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ABSTRACT This study presents a method for genomic prediction that uses individual-level data and summary statistics from multiple
populations. Genome-wide markers are nowadays widely used to predict complex traits, and genomic prediction using multi-
population data are an appealing approach to achieve higher prediction accuracies. However, sharing of individual-level data across
populations is not always possible. We present a method that enables integration of summary statistics from separate analyses with the
available individual-level data. The data can either consist of individuals with single or multiple (weighted) phenotype records per
individual. We developed a method based on a hypothetical joint analysis model and absorption of population-specific information.
We show that population-specific information is fully captured by estimated allele substitution effects and the accuracy of those
estimates, i.e., the summary statistics. The method gives identical result as the joint analysis of all individual-level data when complete
summary statistics are available. We provide a series of easy-to-use approximations that can be used when complete summary statistics
are not available or impractical to share. Simulations show that approximations enable integration of different sources of information
across a wide range of settings, yielding accurate predictions. The method can be readily extended to multiple-traits. In summary, the
developed method enables integration of genome-wide data in the individual-level or summary statistics from multiple populations to
obtain more accurate estimates of allele substitution effects and genomic predictions.
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GENOME-WIDE markers are nowadays widely used in
animal and plant breeding to predict complex traits.

This prediction is based on a linear model that partitions
for each individual the observed complex phenotype value
into systematic effects, comprising at least a population
mean, an individual genetic value, and an environmental
deviation (Fisher 1918). With genome-wide markers, indi-
vidual genetic values can be computed from allele substitu-
tion effects estimated from individual-level phenotype and
genotype data (Meuwissen et al. 2001). Subsequently, ge-
netic values can be also computed for individuals of interest
that are genotyped, but not phenotyped. This process is

commonly called genomic prediction. In animal and plant
breeding, genetic values are used to identify genetically
superior individuals and use them as parents of the next gen-
eration to improve complex traits like milk yield (Meuwissen
et al. 2001; VanRaden 2008) or grain yield (Schulthess et al.
2016). In human genetics, genetic values can be used to pre-
dict individual genetic risk for complex diseases to inform pre-
ventive and personalizedmedicine (de los Campos et al. 2010;
Wray et al. 2013; Pasaniuc and Price 2017).

Accuracy of estimated allele substitution effects and of
resulting genetic values for complex traits are foremost a
function of the number of individuals with available pheno-
types and genotypes (Daetwyler et al. 2008). Tomaximize the
prediction accuracy, use of all available data are recom-
mended (Henderson 1984; Wray et al. 2013; Vilhjálmsson
et al. 2015). In some small populations, collecting large
amounts of data are not possible, and a joint analysis across
multiple populations is needed to achieve high accuracy
(Hozé et al. 2014; Wientjes et al. 2016). However, such joint
analysis is often impossible, because of logistic or privacy
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considerations (Powell andNorman 1998;Maier et al. 2018).
Therefore, several methods were proposed to enable analysis
of data frommultiple populations when individual-level data
are not available (Pasaniuc and Price 2017; Liu and Goddard
2018; Maier et al. 2018). These methods, often called meta-
analyses (Pasaniuc and Price 2017), approximate a joint
analysis by first obtaining summary statistics from separate
analyses of individual-level data for each population, and
then combining these summary statistics to estimate genetic
values. In human genetics, summary statistics usually con-
sist of publically available allele substitution effects, i.e.,
genome-wide associations, together with their SE, esti-
mated independently for each marker (Yang et al. 2012;
Vilhjálmsson et al. 2015; Maier et al. 2018). In livestock,
summary statistics more likely consist of allele substitu-
tion effects estimated jointly for all markers, together with
prediction error (co)variances (Liu and Goddard 2018).
While these methods may increase prediction accuracy in
comparison to separate analyses, a loss in prediction ac-
curacy is expected relative to an analysis using all individ-
ual-level data due to approximations (Maier et al. 2018).
Further, these methods are based on some assumptions
that make them difficult to apply outside their context of
development. For example, Maier et al. (2018) implicitly
assumed that only a single phenotype record per trait was
associated with an individual. While this is usually the
case in human genetics, it is not in breeding populations
where individuals may have repeated phenotype records
for the same trait, e.g., repeated longitudinal production
or reproduction records in livestock or replicated field tri-
als in crops, or when phenotype records are measured on a
group of individuals and linked to a genotyped relative,
e.g., progeny tested bulls for dairy production. Also, these
developed methods do not allow combining individual-
level data from some and summary statistics from other
populations in one analysis (Liu and Goddard 2018; Maier
et al. 2018).

