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Abstract

A key component of interacting with the world is how to direct ones’ sensors so as to extract task-

relevant information – a process referred to as active sensing. In this review, we present a 

framework for active sensing that forms a closed loop between an ideal observer, that extracts 

task-relevant information from a sequence of observations, and an ideal planner which specifies 

the actions that lead to the most informative observations. We discuss active sensing as an 

approximation to exploration in the wider framework of reinforcement learning, and conversely, 

discuss several sensory, perceptual, and motor processes as approximations to active sensing. 

Based on this framework, we introduce a taxonomy of sensing strategies, identify hallmarks of 

active sensing, and discuss recent advances in formalizing and quantifying active sensing.
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Introduction

Skilled performance requires the efficient gathering and processing of sensory information 

relevant to the given task. The quality of sensory information depends on our actions, 

because what we see, hear and touch is influenced by our movements. For example, the 

motor system controls the eyes’ sensory stream by orienting the fovea to points of interest 

within the visual scene. Movements can therefore be used to efficiently gather information, a 

process termed active sensing. Active sensing involves two main processes: perception, by 

which we process sensory information and make inferences about the world, and action, by 

which we choose how to sample the world to obtain useful sensory information.

To illustrate the computational components of active sensing, we consider the task of trying 

to determine the time of day from a visual scene (Fig. 1). Because of the limited resolution 

of vision away from the fovea, sensory information at any point in time is determined by the 

fixation location (Fig. 1, red dot, Sensory Input). The perceptual process can be formalized 

in terms of an ideal observer model [1, 2] which makes task-relevant inferences. To do so, 
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the observer uses the sensory input together with a knowledge of the properties of the task 

(Fig. 1, Task) and the world, as well as features of our sensors, such as the acuity falloff in 

peripheral vision [3, 4] and processing limitations, such as limited visual memory [5, 6]. 

Such observers are typically formulated within the Bayesian framework. For example, the 

observer could use luminance information to estimate the time of the day, in this case 

formalized as a posterior probability distribution (Fig. 1, Observer).

The process of selecting an action can be formalized as an ideal planner which uses both the 

observer’s inferences and knowledge of the task to determine the next movement, in this 

case where to orient the eyes (Fig. 1, Planner). Ultimately, the objective for the ideal planner 

is to improve task performance, but often it can be formalized as reducing uncertainty in 

task-relevant variables, such as the entropy of the distribution over the time of day. The plan 

is then executed, resulting in an action that leads to new sensory input (Fig. 1, Action). This 

closes the loop of perception and action that defines active sensing (Fig. 1, red arrow path). 

Although we describe these processes in discrete steps with a static stimulus and fixed task, 

in general, active sensing can be considered in real time with the stimulus and task changing 

continuously.

Active sensing as a form of exploration

As observer models have been extensively studied and reviewed [1, 2], we primarily focus 

here on the ideal planner which is the other key process in active sensing. In general, truly 

optimal planning is computationally intractable and we, therefore, need to consider 

approximations and heuristics. In fact, active sensing itself can be seen as emerging from 

such an approximation (see Box 1: Exploration, exploitation, and the value of information). 

The ultimate objective of behavior can be formalized as maximizing the total rewards that 

can be obtained in the long term [7]. This, in principle, requires considering the 

consequences of future actions, not only in terms of the rewards to which they lead, but also 

in terms of how they contribute to additional knowledge about the environment, which can 

be beneficial when planning actions in the more distant future. For example, when foraging 

for food, animals should choose actions that not only take them closer to known food 

sources but also yield information about potential new sources [8]. As this recursion is 

radically intractable, the most common approximation is to distinguish between actions that 

exploit current knowledge and seek to maximize future rewards, and actions that instead 

explore to improve knowledge of the environment [9].

