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Abstract

Non-covalent interactions of organic moieties with Lewis acidic alkali cations can greatly affect 

structure and reactivity. Herein, we describe the effects of interactions with alkali metal cations 

within a series of reduced iron complexes bearing a redox-active formazanate ligand, in terms of 

structures, magnetism, spectroscopy, and reaction rates. In the absence of a crown ether to 

sequester the alkali cation, dimeric complexes are isolated wherein the formazanate has rearranged 

to form a five-membered metallacycle. The dissociation of these dimers is dependent on the 

binding mode and size of the alkali cation. In the dimers, the formazanate ligands are radical 

dianions, as shown by X-ray absorption spectroscopy, Mössbauer spectroscopy, and analysis of 

metrical parameters. These experimental measures are complemented by DFT calculations that 

show the spin density on the bridging ligands.

Synopsis

Cation-π interactions in reduced iron complexes bearing formazanate radical dianions induce a 

ligand rearrangement that results in the formation of dimeric complexes. The nature of the alkali 

cation affects both the structure and reactivity of the dimers.
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Introduction

Alkali metal cations play essential roles in both biological chemistry1 and synthetic 

chemistry2 where they stabilize complex structures or act as cofactors in (bio)catalytic 

transformations. Detailed studies have shown that non-covalent interactions of organic 

moieties with redox-inactive metal cations can result in changes in electronic structure that 

affect geometry,3 redox potentials,4 N2 cleavage5, reaction rates6 and selectivity of chemical 

transformations.7 The nature of the interaction with s-block cations is greatly influenced by 

their charge (z) : size (r) ratio. Cations with a high z/r ratio have the capacity for bond 

polarization, inducing bond covalency.8 When descending the s-block metal groups, the radii 

of the metals significantly increase,9 resulting in predominantly ionic bonding and an 

increased tendency for ion dissociation. Noncovalent interactions in the form of cation-π 
contacts are weaker than covalent interactions but can play a significant role in metal cation 

association. The electrostatic nature of cation-π contacts causes the strength of this 

interaction to rise with increasing z/r ratio.8 Typically, these interactions are observed when 

the distance is below the sum of the van der Waals radii of the independent elements.10 In 

the absence of neutral co-ligands such as THF, Et2O or HMPA, aggregates can form 

resulting in low solubility or concentration dependent solution speciation. Multidentate 

ligands such as DME, TMEDA and crown ethers can sequester/stabilize the cation, thereby 

preventing aggregate formation, and at times drastically affect reactivity.11 The right cation 

and crown ether or cryptand combination can give rise to fully separated ion pairs, which is 

often used to facilitate crystallization. However, allowing cation-π interactions to persist 

could be a useful strategy to tune the electronic structure and corresponding reactivity of 

transition metal complexes.

In many examples where alkali metal cations are involved in homogeneous catalysis and 

activating strong chemical bonds, the alkali metal cations result from using the 

corresponding zerovalent alkali and alkaline earth metals for reductive activation of pre-

catalysts.12 In addition to classical metal-centered reduction, electrons can be stored in 

redox-active ligands. These ligands have been shown to facilitate multi-electron processes in 

systems where the transition metal changes oxidation states by less than two electrons,13 and 

enable the formation of substrate-centered radicals.14 Given the increasing popularity of 

redox-active ligands15 that is demonstrated in this Forum, it is important to consider whether 

the reducing electron from the alkali metal goes into a metal- or ligand-centered orbital. 

Since redox-active ligands often contain extended π-systems and/or multiple heteroatoms 

that are potentially capable of Coulomb interactions with alkali cations, it is evident that 
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cation-π interactions must be considered when evaluating redox-active ligands, 

especially in reductive reactions. Indeed, cation-π interactions have been observed for well 

recognized redox-active ligands, including catecholates,16 amidophenolates,17 o-

phenylenediamides,18 salophens,19 dithiolenes20 and bis(imino)pyridines.21 Despite this 

link, there have been few systematic studies into the interplay of cation-π interactions and 

redox-active ligands. A recent example that demonstrates the effect that different alkali 

cations can have was reported by Mazzanti and coworkers, who showed that one-electron 

reduction of a (salophen)cobalt(II) complex results in either metal or ligand-centered 

reduction, depending on the identity of the alkali metal.22

As part of our interest in redox-active ligands and low-coordinate iron chemistry, we 

recently reported that Fe[N(SiMe3)2]2
23 gives access to low-coordinate iron formazanate 

complexes that undergo ligand-centered reduction at the formazanate ligand (Scheme 1).24 

Formazanates have been established as good one-electron acceptors, particularly from the 

work of Otten and coworkers, who demonstrated ligand-centered reduction in various 

formazanates bound to redox-inert boron25 or zinc.26 Interestingly, a recently reported 

homoleptic formazanate iron(II) complex adopted a low spin iron(I) configuration upon one-

electron reduction rather than generating a ligand-centered radical.27 We found that one-

electron reduction of complex 1 gives a complex with a formazanate radical dianion (S = 
1/2) that is strongly antiferromagnetically coupled to a high-spin iron(II) (S = 2) to give an 

overall S = 3/2 electronic configuration. When Na was used as the reductant in the presence 

of two equivalents of 12-crown-4, a mononuclear anionic iron complex 2 with a sequestered 

sodium cation was obtained. Herein, we report that one-electron reduction of 1 with alkali 

metals in the absence of a crown ether forms dimeric complexes in which alkali cation 

binding is connected to an isomerization of the formazanate into an unprecedented bridging 

mode, which changes the electron localization. Importantly, we show that the choice of 

alkali metal cation has a substantial effect on the structure and reactivity of these dimeric 

complexes.

