proportion of 

the combined study populations (Howgate et al. 2006; Johnson et al. 2006). In total, 

Howgate et al. reported 25 values for 15 chemicals, and Johnson et al. reported 61 values for 

11 chemicals.

For each study or pool of studies, in vivo clearance medians and CI bounds were converted 

into corresponding Css values using Equation 5. Clearance measurements in L/h/kg (from 

Johnson et al.) were converted into Css in μM; clearance measurements in L/h (from 

Howgate et al.) were converted into Css in μM/kg. (Because the studies reported in Howgate 

et al. and Johnson et al. did not report the body weights of their subjects, the units of their 

reported clearance median and CIs could not be harmonized.)

Model predictions of Css variability were made for each reported study or pool of studies. 

Model simulations were performed using the protocol of Howgate et al. (2006): 20 different 

“trials” of the study population were simulated for each study, using the virtual-individuals 

method. For each simulated individual, HTTK-Pop predicts Css in units of μM (equivalent to 

mg/L). Consequently, for comparison to in vivo-derived values from Howgate et al. in units 

of μM/kg, HTTK-Pop Css predictions were divided by the body weight of each simulated 

individual. For comparison to in vivo-derived values from Johnson et al. in units of μM, 

HTTK-Pop Css predictions were left in their original units. For each study, the overall Css 

median was computed as the median of the 20 trial medians. The predicted Css median and 

95% CI were then compared to in vivo-derived values. One study of midazolam in neonates 

(gestational age 28 weeks) (compiled in Johnson et al.) was excluded from the comparison, 

due to insufficient data for simulation of the neonatal life stage.

To determine the sensitivity of Css to the parameters of Equations 1–4, including the 

physiological parameters (bodyweight, GFR, hepatic portal vein blood flow, hematocrit, 

hepatocellularity, and liver mass), Fub, and CLint, a global sensitivity analysis was performed 

using the method of Glen and Isaacs (Glen and Isaacs 2012) for each chemical in the data 

set. This method for variance-based sensitivity analysis computes the Sobol indices as 

correlation coefficients between pairs of independent MC runs; furthermore, it introduces 

correction terms to reduce numerical error in the computed Sobol indices arising from 

spurious correlations (Glen and Isaacs 2012). In this analysis, the first-order sensitivity index 

for parameter i, Si, gives the fraction of variability in Css that is attributable to variability in 

that parameter alone (disregarding its interactions with other parameters). Si can also be 

interpreted as the expected fractional reduction of variance in Css that would be obtained if 

parameter i could be fixed (Saltelli et al. 2010).
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The analysis calculated first-order Css sensitivity to CLint, to Fub, and to the physiological 

parameters as a group. Sensitivity could only be determined to the physiological parameters 

as a group, because the HTTK-Pop-simulated physiological parameters are not independent 

of one another, but as a group they are independent of Fub and CLint (Jacques et al. 2006). 

(To explore potential sensitivity to individual physiological parameters, another global 

sensitivity analysis was performed using the assumption that the physiological parameters 

were independently distributed about “average” values representing an adult Caucasian 

male. However, the results of this sensitivity analysis are not guaranteed to be representative 

of the sensitivity of HTTK-Pop-predicted Css.)

2.8 ToxCast Bioactivity Data

OEDs were estimated for the bioactive ToxCast concentrations using data from the 

Aggregated Computational Toxicology Repository (http://www.epa.gov/actor/), downloaded 

on June 2, 2015). The data are described in Kavlock et al. (2012). In HTS, each chemical is 

tested in concentration-response across many in vitro assay endpoints. ToxCast data 

included activity calls (active/inactive) and, if active, the concentration that caused 50% of 

any observed activity (AC50 values) for 821 different bioactivity assays across 1860 

chemicals. The distribution of AC50 across active assays for each chemical approximates the 

distribution of internal concentrations of that chemical at which various biological effects 

may occur. This distribution was characterized by 10th and other percentiles of the ToxCast 

AC50 values. OEDs were computed using the 95th percentile Css value (denoted Css
95), 

using reverse dosimetry assuming first-order metabolism (Rotroff et al. 2010).

OED =
ToxCast AC50   percentile

Css
95 × 1mg/kg/day Equation 6

These OEDs reflect the dose that would be needed in the most-sensitive 5% of the 

population to produce a steady-state plasma concentration equal to a given percentile of the 

ToxCast AC50 distribution across assays for the given chemical. The 10th percentile AC50 is 

intended to be a stable (i.e., unlikely to be an outlier) and conservative (i.e., sensitive or 

potent) estimate of in vitro bioactive concentration: the very lowest AC50 values across 

assays may reflect noise or otherwise spurious data, and the 10th percentile is judged likely 

to exclude these spurious values.

2.9 Exposure Inferences for Demographic subgroups

We performed prioritization for 50 chemicals (Table 4) across ten demographic groups with 

exposures rates (mg/kg BW/day) that were determined in a previously published high-

throughput exposure analysis (Wambaugh et al. 2014). Briefly, a manually-curated 

metabolic mapping of NHANES urine chemical analytes to chemicals was used to draw 

inferences of human exposure for each NHANES subject. Bayesian statistical analysis 

estimated a log-normal parent chemical exposure distribution consistent with the analyte 

concentrations measured by NHANES. The distribution for each chemical was described by 

a geometric mean. Analyte measurement limits of detection and uncertainty in the case of 
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analytes and parent chemicals with multiple linkages (i.e., two metabolites shared by three 

parent chemicals) were considered (Wambaugh et al. 2014).