Just as exploitation can be optimized to yield maximal rewards, so can exploration be 

optimized to yield maximal information about the environment. Exploration, thus optimized, 

is known as “active learning” [10, 11, 12]. In general, a huge variety of actions can be used 

for active learning, from turning your head towards a sound source to opening your browser 

to check on the meaning of an unknown phrase (such as ‘epistemic disclosure’ [13]). Indeed, 

the way participants choose queries in categorization tasks [14, 15], locate a region of 

interest in a variant of the game of battleship [16], or choose questions in a 20-questions-like 

situation [17] has been shown to be optimized for learning about task-relevant information. 

Active sensing, more specifically, can be regarded as the realm of active learning which 

involves actions that direct your sensors to gain information about quantities that change on 
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relatively fast time scales roughly corresponding to the time scale of single trials in 

laboratory-based tasks (see Box 2: Information maximization).

Common approximations in active sensing strategies

Task-related active sensing, our main focus here, makes the further approximation of 

breaking up “life” into discrete, known tasks. In contrast, curiosity-driven forms of 

information seeking [13, 18, 19] may be understood as optimized for improving an internal 

model for whatever task may come our way. While laboratory tasks for studying task-related 

active sensing are usually designed to minimize the trade off between exploration and 

exploitation, such that rewards only depend on task-relevant information [3, 20], curiosity-

driven information seeking is often demonstrated in tasks that do have an information-

independent reward structure, such that participants can be shown to actively forego these 

rewards for additional information [21].

Even exploration or exploitation by themselves are still intractable due to the exponential 

explosion of future possibilities that need to be considered. For example, maximal 

exploitation in the game of chess would require considering a very large number of future 

sequences of movement to maximize task success. Therefore, several simpler heuristics have 

been proposed to describe behavior. The simplest heuristic considers only the consequence 

of the next action, and hence is termed greedy or myopic. Thus, in the context of 

exploration, ideal planners are typically formalized in a way that they seek the single action 

that will maximize information gain or an equivalent objective (See Box 2), without 

considering the possibility that an action leading to suboptimal immediate information gain 

may allow other actions later with which total information gain would eventually become 

larger [3, 22, 20]. Interestingly, the strategy of greedily seeking task-relevant information has 

been successful in describing both human eye movements [22, 20] and the foraging 

trajectories of moths [23] and worms [24]. However, for some tasks it has been shown that 

several future actions [25, 26] are considered when planning and that there can be a trade-off 

between the depth of planning and the number of plans considered when there are time 

constraints on planning [27].

Taxonomy of efficient sensing strategies

Active sensing can also be considered as part of a spectrum of strategies that organisms have 

developed to improve the efficiency of their sensory processing. Within this context we can 

consider restricted versions of the full active sensing strategy based on the extent to which 

the observer and planner form a full closed loop (Fig. 1, table). If the dependence on the 

observer is removed for all but the initial sensory input, the strategy becomes open-loop 

because all future actions are planned at the first time step and not updated. Examples of this 

sensing strategy include face recognition [28] and texture identification [29], in which the 

first observation is used to identify and prioritize regions of interest, and subsequent 

saccades follow the planned sequence without needing to update the plan.

If observer dependence is completely removed, the sensing strategy becomes entirely 

preplanned. Note that this may still allow the planner to depend on the sensory input, e.g. 
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through the bottom-up salience of different visual features [30, 31]. A preplanned strategy 

can be task-dependent or independent. An example of the former is the method developed 

for a ship to search for a submerged submarine in which a logarithmic spiral search was 

shown to be optimal and successfully employed [32]. An example of a task-independent 

preplanned strategy is a Lévy flight that mimics certain summary statistics of human eye 

movement under many different scenarios [33]. In a Bayesian framework, an optimal 

preplanned task-independent strategy could be obtained by averaging over a prior 

probability distribution that specifies which tasks are more probable than others (as well as 

the relative importance of the tasks).

Active and preplanned strategies are not mutually exclusive in that actual patterns of sensor 

movements seem to be influenced by some mixture of them. For example, eye movements 

have been found to be best predicted by a combination of several bottom-up (such as 

saliency) and top-down (such as reward) factors [34, 35, 36] where the contribution of these 

different factors can depend on the timing requirement of the task and the time course and 

type of eye movement [37, 38, 39, 40, 41].