Results

The addition of Na sand to a purple THF solution of 1 at −78 °C gives a dark green solution 

upon warming to room temperature, similar to what is observed in the synthesis of complex 

2. However, concentrating the mixture and addition of pentane, followed by cooling to 

−40 °C affords a differently colored complex 3-Na, which is a black crystalline solid in 71% 

yield (Scheme 2).

Crystals suitable for single crystal X-ray diffraction were obtained by cooling a solution of 

3-Na in a THF/pentane mixture to −40 °C. The solid state structure of 3-Na (Figure 1) 

revealed a dimeric structure wherein the formazanate ligand has rearranged to coordinate 

through N1 and N3 to form a five-membered chelate. The exocyclic nitrogen (N4) 

coordinates to the other iron center in the dimer. Ligand rearrangements to bind N1 and N3 

have been observed in non-reduced formazanates bound to boron25 and zinc,26 but we are 

not aware of any previous examples where the exocyclic N4 atom coordinates to another 

metal. The two [Na(THF)3]+ ions have interactions with the internal N2 atoms of the five 

membered chelates and with nearby phenyl groups. The N–Na distances of 2.373(3) Å and 
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2.372(3) Å are comparable to those observed for non-isomerized formazanates bound to B 

(2.35 – 2.39 Å)28 and Zn (2.41 – 2.52 Å)29. The formazanate Fe–N bond lengths (2.006(3) – 

2.067(3) Å) are all elongated compared to the solid state structure of 2 (1.935(5) – 1.958(5) 

Å), consistent with the higher coordination number of iron in 3-Na, which is four-coordinate 

in contrast to three-coordinate 2.

Metal complexes with multiple redox-active ligands can display ligand-based mixed valence, 

which is often reflected in distinct differences in intraligand metric parameters.29,30 

Although the two formazanate ligands in 3-Na are not crystallographically related, there are 

no significant differences in bond lengths and angles (Table 1), indicating that both ligands 

are in the same oxidation state. Analysis of the intraligand bond lengths of the formazanate 

core shows an elongation of the N–N bonds (1.372(4) – 1.393(4) Å) compared to 1 (1.317(2) 

– 1.325(2) Å), similar but more pronounced to what is observed in 2 (1.377(6) and 1.345(6) 

Å), suggestive of a ligand-centered reduction (Chart 1). The C–N bonds within the 

formazanate core of complex 2 (1.343(7) and 1.339(8) Å) show no significant changes when 

compared to 1 (1.339(2) – 1.350(2) Å). However, in 3-Na a contraction of the N2–C1 bonds 

(both 1.323(5) Å) and an elongation of the C1–N3 bonds (1.370(5) and 1.363(5) Å) are 

observed, indicating more localized double bond character for the N2–C1 bond. A 

comparable observation was made for a similarly rearranged but non-reduced formazanate 

bound to Zn, which showed double bond localization for N2–C1 and N3–N4.26 In contrast, 

the N3–N4 bonds in 3 are significantly longer (1.393(4) and 1.378(4) Å), and are 

comparable to the N1–N2 bonds (1.372(4) and 1.375(4) Å), indicating that there is no 

double bond character for the N3–N4 bond as was observed for the non-reduced 

formazanate bound to Zn. The relative bond distances within the rearranged formazanate in 

3-Na are very similar to DFT calculated values for a diamidoborane complex – formed upon 

intramolecular hydride reduction of the formazanate in a boron dihydride complex – with an 

identical binding mode as in 3-Na, yet protonated at N4.25a The possibility of ligand-

centered reduction is further supported by reported examples of five-membered 

metallacycles consisting of isothiosemicarbazide π-radical anions bound to nickel(II)31 and 

iron(III)32 with the same N-N-C-N motive as in 3-Na. In these examples elongation of the 

N-N bonds and contraction of the C-N bonds was also observed upon reduction of a neutral 

ligand to the corresponding radical monoanion. The mononanionic radical form of these 

ligands is characterized by intraligand bond distances of 1.333(1) – 1.350(1) Å for the N–N 

bond. This is significantly elongated compared to N–N bond in the neutral form of the 

ligand (1.254(7) – 1.267(2) Å), similar to the difference between 1 and 3-Na. However, in 

the reported isothiosemicarbazide π-radical anions both C–N bonds are comparable 

(1.322(1) – 1.355(1) Å), and less localized than in 3-Na. Overall, the metrical analysis 

implies that the rearranged formazanate ligands in 3-Na bind iron as radical dianions.

