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ABSTRACTMany different types of multiparental populations have recently been produced to increase genetic diversity and resolution
in QTL mapping. Low-coverage, genotyping-by-sequencing (GBS) technology has become a cost-effective tool in these populations,
despite large amounts of missing data in offspring and founders. In this work, we present a general statistical framework for genotype
imputation in such experimental crosses from low-coverage GBS data. Generalizing a previously developed hidden Markov model for
calculating ancestral origins of offspring DNA, we present an imputation algorithm that does not require parental data and that is
applicable to bi- and multiparental populations. Our imputation algorithm allows heterozygosity of parents and offspring as well as
error correction in observed genotypes. Further, our approach can combine imputation and genotype calling from sequencing reads,
and it also applies to called genotypes from SNP array data. We evaluate our imputation algorithm by simulated and real data sets in
four different types of populations: the F2, the advanced intercross recombinant inbred lines, the multiparent advanced generation
intercross, and the cross-pollinated population. Because our approach uses marker data and population design information efficiently,
the comparisons with previous approaches show that our imputation is accurate at even very low (, 13 ) sequencing depth, in
addition to having accurate genotype phasing and error detection.

KEYWORDS genotype imputation; genotyping by sequencing; hidden Markov model; cross-pollinated (CP) population; Multiparent Advanced

Generation Inter-Cross (MAGIC); multiparental populations; MPP

GENOTYPE imputation describes the process of imputing
missing genotypes in study individuals, most often using

a high density reference panel of genotypes. For human
populations, HapMap (International HapMap Consortium
et al. 2007) and the 1000 Genomes Project (1000 Genomes
Project Consortium et al. 2012) provide reference panels in-
cluding millions of SNPs. Genotype imputation has become a
key step in the genome-wide association studies of human
populations to increase the power of QTL detection and to
facilitate meta-analyses of studies at different sets of SNPs (Li
and Freudenberg 2009; Marchini and Howie 2010).

Genotype imputation leverages haplotype sharing be-
tween study individuals and reference panels. Along chromo-
somes, the pattern of haplotype sharing changes due to

historical recombination. A crucial component of most geno-
type-imputation methods is to infer the local haplotype clus-
tering and the ancestral haplotypes from reference panels
and study individuals (Howie et al. 2009; Li et al. 2010;
Browning and Browning 2016). The accuracy of imputation
depends on how well reference panels match study individ-
uals in terms of ancestral haplotypes (Pei et al. 2008; Roshyara
et al. 2016).

Next-generation sequencing technology has become an
attractive and cost-effective tool for QTL mapping in non-
human populations (Spindel et al. 2013; Heffelfinger et al.
2014; Kim et al. 2016), and genotype imputation is essential
for low-coverage sequencing. The focus of this article is on
experimentally designed populations, particularly for plants,
where study individuals are produced by multigenerational
crossing from two or more founders. Many such multiparen-
tal populations have recently been created (e.g., Kover et al.
2009; Bandillo et al. 2013; Mackay et al. 2014; Sannemann
et al. 2015), aiming at increasing genetic diversity due to
many founders and QTL mapping resolution due to accumu-
lated recombination break points over multiple generations.
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The founders of multiparental populations are naturally
used as the reference panel for genotype imputation. However,
there are typically many missing founder genotypes, partic-
ularly when both founders and offspring are genotyped by
low-coverage sequencing, and some of the founders may
even be missing completely (Thépot et al. 2015). In such
cases, the population-based imputation methods (Howie
et al. 2009; Li et al. 2010; Browning and Browning 2016) are
not optimal. Alternatively, pedigree-based genotype impu-
tation methods (Abecasis et al. 2002; Cheung et al. 2013)
are computationally intensive, if not impossible, because of
the large breeding pedigree being often partially or wholly
unavailable and most or all genotypes being missing in in-
termediate generations.

Recently, several imputation methods were proposed for
experimental crosses. Xie et al. (2010) described a parent-
independent genotyping method for two-way recombinant
inbred lines (RILs), where parental genotypes were obtained
using a maximum parsimony of recombination. Swarts et al.
(2014) described a Full-Sib Family Haplotype Imputation
(FSFHap) method for biparental populations, where parental
haplotypes were identified by a custom clustering method
over nonoverlapping windows with a window size of 50 loci
along chromosomes. Fragoso et al. (2016) described a Low-
Coverage Biallelic Impute (LB-Impute) algorithm for bipa-
rental populations, where parental genotypes were imputed
only after offspring genotypes were imputed using amodified
Viterbi algorithm over a sliding window (of size 7 loci) along
chromosomes. See also Hickey et al. (2015) for genotype
imputation in biparental populations in plant breeding.

In experimental crosses, genotype-imputation methods
havemainly focused on biparental populations. There remain
challenges for more complicated experimental designs. Huang
et al. (2014) described a genotype-imputation method called
mpimpute, which is however restricted to the funnel-scheme
of four- or eight-way RILs. In the funnel scheme, the founders
of each line are randomly permuted. In this article, we pre-
sent a general statistical framework of genotype imputation
from low-coverage GBS data, applicable to many scenarios in
experimental crosses. First, it applies to both bi- and multi-
parental populations. Second, it is parent independent so
that it applies even if some founders’ genotypes are not avail-
able. Third, it integrates with parental phasing and thus ap-
plies to mapping populations with outbred founders. Last but
not least, it integrates with genotype calling to account for
the uncertainties in identifying heterozygous genotypes due
to low read numbers.