Generalized efficient sensing

We can use the same taxonomy we have developed to consider active sensing beyond simply 

generating actions to move our sensory apparatus. This allows us to consider the more 

general problem of allocating our limited perceptual processing resources and, thereby, place 

apparently disparate aspects of sensory and perceptual processing within our unifying 

framework.

The design principles underlying the organization of many sensory systems both at the 

morphological and the neural level have often been argued to be optimized for efficient 

information gathering. For example, predators that need accurate depth vision for catching 

their prey often have forward-looking eyes and vertical pupils, while preys that need to be 

able to avoid predators from as wide a range of directions as possible often have laterally 

placed eyes with horizontal pupils [42]. Moreover, our sensors are distributed so as to 

increase resolution at strategic regions (e.g. fingertips and foveas). At the neural level, 

classical forms of efficient coding include the optimization of receptor and sensory neuron 

tuning curves and receptive fields based on the statistics of inputs (“natural stimulus 

statistics”) [43]. Although these preplanned strategies are arguably optimized over an 

evolutionary time scale according to the tasks that animals have to achieve, we can think of 

these as corresponding to a task-independent strategy as they do not depend on the particular 

task the animal is pursuing at any one moment.

There are also aspects of perceptual processing that can be considered task-independent 

preplanned strategies that nevertheless depend on the stimulus. At the perceptual level, 

bottom-up saliency may indicate how much an image feature is informationally optimal “on 

average” and may thus serve as a proxy for the “real” information value that would be 

determined by top-down (task-dependent) processes [44]. At the sensory level, stimulus 

statistics can vary both spatially and temporally, and efficient coding has been successfully 

applied to account for the spatio-temporal context-dependence of receptive field properties 
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[45]. Moreover, there exists mechanisms for the early filtering of sensory information to 

remove its predictable components based on the current action (for example, [46, 47]), 

presumably to save resources for processing unpredictable sensory inputs which thus have 

higher information content. While these processes are still task-independent, their stimulus-

dependence increases information efficiency and, in that regard, takes them closer to fully 

task-dependent active sensing.

Finally, attention can dynamically change receptive fields and the allocation of perceptual 

processing resources in a task-dependent manner, thus corresponding to a task-dependent 

strategy. One example of how the brain filters out task-irrelevant information in purely 

perceptual tasks is the phenomenon of inattentional blindness, in which people fail to notice 

prominent stimuli in the visual scene that are irrelevant to the task that they are performing 

[48]. Similarly, in motor tasks, subjects are often only aware of large sensory input changes 

that have a bearing on the task at the precise time of the change, and are unaware of such 

changes otherwise [49]. Rather than just filtering out irrelevant information, the perceptual 

system can also adapt more finely in a task-dependent manner how it distributes resources to 

processing stimuli. In an object localization task, while fixation locations did not seem to be 

adaptively chosen, participants’ functional field of view doubled through learning [50]. 

Thus, participants still seem to have adopted an active sensing strategy in this more general 

sense, but one which did not include changing the ways in which they overtly moved their 

sensors (eyes). In contrast, in a face identification task allowing a single fixation, 

improvement was brought about by a mixture of overt (eye movement, 43%) and covert 

(improved processing, 57%) active sensing strategies [51]. Attention can also be updated 

moment-by-moment depending on sensory evidence. For example, subjects can solve a 

visual maze while fixating and presumably using attention to search for the exit [52]. Such 

continuous updating of attention is equivalent to a form of closed-loop active sensing.

Optimal stopping as active sensing

A particularly interesting aspect of active sensing, that is often treated formally but 

separately from other aspects, is the “optimal stopping problem” in sequential sampling. 