The zero-field Mössbauer spectrum of a solid sample of 3-Na at 80 K shows a slightly 

asymmetric doublet with isomer shift δ = 0.74 mm s−1 and quadrupole splitting |ΔEQ| = 2.30 

mm s−1 (Figure 2). The observation of only one doublet indicates identical electronic 

structures and environments for the two iron sites in 3-Na. The observed isomer shift of 3-
Na is similar to that of complex 1 (δ = 0.71 mm s−1), suggesting that the oxidation state at 

iron is the same in both cases. For additional insight, 3-Na was also analyzed by X-ray 

Broere et al. Page 4

Inorg Chem. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



absorption spectroscopy at the Fe K-edge. The spectra of 1, 2 and 3-Na overlaid in Figure 3 

are characterized by electric dipole forbidden but quadrupole-allowed 1s → 3d pre-edge 

transitions that appear at the base of the dipole-allowed 1s → np rising-edge that dominates 

a K-edge spectrum. Since the ligand field typically increases with increasing oxidation state 

for a given ligand set, the pre-edge energy often provides a useful marker for oxidation state.
33 The centers of mass for pre-edge peaks in spectra obtained for 1, 2 and 3-Na are identical 

within experimental error at 7112.2 ± 0.1 eV. Moreover the pre- and rising-edge spectral 

profile for 1 and 3 are almost superimposable, clearly indicating the same effective nuclear 

charge and coordination geometry (tetrahedral) about the Fe ions in these complexes. Thus, 

both Mössbauer and XAS analysis indicate that 1, 2, and 3-Na have the same oxidation state 

at iron. Since 1 is clearly iron(II), this suggests an iron(II) oxidation state in 3-Na, which in 

turn implies that the formazanates are reduced to radical dianions - in agreement with the 

metrical analysis described above.

The room temperature magnetic moment (μeff) in THF-d8 solution using the Evans method 

was 6.95 ± 0.3 μB, which is comparable to the value obtained from SQUID measurements of 

a solid sample in the temperature range 50–300 K, μeff = 7.6 μB (Figure S19). The 

experimental values are close to the spin-only (s.o.) value for four uncoupled spin centers, 

two SFe = 2 and two ligand radicals Srad = 1/2, namely μeff, s.o. = ge√[2(2 + 1) + 2(2 + 1) + 
1/2(1/2 + 1) + 1/2(1/2 + 1)] = 7.3 μB. The temperature independence of μeff(T) in this 

temperature range indicates is consistent with this model requires that the various pair 

exchange coupling constants |Jij| between the four spins would need to be less than a few 

wavenumbers (Figure S19). Unfortunately, the low-temperature magnetic data are severely 

obscured by steep overshooting of μeff(T) below 50 K, presumably due to intermolecular 

interactions, which prevented us from further characterizing J values or zero-field splitting. 

Qualitative, rough fits (adopting grad = ge for the radicals) suggest weak to moderate zero-

field splitting for iron, iron-radical coupling of |JFe-rad| < 5 cm−1 (Ĥex = −2J S1·S2), and gFe 

= 2.07.

It is not a priori clear why exchange coupling between iron(II) centers and their coordinated 

ligand radicals in 3-Na should be weak, whereas the monomeric ferrous compound 2 shows 

strong local spin coupling.24 We presume that the reason is small overlap and near-

orthogonality of magnetic orbitals in the quasi-tetrahedral coordination. We also considered 

a model of very strong antiferromagnetic exchange coupling between each iron(II) centers 

and the ligand radical coordinated to it (as in 2), but weak coupling between the two sides. 

This model is made up of two local site spins S′= 3/2, and predicts a spin-only magnetic 

moment of μeff, s.o. = ge√[3/2(3/2 + 1) + 3/2(3/2 + 1)] = 5.5 μB, much lower than observed. 

Thus, the iron g-value would have to be gFe = 2.64 to match the experimental magnetic data. 

Since this value is far above the (geometrically averaged) g-value for 2 obtained from EPR 

simulations (gav = 2.35),24 this model of strong iron-radical coupling for 3-Na is not 

defensible, particularly as the corresponding large zero-field splitting of 2 (D = 16 cm−1) is 

not consistent with the magnetic data of 3-Na (Figure S19).