Our imputation algorithm is called magicImpute, building
on a hidden Markov model (HMM) framework that extends
our previous work (Zheng et al. 2014, 2015; Zheng 2015;
Zheng et al. 2018). We first evaluate magicImpute with sim-
ulated data in four populations: the F2, the advanced inter-
cross recombinant inbred line (AI-RIL), the funnel scheme
eight-way RILs, and the cross-pollinated (CP). We then ana-
lyze four sets of real data: the maize F2 (Elshire et al. 2011),
the maize AI-RIL (Heffelfinger et al. 2014), the rice multiparent

advanced generation intercross (MAGIC) (Bandillo et al.
2013), and the apple CP (Gardner et al. 2014). The term
MAGIC has been used for many different types of breeding
designs, and the rice MAGIC is essentially a set of funnel
scheme eight-way RILs (Bandillo et al. 2013). In the eval-
uations by simulation and real data, we perform compari-
sons among magicImpute, Beagle version 4.1 (Browning and
Browning 2016), LB-Impute (Fragoso et al. 2016), and mpim-
pute (Huang et al. 2014); investigating, among other things,
how imputation quality depends on amount of missing data,
level of homozygosity, and coverage of sequencing.

Methods

Overview of model

Consider amapping population derived fromanumbernF $ 2
of founders. We assume that linkage groups (chromosomes)
are independent and thus consider only one group. The ge-
notypic data matrix of sampled offspring is denoted by
yO ¼ fytigt¼1:::T;i¼1:::N;with element yti representing the geno-
type at locus t in offspring i. The founder genotype matrix is
denoted by yF ¼ fyFt gt¼1:::T ; with element yFt being the geno-
types at locus t in all founders. We consider only biallelic
markers and denote the two alleles by 1 and 2. We model
either the called genotypes from SNP array or GBS data, or
the allelic depths of GBS data. The called, unphased genotype
at a locus can take one of six possible values: 11, 12, 22, 1U;
2U; or UU; where U denotes an uncertainty allele. For allelic
depth data, the genotype is measured by read counts for each
of two alleles. The ordering and genetic locations of markers
are assumed to be known.

We build an integrated HMM for the genotypic data yO

and yF ; but impute missing founder genotypes and missing
offspring genotypes separately. The imputation diagram
and the overview of the HMM are shown in Figure 1. Here,
the hidden founder haplotype matrix hF ¼ fhFt gt¼1:::T ;where
element hFt is similar to yFt except that it contains informa-
tion on missing genotypes and genotype phases at locus t in
founders. See an example in the following section on The
genotype model. Conditional on estimated ĥ

F
; the genotypic

data for each offspring are analyzed independently by a sub-
HMM, with xti being the hidden ancestral origin state at
locus t in offspring i. The HMM will be further explained
in The process model. See Table 1 for a list of symbols and
their brief explanations.

The genotype model

Called genotype: The genotype model corresponds to the
vertical relationships (arrows) in the directed acyclic graph of
the HMM (Figure 1). Since the genotypes are independent
conditional on the hidden states, we consider a single locus t.
We first model the prior probability P

�
hFt
��yFt

�
; which is as-

sumed to follow a discrete uniform distribution over all pos-
sible combinations under the constraint of called parental
genotypes yFt : Consider an example of four inbred founders
with genotypes at locus t denoted by 11, 22, UU; and UU;
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respectively. We use 12UU as a shorthand for the four homo-
zygous genotypes. Then, hFt can take one of four possible
values 1211, 1212, 1221, or 1222 with equal probability.
Consider the second example of a CP population and the
genotypes of two outbred parents which are denoted by
12 and UU: hFt can then take one of eight possible values,
1211, 1212, 1221, 1222, 2111, 2112, 2121, and 2122, where
the last four values account for the alternative phase of the
first parent’s genotype. The founder haplotype matrix hF is
known if all parental genotypes are observed and phased.

The hidden founder haplotype hFt is not the true founder
haplotype and it accounts for unknown phasing and missing
values of called founder genotypes, but not allelic errors. The
errors in called genotypes can be accounted for in the like-
lihood lti ¼ P

�
yti
���hFt ; xti; eO; eF

�
at locus t in offspring i,

where eO and eF are the allelic error probabilities for off-
spring and founders, respectively. The calculation of likeli-
hood lti has been described in detail in Zheng et al. (2015).
We describe it briefly as follows. We calculate lti by summing
over the hidden true genotype zti, and it holds that

lti ¼
X
zti

Pðytijzti; eOÞPðztijdti; xti; eFÞ;

Pðztijdti; xti; eFÞ} Pðdtijzti; xti; eFÞPðztijxtiÞ;

where dti denotes the derived genotype that is obtained from
xti and hFt in a deterministic way. We assign an uninfor-
mative prior to PðztijxtiÞ; and calculate Pðytijzti; eOÞ and
Pðdtijzti; xti; eFÞ; assuming that typing errors occur indepen-
dently and the observed allele is the alternative one if an
error occurs with probability eO or eF. Here the derived geno-
type dti is the same as true genotype zti if there are no errors in
observed founder genotypes (eF ¼ 0).

Allelic depth: We next consider the case that genotypes are
represented by allelic depths of GBS data. We calculate prior
probability P

�
hFt
��yFt

�
with yFt being called from founder allelic

depths, where the genotype calling will be described in the
next section. For likelihood lti at locus t in offspring i, only the
calculation of Pðytijzti; eOÞ is different from the case of called
genotypes.We introduce e as the sequencing error probability
that is given by e ¼ 102phred=10, where phred is Phred quality
score. The genotype yti is represented by ðr1; r2Þ; the number
of reads for alleles 1 and 2, respectively. It holds that

P
h
ðr1; r2Þ

��z9 ¼ 11; e
i
} ð12eÞr1er2 ;

P
h
ðr1; r2Þ

��z9 ¼ 12; e
i
} ð1=2Þr1þr2 ;

P
h
ðr1; r2Þ

��z9 ¼ 21; e
i
} ð1=2Þr1þr2 ;

P
h
ðr1; r2Þ

��z9 ¼ 22; e
i
} er1ð12eÞr2 ;

(1)

conditional on hidden genotype z9 (Xie et al. 2010).
We interpret eO as a depth-independence allelic error prob-

ability, for example, due to the mis-assignment of reads to the
reference genome. We assume that z9 results from the true
genotype zti with error probability eO: Thus, Pðytijzti; eO; eÞ
can be calculated by summing over z9 as follows:

P½yti ¼ ðr1; r2Þjzti; eO; e� ¼
X
z9

P
h
ðr1; r2Þ

��z9; e
i
Pðz9jzti; eOÞ;

where Pðz9jzti; eOÞ is similar to Pðytijzti; eOÞ in the case of
called genotypes, except that z9 is phased. Specifically for
zti ¼ 11; we have Pðz9jzti ¼ 11; eOÞ ¼ ð12eOÞ2; ð12 eOÞeO;
eOð12 eOÞ; and e2O for z9 ¼ 11; 12, 21, and 22, respectively.
And similarly for zti ¼ 12; 21, and 22. When there are no
ambiguities, we suppress the dependence of e for allelic depth
data in the description of the imputation algorithm.