The chemicals used here are only those chemicals for which the median was above the limit 

of detection. The inferred exposure rates analyzed here are distinct from the heuristic model 

exposure predictions reported for 7968 chemicals in Wambaugh et al. (2014) – these are the 

exposures inferred directly from the NHANES data that served as a “training set” for the 

heuristic model. These data are provided in the supplemental file SupplementalTable-

NHANESInferences.xlsx.

2.10 Calculating Activity:Exposure Ratio (AER) for Specific Demographic Groups

As described in Table 4, we restricted our analysis to the 50 chemicals with HTS, exposure, 

and HTTK data (Sections 2.1 and 2.9, above). Exposures had been inferred for 106 parent 

chemicals from NHANES urine biomonitoring data (Wambaugh et al. 2013). A total of 51 

of these chemicals also had in vitro measurements of hepatocyte clearance and plasma 

protein binding allowing parameterization of the HTTK models; 50 of those 51 chemicals 

were included in the most recent ToxCast public release as of this writing (downloaded on 

June 2, 2015).

HTTK-Pop was used in direct-resampling mode to generate ten simulated populations 

corresponding to the ten demographic groups, each containing N = 1000 individuals. For 

each of the ten demographic groups, population variability in steady-state plasma 

concentration (Css) was predicted for each individual and chemical. To characterize the 

population distribution of Css for each chemical, median and 95th percentiles were 

computed. For each of those 50 chemicals, the OED was compared to the inferred median 

exposure rate by computing the activity-exposure ratio, or AER, as defined in (Wetmore et 

al. 2012).

AER = OED
Inferred exposure Equation 7

An AER less than or equal to 1 implies that the estimated exposure is greater than or equal 

to the dose needed to induce bioactivity. An AER greater than 1 implies that the estimated 

exposure is lower than the dose needed to induce bioactivity.

3 Results

3.1 Evaluation of Population Simulation Method

There are five key physiological parameters in our TK model: hepatocellularity, GFR, portal 

vein flow, liver mass, and hematocrit. The CDC NHANES measures four biometrics which 

may be predictive of these parameters: age, weight, height, and serum creatinine. Based 

upon the NHANES biometrics, various models (see Methods) allow prediction of the 

population distribution of our key TK model parameters (Barter et al. 2007; Baxter‐Jones et 

Ring et al. Page 11

Environ Int. Author manuscript; available in PMC 2018 August 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



al. 2011; Bosgra et al. 2012; Koo et al. 2000; Levey et al. 2009; Looker et al. 2013; Ogiu et 

al. 1997; Price et al. 2003; Schwartz and Work 2009; Webber and Barr 2012).

Figure 1 visualizes the distribution of and relationship between the key model parameters 

and NHANES biometrics. Figure 1 is a plot matrix of estimated one- and two-dimensional 

marginal densities of the parameters. These plots illustrate the estimated correlation structure 

for N=1000 individuals in the NHANES age 20–65 demographic group. The off-diagonal 

plots (i.e., two-dimensional marginal densities) indicate a noticeable correlation whenever a 

systematic trend (i.e., a line with non-zero slope) is observed, as opposed to a circular cloud 

indicating no relationship. A formal calculation of correlation with Bonferroni correction for 

multiple comparisons indicates that 24 of the 36 pair-wise combinations are significantly 

correlated (p < 0.05), though only 4 have correlation greater than 0.5. The most notable 

correlation is height with all parameters except age and GFR. GFR and hepatocellularity 

were themselves correlated, induced by the fact that both GFR and hepatocellularity 

generally decrease with age in adults. Body weight also has a slight positive correlation with 

portal vein flow and liver mass, induced by the fact that these three quantities all generally 

increase with height in adults.

The diagonal entries in Figure 1 show the distribution of values across the simulated 

population (i.e., one-dimensional density). Populations were generated by both the direct-

resampling method (actual NHANES subjects, plotted with solid lines) and the virtual-

individuals method (plotted with dashed lines) are shown. Direct sampling might be 

preferred when NHANES includes a large number of actual subjects reflecting the 

demographic under study (e.g., non-obese adults aged 20–50 years), and was used to 

evaluate HTTK-Pop model’s ability to predict the population median Css. The virtual-

individuals method might be preferred for simulation of a more narrowly specified 

demographic, and was used to evaluate HTTK-Pop’s ability to predict variability in Css 

measured in specific in vivo study populations. As indicated by Figure 1, we did not observe 

significant differences in the populations generated by these two methods.

In Figure 2, the HTTK-Pop model’s ability to predict the population median Css is evaluated 

by comparison of predicted values to values derived from peer-reviewed literature. The 

HTTK-Pop median CSS was predicted using Equation 1 for 95 chemicals, shown on the Y-

axis of Figure 2. Each of the 95 chemicals in Figure 2 had in vivo derived Css values 

reported in Wambaugh et al. (2015), shown on the X-axis.

A regression of the measured data on the predictions in Figure 2 indicates that HTTK-Pop 

has limited ability to predict median Css. The R2 of the best-fit line (the dashed line in 

Figure 2) was approximately 0.3. This is consistent with other studies (Sohlenius-Sternbeck 

et al. 2010; Wambaugh et al. 2015). The two chemicals with the highest literature-derived 

median Css values, perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid 

(PFOA), appeared to be highly influential, so the regression was recalculated excluding them 

(the dotted line in Figure 2). The R2 of this recalculated best-fit line was 0.22. The 99% 

confidence intervals of the two regressions (shaded regions in Figure 2) largely overlap, 

showing that in fact, PFOS and PFOA are not very influential on the regression on a log10-

log10 scale. Both regression slopes are significantly different from 1 (p=2.5 × 10−6 and 3 × 
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10−3, respectively). For 73 of 95 chemicals (77%), the difference between predicted median 

Css and literature-derived median Css is ten-fold or less. For 53 of 95 chemicals (56%), the 

error is 5-fold or less; for 25 of 95 (26%), the error is 2-fold or less. Errors also tend to be 

conservative: for 60 of 95 chemicals (73%), the model over-predicts median Css values, as 

shown by the points that lie above the identity line (the solid line in Figure 2).