The objective of this study was to develop a method that
jointly analyses individual-level data and summary statistics
from multiple populations with no, or a limited amount of,
approximation. The method assumes that individual-level
data are composed of marker genotypes and phenotype re-
cords that potentially have a variable number of replicates per
individual. Further, summary statistics are assumed to be
composed of estimated allele substitution effects with an
associated measure of accuracy. Different measures of accu-
racy can be used, which controls the amount of approxima-
tion. The developedmethod is validated with simulated data.
The results showthat themethodenablesaccurate integration
of different sources of information across a wide range of
settings.

Materials and Methods

The first part of this section describes the theory of (1) sep-
arate and joint analyses of two individual-level datasets,

(2) an exact integration of estimated allele substitu-
tion effects from one population into the analysis of
another, (3) approximate integrations, and (4) general-
ization for multiple populations. The second part de-
scribes simulations used for validation of the developed
method.

Theory

Assume we have two populations with independent
individual-level datasets of phenotyped and genotyped
individuals. The two populations and their corresponding
datasets are hereafter referred to as 1 and 2. Further assume
that both datasets contain the same markers. From this
data we want to obtain accurate estimates of allele sub-
stitution effects and genetic values for complex traits. We
can achieve this by a joint analysis of the twodatasets.When
one of the datasets is not available, we can achieve this
by integrating the results of a separate analysis of the un-
available data into the separate analysis of the available
dataset.We show how to perform this integration exactly or
approximately.

Separate and joint analyses: A standard marker model,
using random regression on marker genotypes, for the sepa-
rate analysis of dataset i (i = 1, 2) is:

yi ¼ Xib
*
i þ ZiWiai

* þ e*i ; (1)

where yi is a nobs;i 31 vector of phenotypes, b*
i is a nf ;i 3 1

vector of fixed effects that are linked to yi by a nobs;i 3 nf ;i
incidence matrix Xi, ai

* is a nmar 3 1 vector of allele substitu-
tion effects that are linked to yi by a nobs;i 3 nind;i incidence
matrix Zi and a nind;i 3 nmar matrix of genotypesWi; and e*i is
the vector nobs;i 3 1 of residuals. In this work we consider
single-nucleotide polymorphism markers, which we code in
Wi as 0 for homozygous aa, 1 for heterozygous aA or Aa, and
2 for homozygous AA. Other genotype coding and centering,
that is of the form ðWi � 1v

0
iÞwith 1 being a nind;i 3 1 vector of

ones and vi being a nmar 3 1 vector, can be used with no
difference in obtained estimates of allele substitution effects
(Strandén and Christensen 2011). We assume a prior multi-
variate normal (MVN) distribution for allele substitution ef-
fects for the separate analysis of the dataset i, ai

*, with mean
zero and covariance Bis

2
ai
; ai

* � MVNð0;Bis
2
ai
Þ; where Bi is a

nmar 3nmar diagonal matrix (e.g., an identity matrix I), and
s2
ai

is the variance of allele substitution effects. We also as-
sume that residuals are multivariate normally distributed
with mean zero and covariance Ris

2
e ; e

*
i � MVNð0;Ris

2
e Þ;

where Ri is a nobs;i 3nobs;i diagonal matrix (e.g., an identity
matrix I), and s2

e is the residual variance. For simplicity,
and without loss of generality, it is assumed in the follow-
ing that residual variances are the same for all separate
and joint analyses. Variance components s2

ai
and s2

e are as-
sumed known, as they will have been estimated from the
data previously. This marker model is the ridge regression
model (Hoerl and Kennard 1976; Whittaker et al. 2000;

54 J. Vandenplas, M. P. L. Calus, and G. Gorjanc



Meuwissen et al. 2001; de los Campos et al. 2012) with op-
tional different weights inBi (to differentially shrink different

loci) and Ri (to account for heterogeneous residual variance
due to variable number of repeated phenotype records per
individual).