Single genotype calling: We perform single genotype calling
for founder allelic depths of GBS data before imputation, and
for detecting potential erroneous genotypes among offspring
during the last stage of imputation. For single genotype calling

Figure 1 Overview of the imputation algorithm.
The left panel shows the diagram of magicImpute.
The right panel shows the directed acyclic graph of
the HMM for N offspring at T loci, where the arrows
denote probabilistic relationships that are described
in the Methods section. See Table 1 for the symbols
in the right panel. In the left panel, the second step
of founder imputation results in the estimate of hFt
and the third step of posterior decoding results in
the posterior probability of xot ; conditional on geno-
typic data yot and yFt for t ¼ 1:::T and o ¼ 1:::N:
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from allelic depths, we do not consider depth-independence
errors. The calling is based on the following posterior probability:

P½ztijyti ¼ ðr1; r2Þ; e�} Pðytijzti; eÞPðztiÞ;

where Pðytijzti; eÞ is given by Equation 1 and PðztiÞ ¼ 1=4;
1=2; and 1=4 for zti ¼ 11; 12, and 22, respectively. Note that
zti is unphased only in case of single genotype calling, and it is
phased elsewhere. The genotype with posterior probability
being greater than threshold Pcall is called. If no genotype is
called, we calculate the posterior probability

Pðzti ¼ 1Ujyti; eÞ ¼ Pðzti ¼ 11jyti; eÞ þ Pðzti ¼ 12jyti; eÞ;
Pðzti ¼ 2Ujyti; eÞ ¼ Pðzti ¼ 22jyti; eÞ þ Pðzti ¼ 12jyti; eÞ:

The genotype 1U is called if Pðzti ¼ 1Ujyti; eÞ. Pcall and
Pðzti ¼ 1Ujyti; eÞ. Pðzti ¼ 2Ujyti; eÞ; and similarly for geno-
type 2U: The genotype is set to UU if no calling occurs.

The process model

Theprocessmodel corresponds to thehorizontal relationships
(arrows) in the directed acyclic graph of the HMM (Figure 1).
It has been described in detail (Zheng et al. 2014, 2015;
Zheng 2015) and we give a brief summary in the following.
The process fxtigTt¼1 for offspring i describes how the ances-
tral origins change along chromosomes. At a locus t, let
xti ¼

�
xmti ; x

p
ti

�
be the ancestral origins on the maternally (m)

and paternally (p) derived chromosomes. If offspring i is fully
inbred, we have xmti ¼ xpti so that the ancestral origin process
along the maternally derived chromosome is the same as the
process along the paternally derived chromosome, and it is thus
termed “depModel.” On the other hand, if offspring i is com-
pletely outbred, the ancestral origin process along thematernally
derived chromosome fxmti gTt¼1 is independent of the process
fxptigTt¼1 along thepaternallyderived chromosome, and it is there-
fore termed “indepModel.” In the general model called “jointMo-
del,” xmti and xpti are modeled jointly. We have kept the model
terms (e.g., “jointModel”) consistent with Zheng et al. (2015).

In all three models, the ancestral origin process along two
chromosomes is assumed to follow a Markov process, so that
the ancestral origins xti at locus t depends only on xt21;i at
locus t2 1 but not on the previous fxt9;igt22

t9¼1: Thus, the joint
prior distribution of fxtigTt¼1 can be specified by the ini-
tial distribution pðx1iÞ and the transition probability
P
�
xti
��xt21;i

�
at t ¼ 2; . . . ;T: The initial distribution pðx1iÞ is

specified by the stationary distribution of theMarkov process,
so that the prior process model does not depend on the di-
rection of chromosomes. The initial distribution pðx1iÞ and
transition probability P

�
xti
��xt21;i

�
can be specified from the

breeding design of a mapping population, that is, how the
sampled offspring is produced from the founders; the transi-
tion probability also depends on intermarker distances. See
Zheng et al. (2014); Zheng (2015); and C. Zheng, M. P. Boer,

Table 1 List of symbols and their brief descriptions

Symbol Description

nF Number of founders
N Number of offspring
T Number of markers (loci)
hFt Hidden founder haplotype at locus t
hF Hidden founder haplotype matrix hF ¼ fhFt gt¼1:::T

xti Hidden ancestral origins at locus t in offspring i
xmti ; x

p
ti xti ¼ ðxmti ; xptiÞ on maternally (m) or paternally (p) derived chromosome

dti Genotype at locus t in offspring i that is completely determined by xti and hFt
zti Hidden true genotype at locus t in offspring i
yti Observed genotype at locus t in offspring i
yO Observed offspring genotype matrix yO ¼ fytigt¼1:::T ;i¼1:::N

yFt Observed genotypes for all founders at locus t
yF Observed founder genotype matrix yF ¼ fyFt gt¼1:::T

1U; 2U;UU Genotypes containing uncertain allele U
r1; r2 Number of reads for alleles 1 or 2
eO Allelic error probability for offspring, independent of read depths
eF Allelic error probability for founders, independent of read depths
phred Phred quality score
e Sequencing error probability e ¼ 102phred=10

pðx1iÞ Prior probability of x1i at locus 1 in offspring i
Pðxti

��xt21;iÞ Prior transition probability from xt21;i to xti
lti lti ¼ Pðyti jhFt ; xti ; eO; eF ; eÞ likelihood at locus t in offspring i
aðxti

��hFt Þ Posterior probability of xti conditional on hFt and genotypic data from loci 1 to t
~aðxti

��hFt Þ Unnormalized conditional posterior probability of xti
gðhFt Þ Posterior probability of hFt conditional on genotypic data from loci 1 to t

ĥ
F

t ; x̂ti ; ẑti Hats denote maximum likelihood estimates
Pcall Single genotype call if probability of most probable genotype is greater than threshold Pcall
Pimpute Impute if probability of most probable genotype is greater than threshold Pimpute

Pdetect Correct if probability of most probable genotype is greater than threshold Pdetect
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and F. A. van Eeuwijk, unpublished results, for the details of
calculating pðx1iÞ and P

�
xti
��xt21;i

�
under various breeding

designs.