The distribution of the residuals (the log-transformed ratio of predicted to literature-derived 

Css values) was also characterized. By the Shapiro-Wilk normality test, the residual 

distribution was found not to be significantly different from a normal distribution (p=0.3). 

The arithmetic mean of the log-transformed residuals was 0.49, indicating a bias towards 

over-prediction of median Css values (a conservative error for reverse dosimetry). The 

standard deviation was 2.11. 95% of log-transformed residuals fall between −3.67 and 4.58.

In Figure 3, predicted Css variability was compared to in vivo measured variability in order 

to evaluate the model’s ability to predict inter-individual variability. HTTK-Pop was used to 

simulate populations corresponding to literature study populations in which clearance 

variability was measured. The model could be parameterized for seven chemicals included 

in Johnson et al. (2006), and eleven chemicals included in Howgate et al. (2006). For some 

of these chemicals, variability had been reported from more than one in vivo study per 

chemical; model-predicted variability was compared separately for each study. For each 

study, perfectly predicted variability would be indicated by a circle in Figure 3. Instead, as 

shown by the eccentricity of the ellipses in Figure 3, the predicted variability in Css tends to 

be different from in vivo measured variability.

For the studies shown in the left-hand panel of Figure 3 (those compiled by Johnson et al. 

(2006)), HTTK-Pop predicts the range of the 95% CI within 2-fold of in vivo for 7/39 

(18%); within 5-fold for 23/39 (59%); and within 10-fold for 28/39 (72%). For the studies 

shown in the right-hand panel of Figure 3 (compiled by Howgate et al. (2006)), HTTK-Pop 

predicts the range of the 95% CI within 2-fold of in vivo for 1/18 (6%); within 5-fold for 

2/18 (11%); and within 10-fold for 7/18 (39%). Correlation between median model-

predicted values and median in vivo values for these chemicals is also limited. The model of 

Johnson et al. (2006) predicted 90% of median clearance values within 2-fold of in vivo 
values; HTTK-Pop predicts only 8/39 (20%) of median Css values within 2-fold of in vivo 
values. HTTK-Pop predicts 24/39 values (62%) within 5-fold, and 30/39 values (77%) 

within 10-fold. Howgate et al. (2006) predicted median clearance within 2-fold of in vivo 

values for 73–78% of drugs. HTTK-Pop accomplishes the same only for 3/18 or 17%. 

HTTK-Pop predicts 7/18 values (39%) within 5-fold, and 10/18 values (56%) within 10-

fold.

The log-transformed residuals for median Css were characterized, as well as the log-

transformed residuals for the upper bound of the 95% CI (corresponding to 97.5th percentile 

Css). They were tested for normality and summary statistics were computed. The results, 

shown in Table 5, indicated that the distribution of residuals was indeed non-normal for both 

data sets. Because arithmetic mean and median values are greater than 0, these results 

suggest that the model tends to over-predict both median and upper-bound Css.
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The ratio of upper-bound Css to median Css was calculated for each study, for both predicted 

and in-vivo-derived values. This ratio can be interpreted as a variability factor; the larger it 

is, the greater the difference between median and upper-bound Css, indicating greater 

variability in Css and therefore individuals with greater sensitivity. Summary statistics were 

computed for this ratio for both predicted and in-vivo-derived values (Table 5). Then, the 

log-transformed residuals of this ratio were calculated, tested for normality, and summary 

statistics calculated. These results are also shown in Table 5. Again, these results suggest 

that the residuals are non-normal and that the model tends to over-predict the variability 

factor.

The results of a global sensitivity analysis of Equation 1 (presented in detail in the 

Supplemental Material, Section S2.2) indicated that variability in model-predicted Css is 

primarily driven by variability in either Fup or CLint, depending on the chemical. Variability 

in the physiological parameters became important only for chemicals with low in vitro-

measured intrinsic clearance (less than about 0.01 μL/min/million cells). The contributions 

of variability in each individual physiological parameter could not be separated, because the 

HTTK-Pop-simulated physiological parameters are not independently distributed. However, 

we also performed an exploratory sensitivity analysis in which the physiological parameters 

were assumed to be independently distributed, in which we could separately assess 

sensitivity of Css to each physiological parameter. In this analysis, we observed that for 

chemicals with low measured intrinsic clearance, variability in GFR became an important 

driver of variability in Css. These results indicate that variability in Css is primarily driven by 

variability in clearance rate for the primary clearance route for each chemical (hepatic or 

renal).

3.2 Comparing oral equivalent doses to exposures inferred from NHANES biomonitoring 
data

The model evaluation demonstrated that some large uncertainties remain, but that the errors 

tend to over-predict Css, which is a conservative bias for AER-based chemical risk 

prioritization (Wetmore et al. 2015). The predictive performance of HTTK-Pop for median 

Css is consistent with previous methods (Wambaugh et al. 2015). Predictions of variability in 

Css was not assessed by these previous methods and the previous HTTK method for 

simulating variability contained only a simple, body weight-based correlation structure 

(Wambaugh et al. 2015). Here we have gained the ability to use modern demographic 

information from the NHANES cohort to address human variability and establish sensitive 

populations. Therefore, we used HTTK-Pop to calculate demographic-specific AERs for the 

50 chemicals (parent compounds only) with all necessary data (enumerated in Table 4).