Separate estimates of allele substitution effects cai
* are

obtained by solving the following system of equations:"
X9
iR

21
i s22

e Xi X9
iR

21
i s22

e ZiWi
W9

iZ
9
iR

21
i s22

e Xi W9
iZ

9
iR

21
i s22

e ZiWi þ B21
i s22

ai

#�cb*
icai
*

�

¼
�

X9
iR

21
i s22

e yi
W9

iZ
9
iR

21
i s22

e yi

�
:

(2)

Separate estimates of genetic values for individuals in a data-
set i (i = 1, 2) are obtained by bg*

i ¼ Wi
cai
*:

A marker model for the joint analysis of two datasets 1
and 2 is:

�
y1
y2

�
¼
�
X1 0
0 X2

��
b1
b2

�
þ
�
Z1W1
Z2W2

�
aþ

�
e1
e2

�
; (3)

wherephenotypes fromthe twopopulations aremodeledwith
population-specific fixed effects ðb1;b2Þ; but a joint set of
allele substitution effects ðaÞ:We assume a MVN prior distri-
bution for allele substitution effects with mean zero and co-
variance BJs

2
aJ
;a � MVNð0;BJs

2
aJ
Þ;where BJ is a nmar 3nmar

diagonal matrix, and s2
aJ

is the variance of allele substi-
tution effects in the joint analysis. We also assume that re-
siduals are multivariate normally distributed, specifically�
e1
e2

�
� MVN

 �
0
0

�
;

�
R1 0
0 R2

�
s2
e

!
where Ri is a

nobs;i 3 nobs;i diagonal matrix.

Joint estimates of allele substitution effects â are obtained
by solving the following system of equations:

Joint estimates of genetic values for individuals in a dataset i
(i = 1, 2) are obtained by bgi ¼ Wiâ:

Exact integration: The integration of estimates of allele
substitution effects from one dataset into the analysis
of another can be performed by means of absorbing cor-
responding equations in the joint system of equations.
We choose to integrate estimates from the dataset 1 into
the analysis of dataset 2. Derivations in Appendix A1 lead to
the following system of equations that performs such in-
tegration and gives equivalent estimates of allele substitu-
tion effects to the joint analysis (Eq. 4):

where ca1
* are estimates of allele substitution effects from

the separate analysis of dataset 1 using (Eq. 2), and�
PEC

�ca1
*
��21

is the inverse of the corresponding predic-

tion error covariance (PEC) matrix. The latter can be

obtained as
�
PEC

�ca1
*
��21

¼ W9
1Z

9
1M1s

22
e Z1W1 þ B21

1 s22
a1

with M1 ¼ ðR21
1 2R21

1 X1ðX9
1R

21
1 X1Þ

21
X9
1R

21
1 Þ. Note that

only the individual-level dataset 2 and summary statistics
from the dataset 1 (i.e., the estimated allele substitution
effects and their PEC) are required. Individual-level data-
set 1 is therefore not required.

It is worth noting that the integration of estimates of
allele substitution effects from the dataset 1 into the analysis
of dataset 2 can also be obtained from a Bayesian context.
Bayes estimators for linear mixed models were discussed by
several authors (Lindley and Smith 1972; Dempfle 1977;
Gianola and Fernando 1986). In a Bayesian context, we can
assume the following prior multivariate normal distributions
for the marker model (Eq. 1) applied to dataset 2:

24 X9
1R

21
1 s22

e X1 0 X9
1R

21
1 s22

e Z1W1
0 X9

2R
21
2 s22

e X2 X9
2R

21
2 s22

e Z2W2
W9

1Z
9
1R

21
1 s22

e X1 W9
2Z

9
2R

21
2 s22

e X2 W9
1Z

9
1R

21
1 s22

e Z1W1 þW9
2Z

9
2R

21
2 s22

e Z2W2 þ B21
J s22

aJ

3524cb1cb2
â

35 ¼
24 X9

1R
21
1 s22

e y1
X9
2R

21
2 s22

e y2
W9

1Z
9
1R

21
1 s22

e y1 þW9
2Z

9
2R

21
2 s22

e y2

35
(4)