Founder imputation

Because the state space of the HMM exponentially increases
with the number N of sampled offspring, the exact inference
of the founder haplotype matrix hF is computationally intrac-
table, even using the forward–backward algorithm (Rabiner
1989). In the following, we describe an approximate for-
ward–backward procedure for maximum likelihood estima-
tion of hF : Our forward algorithm calculates recursively the
posterior probabilities gðhFt Þ and a

�
xti
��hFt

�
for offspring

i ¼ 1; . . . ;N; conditional on genotypic data up to locus t. It
proceeds as follows:

Algorithm A.
A0. Initialize at t ¼ 1 :

~a
�
x1i

���hF1
�
¼ P

�
y1i

���hF1; x1i; eO; eF
�
pðx1iÞ;

g
�
hF1

�
} P

�
hF1

���yF1
�YN

i¼1

X
x1i
~a
�
x1i

���hF1
�
;

a
�
x1i

���hF1
�
¼ ~a

�
x1i

���hF1
�.X

x1i

~a
�
x1i

���hF1
�
:

A1. For t ¼ 2; . . . ;T :

~a
�
xti
���hFt

�
¼ P

�
yti
���hFt ; xti; eO; eF

�X
xt21;i

P
�
xti
���xt21;i

�

3
P
hF
t21

g
�
hFt21

�
a
�
xt21;i

��hFt21

�
;

g
�
hFt

�
} P

�
hFt

���yFt
�YN

i¼1

X
xti

~a
�
xti
���hFt

�
;

a
�
xti
���hFt

�
¼ ~a

�
xti
���hFt

�.X
xti

~a
�
xti
���hFt

�
;

where ~aðxti
��hFt Þ is an unnormalized probability and the nor-

malization constant for gðhFt Þ is not shown. The key approxi-
mation comes from the independence of offspring in the
calculation of gðhFt Þ: Zheng et al. (2016) have described a
similar forward algorithm for haplotype reconstruction in tet-
raploid populations.

Themaximum likelihood estimation of founder haplotypes is
based on the posterior probabilities aðxti

��hFt Þ and gðhFt Þ from
AlgorithmA. Themaximization proceeds backwardly as follows:

Algorithm B.
B0. Initialize at t ¼ T : ĥ

F
T ¼ argmax  gðhFTÞ and

x̂T;i ¼ argmax  aðxT;i
��hFTÞ for i ¼ 1; . . . ;N:

B1. For t ¼ T2 1; . . . ; 1 :

b
�
xti
��hFt

� ¼ a
�
xti
��hFt

�
P
�
x̂tþ1;i jxti

�
;

ĥ
F
t ¼ argmax  g

�
hFt

�YN

i¼1

X
xti

b
�
xti
��hFt

�
;

x̂ti ¼ argmax  b
�
xti
���ĥFt

�
:

It is possible that multiple argument values correspond to the
samemaximum. If such ties occur, we randomly choose one of
these values. Friel and Rue (2007) have described a similar
backward maximization algorithm for general factorizable
models.

Preliminary simulations showed that our forward–back-
ward procedure is occasionally less accurate on the left end
of chromosomes in cases of sparse data. We overcome this
problem by two rounds of maximization. Specifically, we
fix the founder haplotypes on the right-half chromosomes
(t.T=2) after the first round of maximization and then per-
form the second round with reversed chromosome direction.

Offspring imputation

Conditional on the imputed founder haplotype matrix ĥ
F
; all

the offspring are independent. For each offspring, we first
perform the posterior decoding algorithm to calculate
the posterior probabilities of ancestral origins at all loci
(Rabiner 1989; Zheng et al. 2015). We then calculate the
posterior probabilities of true genotypes, from which missing
genotypes can be imputed.

We obtain P
�
zti
���yO; ĥF

; eO; eF

�
by marginalizing the fol-

lowing joint posterior probability:

P
�
zti; xti

���yO; ĥF ; eO; eF
�
¼ P

�
zti
���dti; xti; eF

�
P
�
xti
���yO; ĥF; eO; eF

�
;

where the posterior probability P
�
xti
���yO; ĥF

; eO; eF

�
can be

calculated by the function magicReconstruct in the RABBIT
software (Zheng et al. 2015), which has been extended to
analyze allelic depths of GBS data. Here the derived genotype
dti is completely determined by xti and ĥ

F
t ; and the calculation

of Pðztijdti; xti; eFÞ has been described in The genotype model.
From themarginal posterior probabilityP

�
zti
���yO; ĥF

; eO; eF

�
;

we perform both imputation and error detection for off-
spring i. For imputation, the missing genotype in offspring
i at locus t is imputed to be ẑti if its marginal posterior prob-
ability is larger than a given threshold Pimpute. For error de-
tection, the observed called genotype yti is corrected if the
most probable genotype is different from yti and the maxi-
mal marginal posterior probability is larger than a given
threshold Pdetect:

Data simulation

We simulate sequence data, mimicking real data in the fol-
lowing mapping populations: the AI-RIL, the F2, the MAGIC
(funnel scheme eight-way RIL), and the CP. These popula-
tions differ in the number of founders and the heterozygosity
level of founders and offspring (Table 2). For each type of
mapping population, we simulate independently three sam-
ple sizes: 100, 200, and 500, that is, the number of sampled
offspring in the last generation. Independently for each type
of population with a given sample size, we first simulate the
breeding pedigree according to the corresponding real data.
The AI-RIL consists of five generations of random mating
starting from the F1 generation and six generations of selfing;
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the size of the random mating population is set to 1000. For
each offspring of the MAGIC, the founders are randomly per-
muted so that the number of funnels equals the sample size.