AERs for the Total population are visualized as the comparison of OEDs and exposure 

estimates in Figure 4. Ranking chemicals by AER is intended to provide an approximate 

chemical risk prioritization. An AER less than or equal to 1 implies that the estimated 

exposure is greater than or equal to the dose needed to induce bioactivity. AER is less than 1 

for only two chemicals (2,4-d, AER ≈ 0.09, and naphthalene, AER ≈ 0.5). AER increases 

quickly as one moves down the chemical ranking: triclosan has AER ≈ 8, and fenitrothion, 

AER ≈ 104. Despite the sometimes-wide ranges of OED and inferred median exposures (up 
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to 6 orders of magnitude), the AER-based prioritization is able to characterize whether even 

the highest potential median exposure (upper confidence limit) is high enough to induce 

bioactivity. If there is 95% confidence that the exposure is well below the lowest OED, the 

breadth of the confidence interval may be irrelevant.

The Css values generated by HTTK-Pop and used to calculate OED for the Total population 

in Figure 4 were 13% higher (median) across the fifty chemicals than what had been 

previously calculated by Wambaugh et al. (2015). This resulted in a slight (12%) reduction 

of the OED for the Total population. For an individual chemical, the greatest increase in Css 

was 59% (for Fipronil). As shown in Table 5, the residual (unexplained) variability factor 

characterizing the sensitivity of the 95th percentile ranges from 0.05 to 0.5; therefore, even 

small changes in the AER may be significant.

In Figure 5, we investigated how AER changes for the upper 95th percentile of various 

demographic groups. AERs for the 50 chemicals were computed for all ten groups, and 

AERs for each group were compared to AERs for the Total population. For most chemicals, 

AERs are higher (lesser risk) for younger and non-obese populations; AERs are lower 

(greater risk) for ages above 65 or BMI above 30. All four paraben chemicals (fragrance 

preservatives) had relatively higher risk for women and reproductive-aged women.

In general, AER-based prioritization (relative ranking by AER) for the 50 chemicals is 

similar for all ten demographic groups considered in this analysis. AERs are at most about 

six times greater or lesser than for the total population. A six-fold change is relatively small 

compared to the order of magnitude of AERs for most chemicals in this set; all but three 

chemicals in Figure 4 had an AER greater than two orders of magnitude. Further, as shown 

in the comparison to actual in-vivo-measured variability (Table 5), the median unexplained 

difference between the median and 95th percentile individuals in the available evaluation 

data sets (Figure 3) was roughly three-fold. However, in AER-based risk screening, AER is 

compared to an absolute threshold value; the changes in AER between demographic groups 

could result in different risk screening results for each group. (See Supplemental Material, 

Section S2.3.)

Because AER is the ratio of OED to exposure, the observed AER differences between 

groups may be induced either by differences in OED (i.e., by the inclusion of physiological 

variability in the reverse TK model), or by differences in exposure, or both. To elucidate the 

sources of the observed AER differences, we examined the differences in OED and exposure 

between each group and the Total population (Figure 6 and Figure 7). Throughout Figures 

6–8, blue corresponds to higher AER (lesser risk) and red corresponds to lower AER (higher 

risk). Note that the color map is reversed for the exposure heatmap: lower exposures are 

colored in blue and higher exposures in red. Note also that the color map for all three plots is 

on the same scale (−0.8 to 0.8). For the groups Males, Females, and Reproductive-Age 

Females, relative to the Total population, chemicals (e.g., the parabens for women) with a 

large difference in AER have a large difference in exposure, but not a large difference in 

OED. These results imply that for these groups, the predicted differences in AER are mainly 

driven by differences in exposure. For the groups BMI GT 30 (obese individuals) and Age 

GT 65, AER is decreased for most chemicals relative to the Total population, exposure is 
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slightly lower or unchanged, and OED is decreased. These results imply that for these 

groups, the decrease in AER is primarily driven by the decrease in OED, not by an increase 

in exposure.

By more accurately simulating variability in the OED, HTTK-Pop identified that the median 

Css was 73% higher for individuals aged greater than 65 than previously calculated for the 

total population (Wambaugh et al. 2015) and 49% greater for obese individuals. These 

increases lowered the OED by 42% and 33%, respectively. The combination of specific 

chemical and demographic group with the greatest change relative to the previous method 

was PCB136, which was 267% higher for the population aged greater than 65, 

corresponding to an OED decrease of 73%.

For the groups Age 6–11, Age 12–19, and BMI LE 30 (non-obese individuals), AER is 

increased (lesser risk) for most chemicals relative to the Total population, and the increase in 

AER appears to be mainly driven by an increase in OED, rather than by a decrease in 

exposure. In fact, for Age 6–11, exposure is markedly increased (i.e., indicating lesser risk) 

for many chemicals compared to the Total population, implying that the increase in OED 

outweighs the increase in exposure for these subgroups.

We note that, because of the assumed log-normal distribution of chemical exposure rates 

assumed by Wambaugh et al. (2014), the upper bounds on the 95% CI on the median 

exposures (plotted in Figure 5) depend upon both the central tendency and the estimated 

breadth of the distribution. For smaller data sets (e.g., males or females alone vs. the total 

population), there is greater uncertainty about the shape of the distribution. This contributes 

to some of the observed differences in upper-bound inferred exposures (Wambaugh et al. 

2014).