The 1H NMR spectrum of 3-Na in THF-d8 shows resonances in the range from +160 to −70 

ppm, and the number and integration of the peaks indicates that the two SiMe3 groups are 

chemically inequivalent (Figure S1). Several protons on the formazanate are also split into 
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pairs, suggesting that the dinuclear structure, with its lowered symmetry, is retained in 

solution. However, over time it fully converts to a new species (Figure S2), which has a 

similar 1H NMR spectrum and green color as complex 2 (Figure S3), consistent with 

dissociation of the dimer to a mononuclear species (4-Na, Scheme 3). The rate of the 

dissociation of 3-Na to 4-Na in THF-d8 was monitored between 273–313 K by 1H NMR 

spectroscopy (Figure 4), and the concentrations followed an exponential time dependence 

indicating a rate law rate = kobs[3-Na] (see SI for more details). Fitting the decay curves 

using Eq. 1 afforded rate constants, which were used to generate an Eyring plot (Figure S10) 

that gave the activation parameters ΔH‡ = 28.0 ± 1.1 kcal mol−1 and ΔS‡ = −14.8 ± 3.7 cal 

mol−1 K−1. The loss in entropy in the transition state indicates an ordered early transition 

state that could involve binding of exogenous THF molecules to the Na atoms. This is 

consistent with the observation that the addition of two equiv of 12-crown-4 to complex 3-
Na significantly increased the rate of dimer dissociation, and gives mononuclear complex 2 
as previously reported. Moreover, in the solid state structure of the K analogue of 4-Na (see 

below) four THF molecules are bound to K, supporting the idea that incorporation of an 

additional THF molecule is feasible.

[3−Na]t − [3−Na] final = [3−Na]0e−kt (1)

Cooling mixtures of dissociated 4-Na gives no increase in dimer concentration as judged by 
1H NMR spectroscopy, indicating that the dissociation of the dimer is irreversible in dilute 

solution. However, crystallization from THF/pentane mixtures where 3-Na has fully 

converted to 4-Na affords solely black crystals of the dimer 3-Na. Analysis of a frozen THF 

solution of 3-Na that has partially dissociated into 4-Na by Mössbauer spectroscopy showed 

two signals that have isomer shift and quadrupole splitting parameters within the error 

margin of those for pure samples of 2 and 3-Na (Figure S17). Although dissociation of the 

dimer is irreversible in THF solution, we propose that an equilibrium involving the different 

coordination modes of the formazanate is present that enables crystallization as a dimer 

(Scheme 3). The room-temperature 1H NMR spectra of 2 and 4-Na in THF-d8 both show a 

single species with a number of peaks indicating idealized C2v symmetry. However, the 

observed resonances broaden and start to deviate from Curie behavior below −50 °C (Figure 

S6 and S7), which could be due to intermediate exchange between formazanate binding 

modes on the NMR time scale. However, we were unable to resolve details because the 

spectra remained difficult to interpret at −90 °C, which was the lower temperature limit of 

the NMR spectrometer.

Intrigued by the change in formazanate binding mode induced by a coordinating Na cation, 

we investigated the effect of using different alkali metal reductants. The addition of MC8 (M 

= K, Rb or Cs) to a THF solution of 1 at −78 °C gives a dark green solutions upon warming 

to room temperature. Addition of pentane and cooling to −40 °C gave complexes 3-K, 3-Rb 
and 3-Cs as dark crystalline solids (Scheme 4). Interestingly, rapid crystallization of 3-K 
from a THF/pentane mixture afforded two different crystal morphologies. 1H NMR 

spectroscopy in THF-d8 and Mössbauer spectroscopy of the obtained solids, and single 
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crystal X-ray diffraction revealed a mixture of dimer 3-K (see below) and monomer 4-K. 

Although monomer 4-K was a minor component in the mixture, its solid state structure can 

be analyzed (Figure 5). The FeN and intraligand bond lengths in 4-K are within the 

uncertainty limits of the solid state structure of complex 2. A notable difference is that the 

potassium cation is bound to N21, three THF molecules and has close contacts to C22 and 

C31. Crystallization of 5 from a THF solution with less pentane at −40 °C, thereby slowing 

down the crystallization process, gives a crystalline material comprising >95% 4-K based on 
1H NMR and Mössbauer spectroscopies.

Although we obtained crystals of 3-K, 3-Rb and 3-Cs suitable for single crystal X-ray 

diffraction, the rapid desolvation of the crystalline material, when transferred from the 

mother liquor to the immersion oil, resulted in poorly diffracting crystals. Fortunately, 

handling at temperatures below −40 °C in combination with cryo-mounting of the crystals 

(see SI for more details), led to solid state structures of all dimers (Figure 6). In agreement 

with the observed rapid desolvation of the crystals, several solvent molecules are in the 

asymmetric units. The quality of the structures of 3-K and 3-Cs was of lower quality than 

the other dimers (3-K diffracted weakly, and 3-Cs appears to have whole molecule disorder; 

see SI for details), so the structural detail is limited. Overall, it is clear that all complexes 

have a similar dimeric core structure as 3-Na where the formazanate has isomerized. No 

significant deviations in Fe-ligand bond distances are observed between the four dimers 

(Table 1). However, the manner in which the alkali cations are bound varies greatly. Whereas 

each formazanate in complex 3-Na is bound to a single Na cation, in 3-K, 3-Rb and 3-Cs 
one alkali cation bridges between the N21 and N25 of two separate formazanates. Close 

interactions with several other atoms in the N-phenyl substituent are also observed, which is 

in agreement with the softer nature of the larger cations favoring interaction with delocalized 

π systems over the harder N atom.34 The other alkali cation is separated from the dimer and 

has only THF solvent molecules coordinated in the solid state structures of 3-K and 3-Rb. 