"
X9
2R

21
2 s22

e X2 X9
2R

21
2 s22

e Z2W2

W9
2Z

9
2R

21
2 s22

e X2
�
PEC

�ca1
*
��21

þW9
2Z

9
2R

21
2 s22

e Z2W2 2B21
1 s22

a1
þ B21

J s22
aJ

#"cb2
â

#
¼
"

X9
2R

21
2 s22

e y2�
PEC

�ca1
*
��21ca1

* þW9
2Z

9
2R

21
2 s22

e y2

#
; (5)
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h
b*
2 jb2;U2

i
� MVNðb2;U2Þ;

where b2 is a mean vector and U2 is a (co)variance matrix,

h
a*
2

��B2s
2
a2

i
� MVN

�
0;B2s

2
a2

�
;

and h
e*2
��R2s

2
e

i
� MVN

�
0;R2s

2
e
�
:

Assuming a noninformative prior for b*
2; the system of equa-

tions (2) for dataset 2 can be obtained by differentiating the
joint posterior distribution of b*

2 and a*
2 with respect to b*

2
and a*

2; and setting the derivatives equal to 0 (Gianola and
Fernando 1986). Integration of estimates of allele substitu-
tion effects from dataset 1 into the analysis of dataset 2 can be
therefore obtained by defining a MVN prior distribution for
allele substitution effects in the analysis of dataset 2 using the
posterior distribution for allele substitution effects from a
separate analysis of dataset 1:h
a
��ca1

*; PEC
�ca1

*
�
;B1s

2
a1
;BJs

2
aJ

i
� MVN

�
Q
�
PEC

�ca1
*
��21ca1

*;Q
�
;

(6)

Q ¼
 	

PEC
�ca1

*
�
21

2B21
1 s22

a1
þ B21

J s22
aJ

!21

:

The matrix Q can be considered as the PEC matrix
of a hypothetical separate analysis of dataset 1 using
the MVN prior distribution for allele substitution ef-

fects of the joint analysis, that is a1
* � MVNð0;BJs

2
aJ
Þ

and Q ¼ �W9
1Z

9
1M1s

22
e Z1W1 þ B21

J s22
aJ

�21
; and the vector

Q

 
PEC

�ca1
*
�!21 ca1

* can be considered as the estimated

allele substitution effects of this hypothetical separate anal-
ysis. In animal breeding, a similar approach was used to
integrate estimated genetic values and associated accura-
cies from one genetic evaluation into another genetic evalua-
tion (Quaas and Zhang 2006; Legarra et al. 2007; Vandenplas
and Gengler 2012).

Finally, it is worth noting that the term
�
PEC

�ca1
*
��21ca1

*

can be interpreted as a vector of hypothetical or pseudophe-
notype records associated with allele substitution effects,
and, as such, summarize available information in dataset
1. In this sense, the system (Eq. 5) is similar to approaches
that compute pseudorecords associated with individuals,
from available estimated genetic values where individual-
level phenotypic information is not readily available, or is
not measured on the individuals themselves but on close
relatives. In animal breeding, these approaches are com-
monly known as deregression of estimated genetic values
(Jairath et al. 1998).

Approximate integration: Exact integration requires the in-
verse of PECmatrix from the separate analysis,which could be
approximated when unavailable. Genomic analyses of com-
plex traits that combine different datasets commonly have
access to estimated allele substitution effects and associated
prediction error variances (in different forms), but not the
whole PEC matrix PEC

�ca1
*
�
required in (5). We propose sev-

eral ways to accommodate this situation. We assume that we
know, at least, the prediction error variances (PEV) of esti-
mated allele substitution effects

�
PEV

�ca1
*
��

; the number of
individuals ðnind;1Þ; and variance components used in the
separate analysis of dataset 1 (s2

a1
and s2

e ).
When only the PEV of the estimated allele substitution

effects
�
PEV

�ca1
*
��

are known, while PEC are not, then we

can approximate
�
PEC

�ca1
*
��21

with
�
PEV

�ca1
*
��21

: This ap-

proximation would be accurate if the matrix product W9
1W1

has (close to) zero off-diagonal elements, which is dependent
on the characteristics of genotypes in dataset 1 (e.g., allele
frequencies, linkage disequilibrium (LD), and population/
family structure). If this is not the case, the approximation
will bias the analysis by ignoring off-diagonal elements.