We also note that uncertainty in model-predicted OED (over- or under-estimation) 

contributes uncertainty to AER-based relative ranking. However, the error in model-

predicted OED is likely to be in the same direction across demographic groups for a given 

chemical. Thus, HTTK-Pop may be useful to identify populations more or less sensitive to a 

given chemical.

Although the chemical-specific changes in the AER for the 50 chemicals analyzed here are 

at most six-fold, there are clear implications for the identification of sensitive populations 

among the modern U.S. demographic groups. In particular, the reduced clearance of adults 

aged greater than 65 makes them generally one of the most sensitive populations. 

Meanwhile, the enhanced clearance of younger life-stages (per kg body weight) on average 

increases the margin between exposure and putative bioactive dose, indicating lesser risk 

despite the higher exposure rates of younger life stages.

4 Discussion

We incorporated physiological variability based on recent data from a large-scale survey of 

the U.S. population (NHANES) into HTTK-Pop, a high throughput toxicokinetic modeling 

tool. This model extends an existing open-source high-throughput toxicokinetic (TK) 

framework (Pearce et al. 2016). Using HTTK-Pop, we evaluated predictions of plasma 
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concentration by comparison to values derived from in vivo measurements for 95 

compounds (Obach et al. 2008; Wetmore et al. 2012). We also evaluated predictions of inter-

individual variability by comparison to in vivo measurements in 14 compounds (Howgate et 

al. 2006; Johnson et al. 2006). Finally, we simulated ten demographic groups within the 

modern, U.S. population. In each demographic group, we performed reverse TK on ToxCast 

high throughput screening (HTS) data to predict the population distributions of the oral 

equivalent doses (OEDs) for each of fifty chemicals with exposures indicated by NHANES 

urine biomonitoring data (Wambaugh et al. 2014). Although, to date, HTS data itself does 

not incorporate variability between demographic groups, we can now include this variability 

for both TK and exposure.

Chemical AERs for each demographic group were compared to the corresponding AERs in 

the total population (Section 3.5). We identified chemicals and demographic groups with the 

smallest margin between OED and exposure (i.e., the activity:exposure ratio or AER). This 

analysis found that AERs were consistently higher (lower risk) across chemicals for children 

ages 6–11, adolescents ages 12–19, and non-obese people. This result occurs because the 

OEDs tend to be higher for these populations than for the total population (see Figure 7 and 

Supplemental Material Section S3.2). Thus, a fixed 1 mg/kg/day dose results in a 

consistently lower 95th percentile steady-state plasma concentration, and therefore a 

consistently higher OED. However, we did find that the population aged greater than 65 had 

lower AERs (higher risk). We further found that for women, and especially reproductive 

aged women, that AERs for paraben chemicals were lower. However, for the fifty chemicals 

examined the relative change in the AERs is less than one order of magnitude in all cases, 

indicating that the priority of these chemicals relative to each other would not have changed. 

For any one chemical, the predictive error will be similar across demographic groups, so that 

the relative ranking between demographic groups may be more certain.

HTTK-Pop predicts higher OEDs in children ages 6–11 compared to the overall population 

(Figure 7), equivalent to higher predicted total clearance in this age range. This prediction is 

consistent with in vivo PK data compiled from studies on 45 chemicals (all pharmaceuticals) 

in children, adolescents, and adults (Ginsberg et al. 2002). Ginsberg et al. (2002) found that, 

across 27 chemicals with in vivo clearance data, children ages 2–12 years had significantly 

higher clearance per kg body weight than adults. The increased clearance in children is 

attributed by Ginsberg et al. (2003) to a combination of isozyme ontogeny and physiology. 

Where data exist, isozyme abundances and activities reach near-adult levels by 

approximately age 1, so that the intrinsic clearance rate is approximately equal in children 

and adults (Ginsberg et al. 2003). These data on isozyme ontogeny support HTTK-Pop’s use 

of CLint values based on measurements in adult hepatocytes for the age groups simulated in 

this report. Furthermore, children tend to have larger livers and greater blood flow for their 

bodyweight than adults have (Ginsberg et al. 2003), which combine with the near-adult 

intrinsic clearance rate to produce a higher total clearance rate per kg bodyweight. HTTK-

Pop reflects these differences in liver size and blood flow in the simulated populations of 

children and adolescents (Supplemental Material: Section S3.2).

The lower AERs (higher risk) noted for the population aged greater than 65 can also be 

linked to physiologic differences that manifest during this life stage, resulting in lower 
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OEDs. Supporting evidence for this observation can be found in a TK meta-analysis 

assessing trends in clearance across adults aged 18 to over 85 years across over 46 

compounds (Ginsberg et al., 2005). This study showed a concomitant decrease in clearance 

with increasing age, with steeper decreases observed for individuals aged over 60 years. 

These decreases have been attributed to decreases in tissue blood flow rates, glomerular 

filtration rates, and hepatic clearance, the latter of which is impacted by decreased liver size, 

cytochrome P450 enzyme content, bile flow, and blood flow (Ginsberg et al., 2005). HTTK-

Pop reflects these differences in liver size, liver blood flow, and GFR (Supplemental 

Material: Section S2.7).

The variability simulation approach used here was developed taking into consideration 

previous population physiology simulations, including P3M (Price 2003), PK-Pop 

(Willmann et al. 2007), physB (Bosgra et al. 2012), SimCyp (Jamei et al. 2009a; Jamei et al. 