Interestingly, in the solid state structure of complex 3-Cs the second Cs cation is also bound 

to the N21 and N25 to yield a repeating polymeric structure (Figure S18).

The zero-field Mössbauer spectra of 3-K, 3-Rb and 3-Cs show doublets with isomer shifts 

that are indistinguishable from that of 3-Na (Table 3, Figure S8). The observed quadrupole 

splittings of 3-K, 3-Rb and 3-Cs range from 2.16 – 2.18 mm s−1, which is slightly different 

from the quadrupole splitting of solid 3-Na. This is likely due to the different binding mode 

of the alkali cations, which is also reflected N–Fe–N bond angles of the dimers (Table 2).

The 1H NMR spectra and solution magnetic moments of 3-K, 3-Rb and 3-Cs in THF-d8 are 

similar to that of 3-Na in THF-d8, indicating that the dimeric structures are retained in 

solution. Similarly, 3-K, 3-Rb and 3-Cs also convert to the corresponding monomers as 

judged by 1H NMR spectroscopy. However, the rate at which the dimer breaks up in solution 

is highly dependent on the cation that is present (Figure 7). Complex 3-Cs is the most rapid 

(kobs = 5.89 ± 0.03 × 10−4 s−1) after 3-Rb (kobs = 1.66 ± 0.01 × 10−4 s−1) and 3-K (kobs = 

6.37 ± 0.04 × 10−5 s−1). Though these follow a trend where the heavier alkali metal cation is 

fastest, the decay rate of 3-K is slower than that of 3-Na (kobs = 8.50 ± 0.08 × 10−5 s−1), 

breaking the periodic trend.
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Discussion

Interaction of Alkali Metals with Reduced Formazanate-Iron Complexes: Influences on 
Structure and Dynamics

The reduction of complex 1 in THF solution by different alkali metals gives dimeric 

complexes (3) featuring a rearranged formazanate. The formazanate binding mode in the 

dimeric complexes is stabilized by cation-π interactions with alkali metal cations. Although 

the different cations do not significantly alter the intraligand bond lengths of the rearranged 

formazanate, the interplanar angle (θ) and centroid-centroid distance (ζ) between the five-

membered metallacycles significantly increases with the larger cations (Table 4). This trend 

is consistent with increasing ionic radii of the corresponding alkali cations, and likely results 

in the observed differences in the N–Fe–N bond angles (Table 2).

Although the dimeric nature is retained in solution as judged by initial 1H NMR spectra, 

each dimer converts completely into the corresponding monomeric species in THF solution. 

Interestingly, the rate at which this process occurs varies greatly between the dimers. The 

slow rate of dissociation of 3-K shows that the energy barrier for dimer/monomer 

interconversion is higher than for the other complexes. This could explain why 4-K was the 

only one that could be crystallized as a monomer, because the higher barrier would also slow 

the reverse reaction, dimerization upon crystallization.

A periodic trend for the rates of monomer formation is observed with K < Rb < Cs, which 

correlates with weaker cation-π interactions as the z/r ratio of the cations decreases. This 

may arise from a stronger cation-π interaction with smaller alkali cations, which stabilizes 

the isomerized binding mode of the formazanate, and increases the activation energy for 

isomerization and splitting of the dimer. The deviation of the periodic trend for the Na 

analogue could be ascribed to the different binding of the alkali cations in 3-Na, where each 

rearranged formazanate has an interaction with a separate alkali cation in contrast with the 

bridging alkali cation observed in 3-K, 3-Rb and 3-Cs. The difference in 3-Na also 

influences the iron center, as judged by the subtly different quadrupole splitting in the 

Mössbauer spectrum of 3-Na in comparison to 3-K, 3-Rb and 3-Cs. The rate of dimer 

cleavage is faster for 3-Na than expected from the periodic trend, suggesting that the Na 

cations hold the core into the dimeric structure more weakly, which is consistent with the 

more central position of the alkali metal cations in 3-K, 3-Rb and 3-Cs. Alternatively, the 

relative rates of monomer formation could be due to the need for THF to access the alkali 

metal cation, which is suggested by the negative activation entropy for 3-Na going to 4-Na. 

In this alternative explanation, the faster rates for the larger cations would result from the 

larger size and faster expected exchange rate for solvent.

Analysis of the chemical shifts in the 1H NMR spectra of the dimers shows another trend 

between the chemical shift with the size of the alkali metal for 3-K, 3-Rb and 3-Cs, but the 

trend does not fit well for all resonances of 3-Na (Figure S4), suggesting that the structural 

differences noted above are also retained in solution. After dissociation into the monomeric 

complexes, the chemical shifts in the 1H NMR spectra also vary greatly by alkali cation 

(Figure 8). Comparison of the chemical shifts with complex 2, which has a fully separated 

ion pair in solution, shows that the chemical shifts move towards a narrower range going 
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from 2 to 4-Na, 4-K, 4-Rb and 4-Cs. In this case the Na monomer does fit the periodic 

trend. Assuming that in solution the Na cation is fully sequestered by the crown ethers for 2, 

this trend in chemical shifts could be interpreted by a strengthening cation-π interaction 

between the formazanate and alkali cation in the series 4-Na, to 4-K, to 4-Rb to 4-Cs. 