Given a breeding pedigree for each mapping population,
weassignaunique foundergenome label (FGL) toeach inbred
founder or to the haploid gamete of each outbred founder.We
simulate only one linkage group. Each offspring gamete is a
random mosaic of FGL blocks determined by chromosomal
crossovers between two parental chromosomes. The number
of crossovers in a gamete follows a Poisson distribution with
mean being the chromosome length in morgan, and the
positions of crossovers are uniformly distributed across the
chromosome. We set true founder haplotypes based on the
founders imputed from the available real data (see Table 2)
and obtain the true offspring genotypes by replacing FGLs
with the true founder haplotypes. We apply the same error
model to the true founder haplotypes with eF ¼ 0:005 and to
the true offspring genotypes with eO ¼ 0:005:

We simulate read count data for each obtained founder or
offspring genotype. Independently for each allele of a geno-
type, the number of reads is assumed to follow an exponential
distribution with mean being l/2, where we set l ¼ 8; the
number of erroneous reads follow a binomial distribution
with probability e ¼ 0:001; and the erroneous read corre-
sponds to the alternative allele. The allelic depths of geno-
types are obtained by combining reads of the two alleles. The
allelic depths of founder and offspring genotypes are reset to
be missing with probabilities 0.25 and 0.15, respectively. We
obtain 12 full data sets, three population sizes for each of the
four mapping populations, with average offspring read depth
6.8. To study the dependence of sequencing coverage, we
retain the same founder reads and randomly sample off-
spring reads with probability 22i for i ¼ 0; 1; . . . ; 10; result-
ing in a total of 132 test data sets.

Real data

Table 2 shows a summary of real data after filtering. For the
maize AI-RIL (Heffelfinger et al. 2014) and the maize F2
(Elshire et al. 2011), we use the GBS data that have been
prepared by Fragoso et al. (2016) as the input data of
LB-Impute. For the rice MAGIC (Bandillo et al. 2013), we
use the called genotypes that have been prepared by Huang

et al. (2014) for mpimpute. For the apple CP (Gardner et al.
2014), we filter the original allelic depth data by removing
markers with the missing fraction of called genotypes .50%
and by removing markers with segregation distortion at sig-
nificant level of 0.01. During the filtering process, a single
genotype is called with threshold Pcall ¼ 0:99 and 0.95 for
founders and offspring, respectively, as described in the pre-
vious section on Single genotype calling. The quality score is
set to phred ¼ 30 so that the sequencing error probability
e ¼ 102phred=10 ¼ 0:001:

Tocalculate imputationaccuracy,wemaska subset of high-
confidence genotypes and use them as the pseudotrue geno-
types. For the GBS data, the genotypes are first called with a
very large threshold Pcall ¼ 0:9999 and the quality scores
being 30 and 40 for apple and maize, respectively. The called
genotypes (excluding UU; 1U; and 2U) are masked with
probability being 0.25 and 0.05 for founders and offspring,
respectively. After masking, the fractions of founder geno-
types without reads are 0.23, 0.24, and 0.19 for the maize
AI-RIL, the maize F2, and the apple CP, respectively. The
fractions of offspring genotypes without reads are 0.77,
0.16, and 0.095. For each of the three masked full data sets,
we retain the same founder reads and randomly sample off-
spring reads with probability 22i for i ¼ 0; 1; . . . ; 10; result-
ing in 33 real sequencing data sets. For the called genotypes
of the rice MAGIC, the missing fraction of founder genotypes
after masking is 0.3. From this masked data set, five data sets
are produced independently by masking called offspring ge-
notypes to give missing fractions from 0.5 to 0.9 at step
size 0.1.

Algorithm evaluation

To set up the algorithm magicImpute, we perform sensitivity
analysis of Pimpute; Pdetect; and eO: For each mapping popula-
tion with size 200 and read depth 0.85, we impute the sim-
ulated data set with the input data being called genotypes
and the first two founders’ genotypes being not available. By
default, we set eF ¼ 0:005 and the input genotypes are called
from allelic depths with threshold Pcall ¼ 0:99 and 0.95 for
founders and offspring, respectively. Supplemental Material,
Figure S1 and Figure S2 show that the accuracies of imputa-
tion and error detection increase slightly with Pimpute from 0.6
to 0.95, while the fractions of imputation and error detection
decrease slightly. Figure S1 and Figure S2 also show that the
performances of imputation and error detection often be-
come a bit worse when eO increases by a factor of 10. The
effects of these parameters are marginal in general. Thus
we set somewhat arbitrarily Pimpute ¼ 0:9; Pdetect ¼ 0:9; and
eO ¼ 0:005 in the following evaluations. The algorithm mag-
icImpute also outputs the posterior probabilities of all possi-
ble genotypes for all offspring at all markers, from which we
can perform imputation and error detection with different
Pimpute and Pdetect:

We evaluate magicImpute by both simulated and real data
in the four types of mapping populations. For each of the
simulated data sets and the real GBS data sets, we run

Table 2 The running time (in seconds) of genotype imputation for
the four real data sets