2009b), and especially PopGen (McNally et al. 2014). However, HTTK-Pop has notable 

improvements over these software packages. First, HTTK-Pop can generate simulated 

populations by either 1) direct resampling of its reference database, or 2) use of a virtual-

individuals method that is based on interpolation of the reference database. Second, in the 

virtual-individuals mode, HTTK-Pop takes a more detailed approach to reproducing the 

correlation structure of its reference database than does previous software. Other population 

physiology simulators that generate virtual individuals tend to approximate the population 

age distribution using parametric or piecewise linear distributions, and distributions of age-

dependent height and weight using piecewise polynomial approximations with normally 

distributed residual variability (Howgate et al. 2006; Johnson et al. 2006; McNally et al. 

2014; Willmann et al. 2007). By contrast, HTTK-Pop uses gender- and ethnicity-specific 

non-parametric distributions to model age, height, and weight. Finally, HTTK-Pop uses the 

most recent publicly available NHANES data as a reference database. Both P3M and 

PopGen use NHANES III (1988–1994) as a reference database, and thus may not accurately 

reproduce demographic and anthropometric quantities that have changed in the U.S. 

population over the last 20 years. HTTK-Pop is specifically designed to produce better and 

more representative U.S. populations and subpopulations.

Simulating NHANES individuals had limited ability to reproduce variability in Css observed 

in vivo (Section 3.1). An important source of the disagreement may involve HTTK-Pop’s 

assumptions about the distributions of the chemical-specific parameters Fup and CLint. 

Global sensitivity analysis (Supplemental Material S2.4) indicated that Css is primarily 

sensitive to either Fup or CLint, depending on the chemical. Thus, assumptions made about 

the distributions of these parameters may have a strong influence on the model results.

The distributions assumed by HTTK-Pop are idealized approximations that can be revised 

only after more data become available. This is particularly true of chemical-specific HTTK 

data for in vitro measured unbound fraction in plasma (Fup) and hepatic metabolism (CLint). 

The distribution of Fup depends on inter-individual variability in plasma protein 

concentrations, particularly for the two plasma proteins responsible for most chemical/drug 

binding, albumin and alpha-1-acid glycoprotein (AAG) (Routledge 1986). AAG binding 

may be particularly important for basic compounds (Israili and Dayton 2001; Routledge 

1986). Plasma lipoprotein concentrations may also affect the unbound fraction in plasma, 
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particularly for lipophilic compounds that tend to associate with lipoproteins (Wasan et al. 
2008). Data are available for inter-individual variability in these plasma protein 

concentrations: NHANES measured serum albumin concentrations and blood lipids in 

respondents ages 12–80, providing information on correlation of these concentration with 

the other NHANES demographic, anthropometric, and laboratory quantities (Johnson et al. 

2014). Several studies have quantified correlations of AAG concentrations with age, 

ethnicity, gender, and disease state (summarized in Israili and Dayton 2001). Improving 

accuracy in predicting inter-individual variability in Fup will require substance-specific 

relative affinities for albumin, AAG, and lipoproteins, which cannot be estimated from the in 
vitro measurements of Fup in pooled plasma samples that are currently available for these 

chemicals. A high-throughput method to measure or predict these binding affinities would 

improve HTTK-Pop’s ability to simulate inter-individual variability in Fup. The distribution 

of Fup may also depend on inter-individual variability in plasma lipids, particularly for 

lipophilic compounds.

The distributions assumed for CLint could also be refined with more data. Sources of inter-

individual variability in CLint include variability in the abundance and phenotype of each 

hepatic isozyme that metabolizes a given compound, which are known to be correlated with 

demographic factors (Barter et al. 2007; Barter et al. 2008; Hines 2007; Kedderis and 

Lipscomb 2001; Yasuda et al. 2008; Yeo et al. 2004). CV of abundance has been estimated 

at 31% for CYP3A4 and 36% for CYP2E1 (Lipscomb et al. 2003). CV of isozyme-specific 

CLint has been estimated at 33% for CYP3A4 (Kato et al. 2010); 60–70% for CYP2D6 

(Chiba et al. 2012); 66% in extensive CYP2C19 metabolizers, and 26% in poor CYP2C19 

metabolizers (Chiba et al. 2014). HTTK-Pop’s assumption of 30% CV in overall CLint may 

therefore be reasonable for compounds primarily metabolized by CYP3A4 or 2E1, but may 

be an underestimate for compounds primarily metabolized by CYP2D6 or 2C19. 

Furthermore, the true prevalence of PMs is isozyme-specific and varies with ethnicity. 

HTTK-Pop’s assumption of 5% PMs is within the estimated range of the proportion of CYP 

2C19, 2C9, and 2D6 PMs based on data on ethnicity-specific proportions of CYP-specific 

PMs, combined with NHANES data on the proportion of each ethnicity in the US population 

(Belle and Singh 2008; Bernard et al. 2006; Hiratsuka 2012; Inoue et al. 2006; Luo et al. 

2006; Mizutani 2003; Strom et al. 2011). (More details on the source data used for this 

estimation is available in Supplemental Material Section S3.1.) Approximating inter-

individual variability in overall Clint can be done more accurately using an isozyme-specific 

IVIVE approach, combining in vitro measurements of isozyme-specific intrinsic clearance 

rates for each chemical with information on age- and ethnicity-specific prevalence of various 

isozymes, proportion of PMs, and residual variability (Cubitt et al. 2011).

For environmental chemicals, isozyme-specific clearance data are not typically gathered. 