This problem involves choosing the duration (rather than the location) of sensory sampling, 

which is relevant as directing sensors to the same place longer usually yields more 

information. There is a trade-off however, as longer sampling of the same place usually 

entails an opportunity cost, losing out on other, potentially more informative locations, or 

more rewarding actions altogether. This is sometimes explicitly enforced in a task by time 

constraints on a final decision. While in higher level cognitive domains, “stopping 

decisions” are typically suboptimal (e.g. solving the “secretary problem” [53]), perceptual 

stopping has been shown to be near optimal in a task that was specifically designed to 

provide a slow accumulation of information [54]. Perceptual stopping also forms the basis of 

one of the key windows into infant cognition, where a standard experimental design 

measures looking times for different stimuli [55, 56]. Interestingly, information is rarely 

quantified explicitly in these experiments, and when there has been an effort made to 

quantify it, total entropy rather than information has been used with mixed results [57]. This 

may be because in active sensing, maximising total entropy rather than information (Box 2) 

can be greatly suboptimal in information efficiency, as has been shown in the context of 
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object categorisation [20]. In visual search, the duration and location of fixations has been 

studied in an integrated framework, using a control-theoretic approach, in which the 

objective function included costs on time and effort, such that there was a trade-off between 

the information that increases with the fixation duration and the cost of the prolongation of 

the task time [58].

Hallmarks of active sensing

We can use the taxonomy developed above to define the hallmarks of active sensing. A 

necessary, but not sufficient, condition to determine whether sensing is active is that the 

actions should be task-dependent. Yarbus, in his pioneering work in vision, showed that even 

when viewing the same image, humans employed distinctively different eye movements 

when required to make different inferences about the image [59]. Recent studies confirmed 

such task dependence by showing that it was possible to predict the task simply from the 

recording of an individual’s eye movements in the Yarbus setting [60, 61], or the target they 

were looking for in a search task [62], or the moment-by-moment goal they were trying to 

achieve in a game setting [63].

Another requirement for active sensing is that different sensor and actuator properties should 

lead to different planning behaviors for a given task. Sensor dependence of eye movements 

has been demonstrated by showing that in conditions in which foveal vision is impaired 

(such as at low light levels, or with an artificially induced scotoma) the pattern of eye 

movements adapts such that it becomes fundamentally different from that in normal vision 

[64, 65] and near-optimal under the changed conditions [65]. Similarly, for motor 

dependence, patients with a cerebellar movement disorder were shown to employe eye 

movements that were consistent with an optimal strategy based on a higher motor cost 

compared to normal [66]. Indeed, several studies have suggested that motor costs may affect 

the active sensing strategy if participants trade-off informativeness for movement effort [58, 

6].

A more stringent condition for evidence of active sensing is that actions should depend both 

on the task and the observations already made in the task. In their seminal work, Najemnik 

and Geisler [3] formalized such an active sensing strategy for a visual search task and 

demonstrated that several features of human eye movements are consistent with the model’s 

behavior, including inhibition of return, the tendency not to return to a recently fixated 

region. More direct evidence comes from studies that quantify the informativeness of 

potential fixation locations and show that humans choose locations with high information 

value. For example, recent studies have shown that humans can direct their eyes to locations 

that are judged informative [67, 20] and that they make faster eye movements to such 

locations [68, 69].

Formalizing and quantifying active sensing

Establishing conclusive evidence for active sensing ultimately requires constructing explicit 

models of what a theoretically optimal active sensor would do under the same conditions 

that are used to test experimental participants, and having quantifiable measures of the 
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degree of match between the model and participants’ behavior. Visual search has become a 

major paradigm in the study of active sensing as it typically allows a straightforward 

observer model which simply represents the posterior probability of the target over the 

potential locations. The planner then selects the fixation location that leads to the greatest 

probability of correctly identifying the target location – which may not be the one closest to 

the predicted target location [3, 70]. The use of visual search tasks is also attractive as their 

analysis is amenable to using simple measures of performance such as the number of eye 

movements to find the target [3].