Population Maize AI-RIL Maize F2 Rice MAGIC Apple CP

Number of SNPs 13,912 127,059 37,240 13,493
Founder type Inbred Inbred Inbred Outbred
Offspring type Inbred Outbred Inbred Outbred
Number of founders 2 2 8 2
Number of offspring 275 87 178 87
magicImpute 784 212 3170 627
Beagle version 4.1 178 31 445 39
LB-Impute 3698 3579 NA NA
mpimpute NA NA 406 NA
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magicImpute in the four combinations: the first two foun-
ders’ genotypes are available or not, and the input data are
allelic depths or called genotypes. Here the quality scores
are 30 for the simulated data and the real maize GBS data,
and 40 for the real apple GBS data. For the real rice data, we
run magicImpute in the two combinations: the first two
founders’ genotypes are available or not. Results of magi-
cImpute are compared with those of Beagle version 4.1 in
all populations. We run Beagle version 4.1 for the called
genotypes in two ways: without reference panels and using
the founder haplotypes imputed by magicImpute as the
reference panels. Additionally, we run LB-Impute for the
biparental populations AI-RIL and F2 with the input data
being allelic depths, and run mpimpute for the MAGIC
population with the input data being called genotypes.
LB-Impute and mpimpute do not work if some founders’
genotypes are not available. The running settings of magi-
cImpute, Beagle version 4.1, LB-Impute, and mpimpute are
described in File S1. See Swarts et al. (2014) and Fragoso
et al. (2016) for comparisons of FSFHap with Beagle and
LB-Impute.

Data availability

The algorithm magicImpute is implemented in Mathematica
11.0 (WolframResearch Inc.2016)and it hasbeen includedas
a function in the RABBIT software. RABBIT is available at
https://github.com/chaozhi/RABBIT.git and it is offered un-
der the GNU Affero general public license, version 3 (AGPL-
3.0). Example scripts for simulating genotypic data are
included. The real maize AI-RIL and F2 data have been de-
scribed by Heffelfinger et al. (2014) and Elshire et al. (2011),
respectively, and they have been prepared by Fragoso et al.
(2016) for LB-Impute. The rice MAGIC data have been de-
scribed by Bandillo et al. (2013) and they have been pre-
pared by Huang et al. (2014) for mpimpute. The apple CP
data are available from Gardner et al. (2014). Supplemental

material available at Figshare: https://doi.org/10.25386/
genetics.6854933.

Results

Simulation evaluation

Figure 2, Figure 3, Figure 4, Figure S3, Figure S4, Figure S5,
Figure S6, and Figure S7 show the comparisons among mag-
icImpute, Beagle, LB-Impute, and mpimpute in terms of im-
putation accuracy, error detection, and genotype phasing. All
results are obtained from the simulated populations of size
200, except Figure S4 that shows the effects of population size.

Imputation accuracy: Figure 2 and Figure S3 show the com-
parisons of imputation accuracy. One of the most striking
patterns is that there are break points for magicImpute and
Beagle but not for LB-Impute and mpimpute. As shown in
Figure 2 for the imputation accuracy of offspring genotypes,
the break points of magicImpute are 0.053, 0.11, 0.21, and
0.21 read depth for the AI-RIL, the F2, the MAGIC, and the
CP, respectively; much lower than the break points of 0.42,
3.4, 0.85, and 3.4 read depth for Beagle. As shown in the left
panels of Figure S3, the break points of magicImpute for
founder imputation are the same as those for offspring impu-
tation; Beagle does not impute founder genotypes.

As for mpimpute and LB-Impute, they perform slightly
worse than magicImpute. The imputation accuracy of
mpimpute is �1.7% lower than that of magicImpute
when read depth .0.21 (Figure 2C). The imputation ac-
curacies of LB-Impute at the highest read depth are sim-
ilar to those of magicImpute, but they decrease gradually
with decreasing read depth. In addition, the imputation
fractions of LB-Impute at the highest read depth are
�0.8, much smaller than those of magicImpute (Figure
S3, B and D).

Figure 2 Simulation evaluation on the
accuracy of imputing offspring geno-
types. (A–D) The results for the AI-RIL,
the F2, the MAGIC, and the CP, respec-
tively, are shown. In the figure legend on
the right side, “_AD” denotes that the
input data are allelic depths rather than
called genotypes, “_NoP” denotes that
the first two founders’ genotypes are
not available, and “_Ref” and “_NoRef”
denotes whether Beagle uses founder
haplotypes as reference panels or not.
When the input data are called geno-
types, complete homozygosity is as-
sumed for the AI-RIL and the MAGIC,
and thus their missing fractions on the
top axes are smaller than those of the F2
and the CP at the same depths.
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The unavailability of the first two founders’ genotypes has
no noticeable effects on the performance of magicImpute for
the AI-RIL, the F2, and the MAGIC, as long as read depth is
higher than the break point. However, for the CP, the avail-
ability of the two outbred founders’ genotypes results in�2%
lower accuracy of imputing founder genotypes (Figure S3G)
due to the calling errors in the available founder genotypes.
As a result, the imputation accuracy of offspring genotypes is
�4% lower (Figure 2D).

Whether the input data are allelic depths or called geno-
types has little influence on the performance of magicImpute.
However, for the almost homozygous populations AI-RIL and
MAGIC, the ceiling limit of imputation accuracy decreases
with increasing read depth instead of leveling off (Figure 2, A
and C). This is due to the assumption of homozygosity during
the prior genotype calling and the information on residual
heterozygosity is lost after transforming allelic depths into
called genotypes. The percentage of heterozygotes among
missing genotypes increases with increasing read depth and
they are always missing and wrongly imputed.

Figure S4 shows that the main effect of population size is
shifting the break points of the imputation accuracy obtained
by magicImpute and Beagle.

Error detection: We evaluate the error detection of magi-
cImpute in the case of the input data being called genotypes. A
suspicious genotype error is detected by magicImpute when
the most-probable true genotype is different from the input
called genotype and the maximum posterior probability is
larger than the default threshold Pdetect ¼ 0:9: As shown in
Figure 3 and Figure S5, the unavailability of the first two

founders’ genotypes greatly improve the error detections
for the F2, the CP, and the AI-RIL, but it has little effects on
the MAGIC with multiple founders. This indicates that the
errors in the available founder genotypes adversely affect the
detection of offspring genotypes.