When allele frequencies and LD correlations in data-
set 1 are known, we can obtain a good approximation of
PEC

�ca1
*
�
under some conditions (one phenotype record per

individual, homogenous residual variance, overall mean is
the only fixed effect, and Hardy-Weinberg equilibrium). Deri-
vations in Appendix A2 show that, under these conditions, we
can approximate PEC

�ca1
*
�

with ðW9
1W1s

22
e þ B21

1 s22
a1

Þ21

with the unknown matrix W9
1W1 approximated from

commonly available population parameters (i.e., allele fre-
quencies and LD correlation) as 4nind;1pp9þ V

1
2CV

1
2; where

p is a nmar 3 1 vector of allele frequencies, V is a nmar 3 nmar
diagonal matrix of expected genotype sum of squares with
the i-th diagonal element equal to nind;12pi;1ð12 pi;1Þ, and C
is a nmar 3 nmar matrix of pairwise genotype correlations be-
tween markers. In practice, the matrix C for dataset 1 could
be unknown, but we can approximate it by using a reference
panel that includes, for example, available genotypes of non-
phenotyped individuals originating from this population
(Yang et al. 2012; Vilhjálmsson et al. 2015;Maier et al. 2018).

Finally, we relax the assumption of having a single pheno-
type record per individual in the preceding approximations.
This is relevant when individuals have repeated phenotype
records, e.g., repeated longitudinal production or reproduc-
tion records in livestock or replicated field trials in crops. A
related issue is the violation of assumption of homogenous
residual variance when phenotype records are first prepro-
cessed and then used in genomic analyses, e.g., deregressed
progeny proofs in livestock (e.g., Garrick et al. 2009) or ad-
justed field trial means in crops (e.g., Schulz-Streeck et al.
2013; Oakey et al. 2016; Damesa et al. 2017). For these
situations, we show in Appendix A3 that we can approximate

PEC
�ca1

*
�

with
	
L1

�
4pp9þC

1
2CC

1
2

�
L1s

22
e þ B21

1 s22
a1


21

;
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where C is a nmar 3 nmar diagonal matrix with the j-th di-
agonal element equal to 2pj;1ð12 pj;1Þ, and L1 is a
nmar 3 nmar diagonal matrix with the j-th diagonal element
representing the square root of effective number of records
for the j-th marker. The matrixL1 can be obtained by solving
the nonlinear system of equations

diag

 �
L1

�
4pp9þC

1
2CC

1
2

�
L1s

22
e þ B21

1 s22
a1

�21
!

¼ PEV
�ca1

*
�

through a fixed-point iteration algorithm (Burden and Faires
2010) detailed in Appendix A3. It is worth noting that the
proposed algorithm requires the inversion of a nmar 3nmar
dense matrix at each iteration. This computational cost can
be reduced by performing the algorithm for each chromo-
some separately.

Integration with multiple populations: When more than
two populations or datasets are available, the developed
methods can be easily extended. With n datasets, the prior
distribution for allele substitution effects in the separate anal-
ysis of the n-th dataset is defined using the posterior distri-
butions for allele substitution effects from the separate
analyses of n2 1 datasets:"
a
��ca1

*;ca*
2; . . . ;

da*
n21

#
� MVN

 
Q
Xn21

i¼1

 	
PEC

�cai
*
�
21cai

*


;Q

!
;

Q ¼
 
B21
J s22

aJ
þ
Xn21

i¼1

 	
PEC

�cai
*
�
21

2B21
i s22

ai


!21

:

Simulations

We tested developedmethodswith simulated data that either
had low or high genetic diversity. The data were simulated in
five replicates with the AlphaSim program, which uses the
coalescent method for simulation of base population chromo-
somes and the gene drop method for simulation of chromo-
some inheritance within a pedigree (Hickey and Gorjanc
2012; Faux et al. 2016).

A diploid genome was simulated with 30 chromosomes,
each 108 bp long. Coalescent mutation and recombination
rate per base pair were set to 1028, while effective population
size was modeled over time to mimic population history of a
livestock population in line with the values reported by
MacLeod et al. (2013). Specifically, for the low diversity sce-
nario, the effective population size of the base populationwas
set to 100 and increased to 120, 250, 350, 1000, 1500, 2000,
2500, 3500, 7000, 10,000, 17,000, and 62,000 at, respec-
tively, 6, 12, 18, 24, 154, 454, 654, 1754, 2354, 3354,
33,154, and 933,154 generations ago. For the high diversity
scenario, effective population size of the base population was
set to 10,000 and increased above this value in the same way
as in the low diversity scenario; to 17,000 and 62,000 at
33,154, and 933,154 generations ago. For each chromosome,