However, more complex, naturalistic tasks such as categorization and object recognition, do 

not map directly onto visual search and require more sophisticated models. In such cases, a 

direct generalisation of the information maximisation objective is prohibitive, because it 

requires the planner to run “mental simulations” for all possible outcomes of all putative 

actions, and in each case compute the corresponding update to the posterior over a 

potentially high-dimensional and complex hypothesis space, and finally compute the entropy 

of each posterior. For example, when planning the next saccade, the informativeness of 

several putative fixation locations needs to be compared. As we don’t yet know what we will 

see at those locations, a range of possible visual inputs need to be considered for each, and 

for each of these inputs the resulting posterior needs to be computed. Fortunately, it can be 

shown that information can be computed in a simpler (though mathematically equivalent) 

form that does not require simulated updates of the posterior (See Box 2), and only needs to 

compute entropy in the space of observations (e.g. the colour of an object seen at the fovea), 

which is typically much lower dimensional than the space of hypotheses (all possible object 

classes) [71, 20]. This not only makes modelling the information maximizing active sensor 

practical, but may also offer a more plausible algorithmic view on how the brain implements 

the active sensor. Such an approach has been successfully applied to a visual categorization 

task using an observer that combined information from multiple fixations to maintain a 

posterior over possible categories of a stimulus and a planner that selected the most 

informative location given that posterior [20].

Several other model objectives that the active planner is trying to optimise have also been 

proposed. For example, the visual search task of Najemnik and Geisler [3] used the objective 

of maximizing probability gain (or task performance) and in a binary categorization task in 

which participants could reveal one of two possible features, this objective was also better at 

describing their behavior than information gain [72]. Moreover, in a task in which subjects 

were required to perform ternary categorization, their queries were best described by a max-

margin objective, where each query was optimized to resolve uncertainty between two 

categories at a time rather than all three simultaneously [73]. Furthermore, action objectives 

have been shown to adapt to task demands, with simple hypothesis-testing performed under 

time pressure and information maximization when temporal demands were relaxed [74]. 

These studies leave open the possibility that the objectives underlying different modalities of 

active sensing (such as eye movement or cognitive choices) may be fundamentally different 

(maximizing information or performance directly).

Measuring performance in naturalistic tasks also presents challenges. Classical measures of 

eye movements typically rely on the geometric features of performance (scan paths, 
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direction, number of fixations to target) [3, 22]. More recently, ideal observers have not only 

been used to model the task but also to obtain a fixation-by-fixation measure of 

performance. For example, for an information maximizing active sensor, the ideal observer 

model could be used to quantify the amount of information accumulated about image 

category with each fixation within a trial [20]. This information-based measure of 

performance was more robust than directly measuring distances between optimal and actual 

scan paths because multiple locations are often (nearly) equally informative when planning 

the next saccade. This means that fixation locations that are far away from the optimal 

fixation location, and would therefore be deemed highly suboptimal by geometric measures, 

can nevertheless be close to optimal in terms of information content. For example, 

examining the sky or the ground for cast shadows could be almost equally informative as to 

the time of day in the picture shown in Fig. 1, yet, these regions of the image are far away. 

Thus, looking at the ground may appear geometrically very suboptimal, while 

informationally it is near-optimal. When such information-based measures were used, the 

efficiency in the planning of each eye movement was shown to be around 70% [20].

Conclusion

The use of the ideal observer-planner framework has allowed both qualitative and 

quantitative description of human sensing behaviors and thus offers insights into the 

computational principles behind actions and sensing. The next big challenge is to construct a 

flexible representation that connects sensory inputs to large classes of high-level natural 

tasks, such as estimating the wealthiness, age or intent of a person [59], and feed this 

construction into an ideal observer-planner model. Although constructing such algorithms is 

far from trivial, as Bayesian inference algorithms using structured probabilistic 

representations become increasingly sophisticated and powerful in matching human-level 

cognition [75], their integration into the active sensing framework will provide practical 

solutions for modeling such tasks. This advance will not only allow comparison with 

experiments on more natural tasks for a richer understanding of the active sensing process, 

but will also be a step towards applying such theories to improve learning in real-world 

situations.
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Box 1

Exploration, exploitation, and the value of information

The ideal observer performs inference, using Bayes’ rule, about several variables 

characterizing the state of the environment simultaneously, x (e.g. what objects are 

present in the scene, their configuration, features, etc.), given the sensory inputs up to the 

current moment, z0:t, and an internal model of the environment and its sensory apparatus, 