However, this would be opposite to the typical trend in magnitudes of cation-π interactions, 

which are known to become weaker as the ion becomes larger.8 Therefore, a more likely 

explanation is that the alkali cation and THF ligands (Figure 5) perturb the geometry of the 

monomeric complex in solution to accommodate the cation-π interaction. This effect would 

be more pronounced with increasing alkali cation size, as observed in the solid state 

structures of dimers 3-K, 3-Rb and 3-Cs, in agreement with the biggest change in chemical 

shifts between 2 and 4-Cs.

Electronic structure of 3-Na

Mössbauer and X-ray absorption spectra show experimentally that two high-spin iron(II) 

centers are present in 3, which implies that the two formazanate ligands are not in their usual 

closed-shell state but rather are reduced, open-shell radicals. The intraligand distances are 

distorted from that in conventional iron(II)-formazanate complexes, further supporting the 

assignment of a reduced formazanate.

The magnetic susceptibility data for 3-Na indicate very little magnetic coupling between the 

radical ligands and the iron(II) centers. It is notable that there is a short distance between the 

two N4 atoms of each formazanate ligand in 3 (2.989(5) – 3.046(4) Å, Table 4). In addition, 

the two five-membered metallacyles are parallel alignment and are separated by only 3.11 – 

3.37 Å in this series, indicating a π-π interaction like those that have been reported for 

several chelating π radical ligands.35 For example, two o-diiminosemiquinonate ligand 

radicals coordinated to zirconium(IV) are aligned parallel, and the short interligand 

separation of 3.42 Å gives rise to intramolecularly antiferromatic coupling between this two 

spin centers in this complex.36 Moreover, in the previous forum on redox-active ligands, 

Scarborough and Wieghardt described a similar intramolecular π•-π• antiferromagnetic 

interaction in a dimeric complex between two bipyridine radicals.37 In the system described 

here, details of weak coupling were obscured by low-temperature deviations in the SQUID 

magnetometry data, so we were unable to glean further experimental evidence.

To gain insight into the electronic structure of the dimeric complexes, the ground state 

electronic structure of 3-Na was calculated using DFT calculations at the B3LYP/ZORA 

level of theory, using the broken symmetry (BS) formalism to give localized spins in an 

overall singlet state (MS = 0). The electronic structure derived from a BS(5,5) calculation 

has five pairs of magnetic orbitals (the members of each pair are related to the other half of 

the dimer by symmetry), which are antiferromagnetically coupled to give the singlet ground 

state (Figure 9). The high-spin MS = 5 solution is 15.9 kcal mol−1 less favored than the BS 

solution.

The DFT methodology is limited because BS calculations can only partition a molecule into 

two orbital fragments, one with spin-up electrons (α-spin) and the other spin-down electrons 

(β-spin). Of the five pairs of magnetic orbitals, three can be described as Fe-based dxz, dyz, 

dz2 orbitals of one Fe ion in the α-spin manifold that are antiferromagnetically coupled to 
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the corresponding β-spin of matching symmetry on the other Fe ion. The computed overlap 

integrals (S) between these d orbitals in 3-Na are all very small, underscoring the essentially 

non-existent coupling between these well-separated spin centers. The highest doubly-

occupied MOs are based on the dx2-y2 orbital for each Fe ion. The remaining two pairs of 

magnetic orbitals share Fe and formazanate character. The remaining d orbital (dxy) has the 

correct symmetry to overlap with the highest ligand-based π* orbital (two N–N π* 

interactions) previously assigned with a2 symmetry for the formazanate ligand.24 The bonds 

between the dxy and formazanate are highly polarized, giving rise to an antiferromagnetic 

interaction between this symmetry-matched pair. The most unusual aspect comes from the 

exocyclic nitrogen (N4), which has a bonding interaction with the other Fe dxy orbital that is 

visible in the lowest magnetic orbital with S = 0.59 (Figure 9). This four-spin ensemble is 

challenging to compute because of the aforementioned limitations of BS-DFT, and the result 

here is one where the calculation mixes two pairs of SOMOs that are very close in energy, 

with polarized metal-ligand bonds at one end and covalent bonds at the other. The most 

appropriate description is that the first pair are predominantly ligand-centered with 

significant Fe dxy content that produces a large overlap integral. The second pair can be 

considered almost exclusively the dxy orbital of each Fe ion, who have a significantly 

smaller overlap integral (Figure 9).