10,000whole chromosome haplotypes were sampled, which,
on average, hosted �700,000 markers (21 million per ge-
nome) for the low diversity scenario and 1,400,000 markers
(42 million per genome) for the high diversity scenario. Out
of these loci, 100 per chromosome (3000 per genome) were
sampled as causal loci affecting a complex trait. The allele
substitution effect of causal loci was sampled from a normal
distribution withmean zero and variance 1/3000. The effects
were used to simulate a complex trait with additive genetic
architecture. In addition, 2000 loci per chromosome (60,000
per genome) were selected as markers with the restriction of
having minor allele frequency above 0.05.

From the base population, founder genomes for four pop-
ulations (A, B, C, and D) were obtained by random sampling
of chromosomes with recombination. The populations were
ancestrally related through the common base population,
but otherwise maintained independently, i.e., there was no
migration between the four populations. Each population
was initiated with 10,000 founders (half males and half fe-
males) and maintained for seven generations with constant
size. In the low diversity scenario, with the effective popula-
tion size of 100, 25 males and 5000 females were selected
as parents of each generation, while in the high diversity
scenario, with the effective population size of 10,000, all
5000 males and 5000 females were used. The 25 males were
selected on true genetic value, assuming accurate progeny
test was available.

For every individual in the population we simulated two
types of phenotypes. First, an own single phenotype was
simulated as the sum of the true genetic value and a residual
sampled from a normal distribution with mean zero and
residual variance scaled relative to the variance of true genetic
value in the base population such that heritability was 0.3.
These simulated single phenotype records mimic records
measured on the individual. Second, a weighted phenotype
was simulated as the sum of the true genetic value and the
mean of nweight residuals. Each residual was sampled from a
normal distribution with mean zero and residual variance
scaled relative to the variance of true genetic value in the
base population such that heritability was 0.3. The weight
nweight was equal to nweight ¼ 1þ val where the real value val
was sampled from a geometric distribution with a probability
p of 0.15 and a probability mass function of PrðxÞ ¼ pð12pÞx
with x 2 f0; 1; 2; . . .g. The average nweight was 6.6. These
weighted phenotypes mimic either repeated records of an
individual or records on multiple progeny of an individual.
To satisfy the assumption of identical residual variance across
all analyses, phenotype records were divided by the residual
SD specific for each population, such that s2

e ¼ 1. For every
individual in each population we stored the true genetic
value, own single and weighted phenotype records, associ-
ated weight, and 60,000 marker genotypes.

Analysis

The data were analyzed in several ways to evaluate the de-
velopedmethods. In each case the aimwas to obtain accurate
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genetic values utilizing all the available information. Specifi-
cally, we integrated results from separate analysis of popula-
tions B, C, and D, into the analysis of population A. We assumed
throughout that variance components were known and equal
to the rescaled variances. We analyzed three scenarios in total.
The first and second scenario used population specific training
data of randomly sampled 30,000 individuals with single
phenotype record from generations 1–6 under low and high
diversity settings. The third scenario used population specific
training data of randomly sampled 10,000 individuals with
weighted phenotype record from generations 1–6 under low
diversity setting. In all scenarios all of the 10,000 individuals
from generation 7 of each population were considered as val-
idation individuals. The following analyses were performed:

1. A joint analysis of four populations. This was the reference
that the other analyses were compared against;

2. A separate analysis for each of the four populations;
3. An exact integration of separate analyses of populations B,

C, and D, into the analysis of population A;
4. The same as 3, but approximating the PEC matrix with a

partial PEC matrix for each chromosome, i.e., PEC between
markers on different chromosomes were set to zero;

5. The same as 3, but approximating the PEC matrix with a
diagonal PEV matrix, i.e., PEC between all markers were
set to zero;

6. The same as 3, but approximating the PEC matrix with PEV,
allele frequencies, and LD correlations between markers ob-
tained from the training sets. For the scenario with weighted
phenotype records, the algorithm for estimating the effec-
tive number of records per marker was performed for each
marker separately and for each chromosome separately.

7. The same as 6, but with LD correlations between markers
computed from validation individuals instead of the train-
ing data.