Figure 3 and Figure S5 show that the error detection in the
almost homozygous populations AI-RIL and the MAGIC is
much worse than in the F2 and the CP. This is due to the
homozygosity assumption under which the input genotypes
are being called for the AI-RIL and theMAGIC; most offspring
genotype errors are heterozygous and they cannot be de-
tected and corrected when the heterozygosity information
is lost during the prior genotype calling. Figure S6 shows that
the error detection in the AI-RIL and the MAGIC is much
better when homozygosity is not assumed.

Genotype phasing: We evaluate the phasing accuracy for the
heterozygous populations F2 and CP obtained by magicIm-
pute and Beagle; mpimpute and LB-Impute do not perform
phasing. The phasing accuracy is measured in two ways: the
switch accuracy is defined as one minus the number of
switches divided by the number of opportunities for switch
error, and the heterozygous accuracy denotes the percentage
of correctly phased heterozygous genotypes. A switch error
occurs if the heterozygous genotype at a site has phase
switched relative to that of the previous heterozygous site.

As shown in Figure 4 and Figure S7, the phasing accuracy
has similar patterns and the same break points as those of the
imputation accuracy (Figure 2) for magicImpute and Beagle,
so that the phasing of magicImpute is more robust to missing
data. For the CP, the switch accuracy and the heterozygous

Figure 3 Simulation evaluation on the error
detection in offspring genotypes. (A–D)
Shown are the results for the AI-RIL, the F2,
the MAGIC, and the CP, respectively, which
are obtained by magicImpute with the first
two founders’ genotypes being unavailable
and the input data being called genotypes.
The false detection rate (•) denotes the per-
centage of estimated suspicious genotype
errors being not true errors, the true correc-
tion rate (n) denotes the percentage of esti-
mated suspicious genotype errors being true
and being corrected into the true genotypes,
and the undetected rate (:) denotes the
percentage of true genotype errors being
undetected.
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accuracy of magicImpute are close to 1 when read depth is
higher than the break point, whereas the heterozygous accu-
racy of Beagle is ,0.8. The difference between switch and
heterozygous accuracy indicates that the wrongly phased
heterozygous genotypes occur in blocks and they could be
corrected by a few switches between the two haplotypes
within an offspring.

Figure 4 and Figure S7 show that the availability of the
two founders’ genotypes are unimportant to genotype phas-
ing. The phasing accuracy of Beagle increases slightly when
read depth is higher than the break point. However, for mag-
icImpute in the CP, the ceiling limit of phasing accuracy
decreases a bit, consistent with the decrease of ceiling impu-
tation accuracy because of the errors in the available founder
genotypes.

Evaluation by real data

Figure 5 and Figure S8 show the results of genotype imputation
obtained from the real data in the four mapping populations.

Error detection and genotype phasing cannot be evaluated since
true genotypes and phases are not available; the imputation
accuracy is calculated based on masked genotypes. Figure 5
shows the patterns similar to those of the simulation evaluation.
The break points for magicImpute are at much lower read
depths or largermissing fractions than Beagle. ThemagicImpute
accuracy is slightly larger than that of mpimpute and it is always
high until the break point. In contrast to that, the LB-Impute
accuracy decreases gradually with read depth.

Maize AI-RIL and F2: Figure 5, A and B, and Figure S8, A–D,
show the results of genotype imputation in the real biparental
populations AI-RIL and F2. For magicImpute, the offspring
imputation accuracies at the highest read depth are higher
than 0.980 in the AI-RIL and 0.987 in the F2. The correspond-
ing accuracies are 0.970 and 0.986 for Beagle, whereas they
are 0.917 and 0.986 for LB-Impute. The imputation fractions
at the highest read depth for both magicImpute and Beagle
are .0.960, whereas for LB-Impute they are 0.720 in the
AI-RIL and 0.906 in the F2.

Fragoso et al. (2016) obtained the imputation accuracies
0.970 for the AI-RIL and 0.946 for the F2, and the differences
may be due to the masking of founder genotypes and the
usage of a small genotype error probability for magicImpute.

Rice MAGIC: Figure 5C shows that the imputation accuracies
of magicImpute andmpimpute are almost independent of the
missing fraction of the input offspring genotypes in the range
from 0.5 to 0.9. On average, the offspring imputation accu-
racy of magicImpute is higher than that of mpimpute by
2:5%: The Beagle imputation accuracy is comparable to that
of magicImpute when the missing fraction is no greater than
the break point of 0.7.

Figure S8E shows that the founder imputation accuracies
are �0.94 and 0.89 for mpimpute and magicImpute, respec-
tively; whereas they are close to 1 in the simulation evalua-
tion. The imputation fraction of founder genotypes for
mpimpute gradually decreases from 0.947 to 0.922 with in-
creasingmissing fraction (Figure S8E); magicImpute imputes
all missing founder genotypes. As a result, the offspring im-
putation fraction of mpimpute decreases rapidly from 0.92 to
0.6, whereas it is always �0.96 for magicImpute (Figure
S8F).

Apple CP: Figure 5D shows the results of offspring imputa-
tion accuracy obtained from the real apple data. The impu-
tation accuracy of magicImpute decreases from 0.94 to 0.88
when read depth decreases from 15 to 0.46, in comparison
with the almost constant accuracy of 0.96 in the simulated
results in Figure 2D. The Beagle imputation accuracy is com-
parable to that of magicImpute when read depth is no less
than the break point of 3.7.

As shown in Figure S8G, the founder imputation accuracy
of magicImpute at the highest read depth is �0.96 when the
two founders’ genotypes are available, whereas it decreases
to 0.75 when the two founders’ genotypes are missing. The

Figure 4 Simulation evaluation on the offspring genotype phasing. (A
and B) The results obtained by magicImpute and Beagle for the F2 and the
CP, respectively, are shown. For magicImpute, the first two founders’
genotypes are unavailable (_NoP) and for Beagle there are no reference
panels (_NoRef). The solid lines denote the switch accuracy (_Switch),
one minus the percentage of switch errors to obtain the true haplotype
phase; the dashed lines denote the percentage of correctly phased het-
erozygous genotypes (_Hetero).
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low accuracy is very likely because of the mix up of the im-
puted genotypes between the two founders.