M:

ℙ(x z0: t, M) ∝ ℙ (z0: t x, M) ℙ (x M) (1)

A task defines a reward function over actions, a, that depends on the true state of the 

environment, 𝓡 a, x . There are two aspects of the reward function that make it task-

dependent. First, it typically depends only on a subset of state variables, xT (e.g. defining 

whether it is the time of day, or the age of the people in the picture of Fig. 1 that you want 

to estimate), and second, it has a particular functional form (e.g. determining how much 

under- or overestimating the time of day matters).

In general, an agent navigating the environment cannot use the reward function directly to 

select actions for two reasons. First, it does not directly observe the true state of the 

environment, so it must base its decisions on its beliefs about it as given by the ideal 

observer (Eq. 1). Second, its objective is to maximize total reward in the long run, and so 

the consequences of its actions in terms of how they change environmental states (or, 

more precisely, the agent’s beliefs about them) must also be taken into account. Thus, we 

can write the value of an action, 𝒬, as the sum of its immediate and future values, each 

depending on the agent’s current beliefs:

𝒬(a, ℙ (x z0: t, M)) = 𝒬now(a, ℙ (x z0: t, M)) + 𝒬future(a, ℙ (x z0: t, M)) (2)

This equation is the well-known Bellman optimality equation [76] but, rather than 

expressing values directly for the states of the environment x, as typically done, here it is 

applied to the belief “states” of the agent, ℙ(x|z0:t, M), i.e. the beliefs it holds about those 

states [77].

The immediate value 𝒬now a, ℙ x|z0: t, M  can be computed as the reward expected 

under the current posterior distribution provided by the ideal observer (“expected” gain in 

Bayesian decision theory [78]):

𝒬now(a) = ∑
x

ℛ(a, x) ℙ (x z0: t, M) (3)

The future value 𝒬future a, ℙ x|z0: t, M  has a more complicated form that is generally 

computationally intractable, but can be shown to depend on two factors: 1. the way the 
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action leads to future rewards by steering the agent into future environmental states, and 

2. the way it leads to new observations based on which the ideal observer can update its 

beliefs so that its uncertainty decreases, allowing better informed decisions and therefore 

higher rewards in the future. These two factors are commonly referred to as 

“exploitation” and “exploration”, respectively, and are often treated separately due to the 

intractability of 𝒬future a, ℙ x|z0: t, M , but as we see from Eq. 2 they both factor into the 

same greater objective of maximizing value (i.e. “exploitation”) in terms of belief states. 

Importantly, evaluating both factors requires recursion into the future so they are each 

intractable even when treated separately.
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Box 2

Information maximization

A useful proxy for the explorational value of an action, a (see Box 1), is the information 

that one expects to gain about environmental state, x, by taking that action. The 

(Shannon) information exactly expresses the expected reduction in uncertainty about x:

ℐ(x, zt + 1 |a) = ℋ(x | z0: t, M) − ℋ(x | z0: t + 1, M) ℙ(zt + 1|a, x, M) ℙ(x | z0: t, M)
(4)

where 〈·〉 denotes an average according to the specific distribution given by the subscript, 

and

ℋ(x) = − log ℙ (x) ℙ(x) = − ∑
x

ℙ (x) log ℙ (x) (5)

is the entropy of ℙ(x) quantifying uncertainty about x. The first term of Eq. 4 expresses 

the uncertainty about the state of the environment, x, under the current posterior, ℙ(x|z0:t, 

M), while the second term expresses the average expected uncertainty for an updated 

posterior, ℙ(x|z0:t+1, M), once we make a new observation, zt+1, upon executing action a. 

The information we gain by this action is thus the reduction of uncertainty as we go from 

the current posterior to a fictitious new posterior, and an information maximizing ideal 

planner simply chooses the action a which maximizes this information:

at + 1 = argmax
a

ℐ(x, zt + 1 |a) (6)

There are two ways in which Eq. 4 is merely an approximation to explorational value. 