For each analysis we calculated genomic prediction accu-
racy as the Pearson correlation between the true and esti-
mated genetic value in validation individuals. Further, we
evaluated the different integrations by comparing estimated
genetic values of validation individuals against the estimated
genetic values obtained from the joint analysis, which was
considered as the reference because it used information from
all populations. If integration was fully accurate, there should
be no difference between the joint analysis and the analysis
with integration. We assessed this by (a) accuracy of integra-
tion as a Pearson correlation between estimated genetic
values from the joint analysis and theanalysiswith integration
(desired value equals 1), (b) calibration of integration as a
regression of estimated genetic values from the joint analysis
on estimated genetic values from analysis with integration,
and (c) magnitude of error in integration as a mean square
error (MSE) between estimated genetic values from the joint
analysis and from the analysis with integration (desired value
equals 0). By calibration, wemean the slope of relationship of
the estimates from the integration analysis onto the estimated
genetic values from the joint analysis. The desired slope value

is 1, which indicates a well calibrated model. Values above or
below 1 indicate an uncalibrated model.

Data availability

Supplemental figures are available in Supplemental Material,
File S1. A description of the simulated genotype and pheno-
type datasets for each scenario is provided in File S2. Simu-
lated genotype and phenotype datasets for the five replicates
of each scenario are provided in Files S3–S5. Data simulation
scripts and Fortran codes developed to perform the different
analyses, as well as a short description of each of them, are
provided in File S6. Supplemental material available at Fig-
share: https://doi.org/10.25386/genetics.6216533.

Results

Genomic prediction accuracy of separate and
joint analyses

Joint analysis increased genomic prediction accuracy in com-
parison to separate analyses. This is shown in Table 1. Ana-
lyzing separately the four datasets gave accuracies of �0.71
(low diversity) and 0.53 (high diversity) with single pheno-
type records, and of �0.73 (low diversity) with weighted
phenotype records. Analyzing jointly the four datasets in-
creased accuracy by at least 0.09 absolute points with single
phenotype records and by at least 0.12 absolute points with
weighted phenotype records.

Integration based on PEC, partial PEC, or PEV matrices

For all scenarios, the developed method enabled exact in-
tegrationwhen complete PECmatriceswereused. Integration
of estimated allele substitution effects by means of the com-
plete PEC matrix led to the same estimated genetic values as
with the joint analysis, as shown by correlation and regres-
sion coefficients of 1, and MSE close to 0 (Figure 1, Figure 2,
Figure 3, Figure 4, and Figures S1–S8). For comparison,
correlations between estimated genetic values from sepa-
rate analyses and joint estimated genetic values were �0.87
(low diversity) and 0.77 (high diversity) with single pheno-
type records, and 0.85 (low diversity) with weighted pheno-
type records.

Table 1 Genomic prediction accuracy for joint and separate
analyses in scenarios with single or weighted phenotype records
and low or high diversity (values are averages across the five
replicates)

Phenotypesa Diversity Analysis
Populations

A B C D

Single Low Joint 0.811 0.811 0.823 0.815
Separate 0.705 0.708 0.718 0.718

High Joint 0.687 0.686 0.687 0.684
Separate 0.536 0.537 0.528 0.528

Weighted Low Joint 0.860 0.865 0.865 0.862
Separate 0.720 0.739 0.724 0.727

a SE are between 0.003 and 0.016.
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Approximate integration by means of partial PEC matrices
for each chromosome, that is ignoring PEC between markers
on different chromosomes, gave almost as accurate and cali-
brated estimated genetic values as the exact integration. This
is illustrated in Figure 1, Figure 2, Figure 3, Figure 4, and
Figures S1–S8 with correlations higher than 0.96, regression
coefficients close to 1, and MSE close to 0. Increasing the
diversity slightly deteriorated accuracy and calibration of ge-
nomic predictions (Figure 1, Figure 2, and Figures S1–S4).

Approximate integrations by means of PEV matrices, that is
ignoring PEC between all markers, gave quite accurate, but not
calibrated estimated genetic values. This is shown in Figure 1,
Figure 2, Figure 3, and Figure 4 and in Figures S1–S8. Correla-
tions between joint estimated genetic values and estimated ge-
netic valueswith integration bymeans of PEVwere between0.95
and 0.98 with single phenotype records and between 0.93 and
0.95withweightedphenotype records.Despite these correlations
close to 1, estimated genetic values were not well calibrated, as
depicted by regression coefficients below 0.77 for the low di-
versity scenarios with single and weighted phenotype records,
and below 0.86 for the high diversity scenario with single phe-
notype records (Figure 2, Figure 4, and Figures S2 and S6).