This description is consistent with the Mössbauer and Fe K-edge data that diagnose two 

high-spin iron(II) (S = 2) ions, which are each coordinated by a dianionic formazanate 

radical (S = 1/2). This description is supported by the Mulliken spin population analysis, 

where 3.6 spins are found on each Fe with significant spin of the opposing sign on the 

coordinated dianionic formazanate radical ligands (Figure 10). This value is lower than four 

spins for each high-spin iron(II) center as a result of the covalent interaction with the 

exocyclic nitrogen that distributes some spin (of the same sign) on to the formazanate ligand. 

Though the calculations predict stronger antiferromagnetic coupling than we observe in the 

magnetic data, we ascribe the difference to the limitations of the BS formalism in a four-spin 

system as described above.

Overall, the resonance structures in Scheme 5 best describe the electronic structure of the 

rearranged formazanate radical dianions in 3 as they are in agreement with the presence two 

high-spin Fe centers, and reflect the intra- and interligand bond distances and computational 

data. The dimerization that is facilitated by the ligand rearrangement produces a pair of 

strongly coupled magnetic orbitals that are predominantly ligand in character though have a 

sizeable metal content by virtue of a bonding interaction between the exocyclic nitrogen and 

the other iron center. The net result is two high-spin iron(II) ions characterized by four 

highly localized magnetic orbitals that are weakly coupled on account of their large spatial 

separation. This general electronic structure description accurately reflects the physical 

characterization data despite the limitations of the BS-DFT calculations in reproducing the 

magnetic coupling. Moreover, it is unique among these iron-formazanate complexes, as the 

monometallic species 2 and 4 present a more common electronic configuration, that of a π-

radical ligand (SL = 1/2) strongly antiferromagnetically coupled to a paramagnetic metal ion 

(SFe = 2) to give an S = 3/2 spin ground state.
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These studies show the significant effect that cation-π interactions can have on metal 

complexes with redox-active ligands. The observed rearranged formazanate binding mode is 

stabilized to different extent by the various alkali cations, which is reflected in the different 

solid state structures and observed decay rates for the dimers. The results show that cation-π 
interactions not necessarily only affect the electronic structure according to periodic trends 

but that the difference in size can also change result in different chemical structure.

Conclusion

In the absence of a crown ether, one-electron reduction of complex 1 by alkali metals results 

in the formation of dimeric complexes wherein the formazanate ligand has rearranged to 

form a five-membered metallacycle that is coordinated to the alkali cation. The electronic 

structure has two uncoupled high spin iron(II) centers and two ligand radicals as shown by 

Mössbauer, XAS, and DFT. Different alkali cations not only result in different orientations 

of the rearranged formazanate ligand but also affects how these dimers are converted to 

monomeric species in solution. Moreover, the difference in how the alkali cation is bound in 

the sodium dimer is shown to transcend periodic trends in terms of reactivity. This work 

demonstrates the considerable effect that Lewis-acidic cations can have on systems 

containing redox-active ligands, and shows the possibilities for tuning of structure and 

reactivity by choice of cation.
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Figure 1. 
Displacement ellipsoid plot (50% probability) of complex 3-Na. Hydrogen atoms and a THF 

molecule have been omitted, and part of the structure is depicted as a wireframe for clarity. 

See Tables 1 and 2 for metrical parameters.
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Figure 2. 
Zero-field Mössbauer spectrum of a solid sample of 3-Na at 80 K. The black circles are the 

data, the black line is a fit with two Lorentzians of equal intensity but slightly different line 

widths (γL = 0.328 and γR 0.304); the thin grey line is the residual from the fit.
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Figure 3. 
Overlay of the normalized Fe K-edge XAS spectra of 1 (violet), 2 (green), and 3-Na (black) 

at 10 K. Inset shows expansion of the pre-edge region.
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Figure 4. 
Concentration of dimer 3-Na vs time in THF solution at various temperatures. Open circles 

are data points and solid lines are fitted curves. Log plots of the data are in the Supporting 

Information (Fig. S11–S16).
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Figure 5. 
Displacement ellipsoid plot (50% probability) of 4-K. Hydrogen atoms are omitted and THF 

molecules are depicted in wireframe for clarity. Selected bond lengths (Å) and angles (°): 

Fe1–N11 1.933(1); Fe1–N41 1.937(1); Fe1–N14 1.944(1); N11–N21 1.362(2); N31–N41 

1.358(2); N21–K1 2.865(1); C22–K1 3.344(1); C31–K1 3.213(1); N11–Fe1–N41 96.78(5); 

N11–Fe1–N14 133.75(5); N41–Fe1–N14 129.46(5).
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Figure 6. 
Displacement ellipsoid plots (50% probability) of the complexes 3-Na, 3-K, 3-Rb and 3-Cs 
showing the core structures. Hydrogen atoms, select organic fragments and solvent 

molecules are omitted for clarity.
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Figure 7. 
Concentration of dimers 3-Na, 3-K, 3-Rb and 3-Cs vs time in d8-THF at 21 °C. Open 

circles are data points and solid lines are fitted curves.
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Figure 8. 
Stacked 1H NMR spectra of complex 2 (top) and dissociated complexes 4-Na, 4-K, 4-Rb 
and 4-Cs, showing the trends in chemical shifts upon binding of alkali cations.
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Figure 9. 
Qualitative MO scheme for 3-Na as derived from broken symmetry DFT calculations 