Isozyme-specific data allows very accurate predictions of inter-individual variability in 

steady-state clearance. The compounds considered by Johnson et al. and Howgate et al. were 

selected because they had adequate published in vitro data on CYP-specific metabolism to 

allow an isozyme-specific IVIVE approach to estimating clearance (Howgate et al. 2006; 

Johnson et al. 2006). The models in these publications therefore perform significantly better 

than HTTK-Pop, because they include isozyme-specific clearance estimation while HTTK-

Pop does not. While isozyme-specific intrinsic clearance has been measured for a few 
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environmental compounds using recombinant CYPs (Wetmore et al. 2014), this method is 

currently not feasible for screening large numbers of chemicals. HTTK-Pop’s simulation of 

inter-individual variability in CLint would be improved by a reliable high-throughput method 

to measure or predict isozyme-specific clearance.

Direct in vitro high-throughput screening of inter-individual variability in plasma protein 

binding or hepatic metabolism is not yet available; such techniques would require plasma 

samples or hepatocytes from large numbers of individuals. The Thousand Genomes High-

Throughput Screening Survey has performed such in vitro high-throughput screening for 

inter-individual variability in cytotoxic responses, using lymphoblastoid cell lines (Abdo et 

al. 2015); however, such techniques have not yet been developed to screen for inter-

individual variability in metabolism or plasma protein binding. Therefore, our suggestions 

above focus on estimating inter-individual variability by combining in vitro measurements 

of average or median plasma protein binding or isozyme-specific metabolism with 

information on inter-individual variability in plasma protein concentrations or isozyme 

abundance and activity.

5 Conclusion

Our work has improved high throughput risk prioritization for large numbers of 

environmental chemicals by adding simulated inter-individual TK variability that describes 

the modern U.S. population.

We have developed HTTK-Pop, a method that uses the CDC NHANES anthropometric data 

to simulate the appropriate correlation structure for physiological parameters relevant to TK. 

As an example, in vitro bioactivities (μM concentrations) identified from HTS data were 

converted to oral equivalent dose rates (mg/kg/day) for different demographic groups. Oral 

equivalent dose estimates were then compared with estimated exposure rates for the 

corresponding groups, yielding estimates of the margin between environmental exposure 

rates and dose rates that might pose a hazard for fifty chemicals across ten demographic 

groups within the U.S. population. We identified demographic groups and life stages that are 

potentially more sensitive to exposure to various environmental chemicals. This open-source 

model provides transparency for review, allows modification of the underlying models as 

needed to support decision making, and can be expanded as new data become available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot matrix of pairwise density estimates of the parameters generated by HTTK-Pop, for a 

simulated population Ages 20–65 (N=1000). Solid lines represent data generated using the 

direct-resampling method; dotted lines represent data generated using the virtual-individuals 

method. Plot diagonal shows estimated one-dimensional marginal densities. Lower 

triangular portion of plot shows estimated contours of two-dimensional marginal densities 

for each pair of parameters. Deviations from concentric circles indicate correlation and/or 

departure from normal distribution.
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Figure 2. 
Median Css predicted using a generated population of N=1000 non-obese 20–50-year-olds, 

plotted against median Css derived from clearance values measured in vivo for 95 chemicals. 

Solid line: identity line. Dashed line: best-fit line to the full data set (log10-transformed) 

(adjusted R2=0.3; intercept 0.16±0.08; slope 0.56±0.09). Dotted line: best-fit line to the 

log10-transformed data set excluding the two chemicals with the highest literature-derived 

median Css (PFOS and PFOA) (adjusted R2 = 0.22; intercept 0.2±0.09; slope 0.67±0.13). 

Shaded regions around each line denote the 99% confidence intervals around each fit.
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Figure 3. 
Comparisons of Css variability predicted using HTTK-Pop generated study populations 

averaged over 20 trials to in vivo Css variability (data collected in Johnson et al. 2006 [left 

panel] and Howgate et al. 2006 [right panel]). Each ellipse corresponds to a different in vivo 
study or pool of studies; each color corresponds to a chemical. For some chemicals, the 

results of multiple in vivo studies are included (represented by multiple ellipses in the same 

color). Ellipse centers are located at the median value in each dimension; ellipse axes 

encompass 95% confidence intervals on the observations in each dimension. The dashed line 

is the identity line. Ellipses centered at points on the identity line would indicate that the 

model predicted the same median Css as was observed in vivo. Perfect circles would indicate 

that the model predicted the same amount of variability in Css as was observed in vivo. 
Horizontally-elongated ellipses indicate that the model predicted less variability in Css than 

was observed in vivo; vertically-elongated ellipses indicate that the model predicted more 

variability in Css than was observed in vivo.
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Figure 4. 
Black box-and-whisker plots show the range of oral equivalent doses over a range of 

ToxCast AC50 percentiles, for the 95th percentile Css in the Total population. Black bars 

indicate oral equivalent dose corresponding the median AC50. Boxes range from 25th 

percentile AC50 to 75th percentile AC50 equivalent doses. Whiskers range from 10th 

percentile AC50 to 90th percentile AC50 equivalent doses. Filled circles indicate 5th and 95th 

percentile AC50 equivalent doses. Orange box plots show the range of the 95% confidence 

interval on median exposures inferred from NHANES biomonitoring data: bars indicate the 

median exposure. The distance between the lower black whisker (corresponding to the 10th 

percentile AC50 equivalent dose) and the upper edge of the orange box, on a log scale, is the 

AER. (Note: For reasons of space, O-ethyl o-(p-nitrophenyl) phenylphosphonothioate is 

denoted by the shorter name Phosphonothioic acid, and 4-(1,1,3,3-tetramethylbutyl)phenol 

is denoted by the shorter name p-tert-Octylphenol.)
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Figure 5. 
Difference in log10 AER (number of orders of magnitude difference) between each 

demographic subgroup and the Total population. Chemicals are arranged from top to bottom 

in the same order as in Figure 4 (increasing AER for total population). Color bar at left 

indicates order of magnitude of AER in the Total population (from top to bottom: <=1, 100, 