First, it only considers the next action without performing the full recursion for future 

belief states and actions (hence is “greedy” or “myopic”). Second, explorational value 

typically depends on a task-specific reward function (because it is derived from Eq. 2) 

and thus it might favor gathering information about particular aspects (dimensions or 

regions) of x to which the reward function is particularly sensitive, while Eq. 4 treats all 

aspects of x equal and is thus agnostic as to the reward function. Nevertheless, when the 

reward function only depends on a subset of the variables in x, xT (Box 1), as it usually 

does in most everyday and laboratory tasks, this aspect of the reward function can be 

taken into account by simply computing entropies over xT rather than the full x. In this 

case, the resulting active sensing strategy is still task-dependent. However, when even this 

aspect of the current task is ignored, and so information is computed for a predetermined 

set of variables, or the average information for different sets of variables (corresponding 

to different potential tasks) is computed, the strategy becomes task-independent. This 

kind of task-independent strategy can also be thought of as curiosity-driven. When the 
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posterior is updated based on observations one expects a priori, rather than on actual 

observations, the strategy becomes preplanned. (See Figure 1 for the different strategies.)

Even in its approximate form, Eq. 4 is computationally prohibitive. This is because for 

each action, a, it requires computing (the entropy of) an updated posterior, ℋ(x|z0:t+1, 

M), for all possible fictitious observations, zt+1, for each state of the world, x, that is 

thought possible according to the current posterior, ℙ(x|z0:t, M). Fortunately, using the 

property that Shannon information is symmetric, it can be shown that Eq. 4 can be 

rewritten in a different, though mathematically equivalent form (for full derivation, see 

Ref. 71), which does not require fictitious posterior updates:

ℐ(x, zt + 1 |a) = ℋ(zt + 1 |a, z0: t, M) − ℋ(zt + 1 |a, x) ℙ(x | z0: t, M) (7)

The terms in this form also have intuitive meaning: the first term formalizes the planner’s 

total uncertainty about what the next observation, zt+1, might be, including uncertainty 

due to the fact that we are also uncertain about the state of the environment, x, whereas 

the second term expresses the average uncertainty we would have about zt+1 if we knew 

what x was. In other words, the informational value is high for actions for which the main 

source of uncertainty about their consequent observation is the uncertainty about x (ie. 

their uncertainty is potentially reducible) and not because these observations are just 

more inherently noisy (which implies irreducible uncertainty). In contrast, an alternative 

approach, called maximum entropy, would only care about total uncertainty, ℋ(zt+1|a, 

z0:t, M), and therefore ignores this distinction between reducible and irreducible 

uncertainty.
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Figure 1. Active sensing framework and taxonomy.
An example of the temporal evolution of an active sensing strategy in which the task is to the 

estimate the time of day from an image (Stimulus: in this case the The Night Watch by 

Rembrandt). The gaze direction of the eye (Action) determines the fixation location (red dot 

in Sensory Input), and the Sensory Input is then limited by the typical fall-off of acuity with 

eccentricity (illustrated in Sensory Input). Given the Task and the Sensory Input, the 

Observer computes a probability distribution over the time of day. In this case the bright area 

fixated may suggest morning. Given the Task and the Observer’s inference, the Planner 

Yang et al. Page 17

Curr Opin Behav Sci. Author manuscript; available in PMC 2018 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



determines the expected value of moving the eyes to fixate different locations in the image 

(red intensity indicates value in the Planner). For example, the value could be the expected 

reduction in entropy in the Observer’s inference distribution. The eyes can then be moved to 

a location with high or maximum value (such as examining the sky). This leads to new 

Sensory Input which updates the Observer’s inference (to correctly suggest night). The 

larger gray arrows that link the Observer’s inference and the Planner’s action-objective map 

across time indicates that all the information from previous time steps are passed onto the 

current observer and planner. The red arrows in the figure highlights the components 

involved in a single loop of an active closed-loop strategy. The removal of specific sets of 

interactions (1, 2 & 3) leads to different sensing strategies (Table inset).
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