(B3LYP/ZORA). The Fe and formazanate (fz) content and spatial overlaps of the 

corresponding pairs of magnetic orbitals are given.
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Figure 10. 
Mulliken spin population analysis for 3-Na (red: α-spin; yellow: β-spin). Counterions and 

solvents have been removed for clarity.
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Scheme 1. 
Previously reported ligand centered reduction of complex 1.
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Scheme 2. 
Reduction of complex 1 in the absence of 12-crown-4 to form dimer 3-Na.
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Scheme 3. 
Dissociation of complex 3-Na in solution into a monomeric complex 4-Na in which the 

different formazanate binding modes are in equilibrium, and irreversible conversion into 2 
by addition of a crown ether.
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Scheme 4. 
Synthesis of complexes 3-K, 3-Rb and 3-Cs and their decay to monomers in THF solution.
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Scheme 5. 
Limiting resonance forms for the rearranged formazanate radical dianion in dimers 3.
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Chart 1. 
Averaged metrical details of the formazanate ligands in complexes 1, 2 and 3-Na. The 

average error of a given bond distance is ± 0.01 Å (3σ).
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Table 1

Selected bond lengths (Å) for the dimers.

3-Na 3-K 3-Rb 3-Cs

Fe1–N14 1.993(3) 1.987(4) 1.9910(2) 1.985(5)

Fe2–N18 1.981(3) 1.991(4) 1.984(2) 1.983(5)

Fe1–N11 2.014(3) 2.051(3) 2.043(2) 2.025(5)

Fe2–N15 2.006(3) 2.046(3) 2.040(2) 2.028(4)

Fe1–N31 2.067(3) 2.053(4) 2.055(2) 2.051(4)

Fe2–N35 2.063(3) 2.055(4) 2.044(2) 2.066(4)

Fe1–N45 2.032(3) 2.055(3) 2.053(2) 2.030(5)

Fe2–N41 2.031(3) 2.047(3) 2.046(2) 2.039(5)

N11–N21 1.372(4) 1.384(5) 1.380(2) 1.377(6)

N15–N25 1.375(4) 1.387(5) 1.380(2) 1.367(6)

N21–C11 1.323(5) 1.329(5) 1.317(2) 1.324(7)

N25–C15 1.323(5) 1.313(5) 1.323(3) 1.332(7)

C11–N31 1.370(5) 1.377(5) 1.369(2) 1.370(7)

C15–N35 1.363(5) 1.378(5) 1.359(2) 1.358(7)

N31–N41 1.378(4) 1.390(5) 1.382(2) 1.369(6)

N35–N45 1.393(4) 1.384(5) 1.389(2) 1.365(6)

M = Na M = K M = Rb M = Cs

N21–M 2.373(3) 2.767(3) 2.924(2) 3.117(5)

N25–M 2.372(3) 2.766(3) 2.889(2) 3.092(5)
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Table 2

Selected bond angles (°) for the dimers.

3-Na 3-K 3-Rb 3-Cs

N14–Fe1–N45 124.8(1) 122.6(1) 122.8(1) 121.2(2)

N18–Fe2–N41 122.7(1) 123.0(1) 123.2(1) 120.5(2)

N14–Fe1–N11 110.1(1) 108.4(1) 107.9 (1) 107.2(2)

N18–Fe2–N15 109.4(1) 108.6(1) 107.9 (1) 108.1(2)

N11–Fe1–N45 116.1(1) 121.4(1) 121.1(1) 124.4(2)

N15–Fe2–N41 117.3(1) 120.5(1) 121.2 (1) 123.8(2)

N45–Fe1–N31 90.9(1) 89.7 (1) 89.5 (1) 88.9(2)

N41–Fe2–N35 90.3(1) 89.5(1) 89.5(1) 88.7(2)

N14–Fe1–N31 128.4(1) 130.0(1) 130.9(1) 131.4(2)

N18–Fe2–N35 132.2(1) 130.2(1) 130.1(1) 132.8(2)

N11–Fe1–N31 77.2(1) 77.1(1) 77.2(1) 77.5(2)

N15–Fe2–N35 77.4(1) 77.3(1) 77.1(1) 77.1(2)
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Table 3

Mössbauer parameters for solid samples of 3; experimental uncertainty is ±0.02 mm s−1.

Complex δ (mm s−1) |ΔEQ| (mm s−1)

3-Na 0.74 2.30

3-K 0.72 2.16

3-Rb 0.71 2.17

3-Cs 0.72 2.18
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Table 4

Distances and angles between the 5-membered metallacycles and N4 atoms in of 3.

Complex Angle θ (°) Distance ζ (Å) N4-N4 (Å)

3-Na 18.3 3.11 3.046(4)

3-K 23.3 3.21 2.999(5)

3-Rb 25.9 3.23 2.998(2)

3-Cs 33.7 3.37 2.989(5)
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