Running time: The running times for the four real data sets at
the highest read depths or the smallest missing fractions are
given in Table 1. Beagle is fastest in all populations. For the
biparental populations, LB-Impute is much slower than mag-
icImpute. And for the rice MAGIC, mpimpute is similar to
Beagle, and faster than magicImpute.

The main computational load of magicImpute is the first
two steps for founder imputation and phasing (Figure 1). The
founder imputation of mpimpute and LB-Impute is based on
the decoding algorithm of the sub-HMM for each offspring,
corresponding to the third step of magicImpute.

Discussion

We have implemented an HMM framework magicImpute for
genotype imputation from low-coverage sequence or SNP
array data. The evaluations by simulation and real data in
the four types of mapping populations demonstrate that
magicImpute is accurate and flexible, despite the population
being multiparental, founders being missing, founders being
heterozygous, offspring being heterozygous, or sequencing
coverage being low. The simulation evaluations also demon-
strate the good performance of magicImpute for error de-
tection and genotype phasing.

Although the dependence of imputation accuracy on se-
quence coverage varies with population size, marker density,
and distribution of reads; magicImpute performsmuch better
than Beagle, LB-Impute, andmpimpute at very low coverage.
Beagle breaks down at much higher read depth in heterozy-
gous populations than in almost homozygous populations,
probably because of unsuccessful prephasing of Beagle impu-
tation for heterozygous populations. Alternative prephasing
methods might increase the follow-up imputation accuracy

(Whalen et al. 2017). The LB-Impute accuracy in biparental
populations decreases with decreasing read depth, probably
because the number ofmarkers in theMarkov trellis window is
only 7 by default (large window size would result in dramatic
increases in running time). The lower LB-Impute accuracy in
the real AI-RIL than in the simulated AI-RIL may be due to the
heavy-tailed distribution of read depth in the real data and its
inability of borrowing distant marker information.

Low-coverage sequencing can be represented as allelic
depths or called genotypes for the input of magicImpute.
The simulation and real evaluations show that the prior
transformation of allelic depths into called genotypes has
no appreciable effects if homozygosity is not assumed for
the transformation in almost homozygous populations. This
indicates that little information is lost in the prior transfor-
mation, where the two half called genotypes (1U and 2U)
keep sequence read information efficiently. Genotype likeli-
hoods, a probabilistic representation of low-coverage se-
quencing, have been alternatively used in many imputation
methods such as Beagle version 4.1.

It is implicitly assumed by magicImpute that sequencing
reads are too short to cover more than two polymorphic sites
and the phasing information of long reads is ignored. Thus
magicImpute would not rely on long reads. For very-low-
coverage sequencing, the distances between detected neigh-
bor polymorphic sites are expected to be too long, and very
long reads are thus required to keep the phasing information.
On the other hand, our HMM imputation framework provides
a solid step for the extension to use phasing information.

One key assumption of magicImpute is no segregation
distortion when incorporating breeding design information
into theHMM.Theassumption is not expected tobeaproblem
for biparental populations with only two inbred founders, as
confirmed in our real data evaluation. For theMAGIC and the
CP, the founder imputation accuracies in the real data eval-
uations are lower than simulation results, probably because of

Figure 5 The accuracy of imputing offspring
genotypes from real data. (A–D) The results
for the AI-RIL, the F2, the MAGIC, and the
CP, respectively, are shown. In the figure
legend on the right side, “_AD” denotes
that the input data are allelic depths rather
than called genotypes, “_NoP” denotes that
the first two founders’ genotypes are not
available, and “_Ref” and “_NoRef” de-
notes whether Beagle uses founder haplo-
types as reference panels or not. Allelic
depth data are not available for the MAGIC.
The extreme large missing fraction or low
read depth shows how genotype imputation
approaches random imputation with de-
creasing amount of the input data. In (A)
the large variation of imputation accuracy
of LB-Impute at low read depths is due to
the corresponding imputation fraction being
close to 0 (Figure S8B).
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segregation distortion in the real data. For real MAGIC,
magicImpute has higher offspring imputation accuracy and
lower founder imputation accuracy than mpimpute, indicat-
ing that theoffspring imputation is not affectedby thepossible
segregation distortion.

Second, magicImpute assumes that the input genetic map
is correct, as do Beagle, LB-Impute, and mpimpute. The
assumption contributes to the differences of ceiling offspring
imputation accuracy between simulation and real data eval-
uations. For the real apple CP,Gardner et al. (2014) estimated
the proportion of markers that are inconsistent with the phys-
ical grouping is as high as 18:3%; which might explain why
the accuracy is relatively low (from 0.88 to 0.94) when read
depth is no less than the break point (Figure 5D). See for
example Money et al. (2015) and Rutkoski et al. (2013) for
map-independent imputations in association panels.

Another assumption of magicImpute is on the conditional
independence of offspring. In the approximate forward algo-
rithm for founder imputation, offspring are assumed to be
independent given the posterior probabilities up to the current
time. This approximation is well validated by the very accurate
founder imputation in the simulation evaluations. Conditional
onthe imputedfounderhaplotypes,offspringareassumedtobe
independent, which is not always true because these offspring
share parents in the intermediate generations. The algorithm
magicImpute partly accounts for this relationship by the pre-
calculated HMM parameters based on available breeding ped-
igrees and thus the offspring imputation uses the marker
informationof the others indirectly via the founder imputation.

In conclusion, we have demonstrated that magicImpute is
more accurate and robust to low sequencing depth than the
current methods because magicImpute can incorporate ex-
perimental design and use marker data efficiently. Further-
more, magicImpute is not restricted to specific experimental
designs and it can perform parental imputation and phasing
in situations where most current methods are incapable.
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