1 000, 10 000, etc.; no AERs on the order of 10 were observed in the Total population). The 

color of each cell represents the difference in log10 AER from the Total population for the 

corresponding chemical (see color map with histogram, at top left). Red indicates lower 

AER (OED and exposure closer together); blue indicates higher AER (OED and exposure 

farther apart). (For reasons of space, O-ethyl o-(p-nitrophenyl) phenylphosphonothioate is 
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denoted by the shorter name Phosphonothioic acid, and 4-(1,1,3,3-tetramethylbutyl)phenol 

is denoted by the shorter name p-tert-Octylphenol.)
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Figure 6. 
Difference in log10 upper 95% confidence limit on median exposure between each 

demographic subgroup and the total population, for each chemical in the NHANES 

biomonitoring inference data set. Note that chemicals are arranged from top to bottom in the 

same order as Figure 6 (increasing AER).
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Figure 7. 
Difference in log10 OED between each demographic subgroup and the total population, for 

each chemical in the NHANES biomonitoring inference data set. Note that chemicals are 

arranged from top to bottom in the same order as in Figure 6 (increasing AER).
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Ring et al. Page 34

Table 1.

Number of NHANES respondents included in HTTK-Pop dataset, by race/ethnicity and sex.

Male Female Total

Mexican American 2514 2484 4998

Other Hispanic 1358 1450 2808

Non-Hispanic White 4666 4466 9132

Non-Hispanic Black 2705 2744 5449

Other 1092 1067 2159

Total 12335 12211 24546
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Ring et al. Page 35

Table 2.

HTTK-Pop specifications on population to be simulated.

Input Description Default if not specified

N Number of individuals in population. —

Gender specification Number of males and females in 
population.

Both genders included in their proportions in NHANES data, conditional 
on any other specifications.

Race/ethnicity One or more of the NHANES race/
ethnicity category names (see Table 1)

All race/ethnicity categories included in their proportions in NHANES 
data, conditional on any other specifications.

Age limits (years) Minimum and maximum age in years. If age limits in months specified, then equivalent limits in years; 
otherwise ages 0–79 years included in their proportions in NHANES data, 
conditional on any other specifications.

Age limits (months) Minimum and maximum age in months. If age limits in years specified, then equivalent limits in months; 
otherwise ages 0–959 months included in their proportions in NHANES 
data, conditional on any other specifications.

Weight class One or more of the weight class category 
names Underweight, Normal, Overweight, 
or Obese.

All weight classes included in their proportions in NHANES data, 
conditional on any other specifications.
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Ring et al. Page 36

Table 3.

HTTK-Pop specifications by demographic group

Demographic group Specifications for HTTK-Pop Number of females among 1000 
simulated individuals

Total None (all ages, sexes, races/ethnicities, and weight classes included) 496

Ages 6–11 Age limits 6 – 11 years 462

Ages 12–19 Age limits 12 – 19 years 491

Ages 20–65 Age limits 20 −65 years 519

Ages > 65 Age limits 66 – 79 years 541

BMI <= 30 Weight classes Underweight, Normal, and Overweight 491

BMI > 30 Weight class Obese 497

Males Number of males = 1000; number of females = 0 0

Females Number of females = 1000; number of males = 0 1000

Reproductive Age Females Number of females = 1000; number of males = 0 1000

Age limits 16 – 49 years
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Table 4.

Enumeration of chemical-specific data for risk prioritization

Data Set Type of Data Source Number of Chemicals

ToxCast In vitro bioactivity assays ACToR (Kavlock et al. 2012) 1860

HTTK In vitro toxicokinetics and physico-chemical 
properties

HTTK-package v1.5 543

ExpoCast Exposure rates inferred from NHANES urine 
metabolites

SupplementalTable-NHANESInferences.xlsx 
(Wambaugh et al. 2014)

106

Overlapping Chemicals 50
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Table 5.

Characterization of log-transformed residuals of median Css and 97.5th percentile Css (upper bound on 95% 

CI) from Figure 3; variability factors from Figure 3, both in vivo and model-predicted; log-transformed 

residuals of variability factors from Figure 3. Distributions of all residuals were tested for normality by the 

Shapiro-Wilk test; all had p values < 1e-5, indicating statistically significant differences from normality.

For studies compiled by: Howgate et al. Johnson et al.

 Mean Median SD 95% interval Mean Median SD 95% interval

Median Css residuals (log [predicted median Css /in 
vivo median Css])

1.21 1.61 1.95 −3.71−3.67 1.15 1.18 1.78 −1.68−5.50

97.5th %ile Css residuals (log [predicted 97.5th 
%ile Css /in vivo 97.5th %ile Css])

1.74 2.36 1.88 −2.65−4.06 1.38 1.12 2.23 −1.75−7.87

In vivo variability factor (in vivo 97.5th %ile Css /in 
vivo median Css)

2.28 2.10 0.78 1.33−4.55 2.52 2.25 0.97 1.36−5.41

Predicted variability factor (predicted 97.5th %ile 
Css /predicted median Css)

4.71 3.35 10.96 2.22−9.27 10.58 2.58 94.22 1.24−22.40

Variability factor residuals (log [predicted 
variability factor/in vivo variability factor]) 0.53 0.50 0.57 −0.49−1.74 0.22 0.05 0.85 −0.84−2.45
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