Integration based on PEV, allele frequencies, and
LD information

When LD information was derived from training data of other
populations, approximate integrations by means of PEV, allele
frequencies, and LD information, resulted in highly accurate
and well calibrated estimated genetic values with single

phenotype records. This is shown in Figure 1 and Figure 2
(Figures S1–S4). Correlation and regression coefficients were
equal to 1 for the low diversity scenario. Slightly lower values,
but still close to 1, were observed for the high diversity sce-
nario. For both low and high diversity scenarios, MSE were
close to 0. In contrast, when LD information was derived from
validation data of other populations, approximate integrations
gave less accurate and calibrated estimated genetic values.
This is shown in Figure 1 and Figure 2 (Figures S1–S4). For
these scenarios, correlations were equal to at least 0.94, and
regression coefficients varied between 0.87 and 1.05.

For the scenariowithweightedphenotype records, approx-
imate integrations by means of LD information from training
data of other populations resulted in highly accurate andwell-
calibrated estimated genetic values when sets of markers per
chromosome were used to estimate the effective number of
records for eachmarker. Correlations between joint estimated
genetic values and estimated genetic values with integration
were �0.99 (Figure 3 and Figure S5), regression coefficients
were�0.95 (Figure 4 and Figure S6), and MSE were close to
0 (Figure S7 and Figure S8). Using LD information from the
validation data of other populations, instead from the training
data of other populations, gave slightly less accurate (correla-
tions higher than 0.95), and moderately less calibrated esti-
mated genetic values (regression coefficients between 0.87
and 1.04; Figure 3, Figure 4, and Figures S5–S8). For both
cases, estimating the effective numbers of records per marker,
instead of for all markers per chromosome simultaneously,

Figure 1 Correlation between estimated genetic values from the joint analysis and from different analyses in populations A and B using a single
phenotype record per individual in scenarios with low and high diversity (values are averages across the five replicates with SE).
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reduced accuracy and calibration of estimated genetic values
(Figure 3, Figure 4, and Figures S5 and S6).

Comparison of estimated allele substitution effects

Correlation and regression coefficients between estimated
allele substitution effects from the joint analysis and analysis
with integration largely followed patterns of the correspond-
ing values for estimated genetic values (Table 2 and Table 3).
Correlation and regression coefficients were close to 1 when

the integration of estimated allele substitution effects was by
means of the complete PEC matrices. Ignoring PEC between
markers on different chromosomes, or ignoring PEC between
all markers, reduced correlations to between 0.92 and 0.99
(Table 2 and Table 3). Using LD information with PEV led to
correlations between joint estimates of allele substitution ef-
fects and estimates with integration ranging from 0.71 to
0.83 for the scenario with weighted phenotype records (Ta-
ble 2 and Table 3).

Figure 3 Correlation between
estimated genetic values from
the joint analysis and from dif-
ferent analyses in populations
A and B using weighted pheno-
type records in the scenario with
low diversity (values are averages
across the five replicates with SE).

Figure 2 Regression of estimated genetic values from the joint analysis on estimated genetic values from different analyses in populations A and B using
a single phenotype record per individual in scenarios with low and high diversity (values are averages across the five replicates with SE).
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Discussion

The results show that the developedmethod enables accurate
and well-calibrated estimated genetic values for complex
traits using both individual-level data and summary statistics.
As expected from theory, the analysis of individual-level data
and estimated allele substitution effects from other analyses
by means of PEC matrices, yielded the same estimates as the
joint analysis of all individual-level data. To our knowledge,
this is the first time that individual-level data and summary
statistics were analyzed simultaneously for genomic predic-
tions. As illustrated by simulations, the combined analysis of
multiple datasets may increase genomic prediction accuracy
over separate analyses of a single dataset. Unfortunately,
combining individual-level data from several sources is gen-
erally not feasible for several reasons, e.g., political road-
blocks, data protections concerns, or data inconsistencies
(Powell and Sieber 1992; Vilhjálmsson et al. 2015; Maier
et al. 2018). However, summary statistics, such as estimates
of allele substitution effects and associated measures of ac-
curacy (e.g., PEV), are usually available for exchange in hu-
man genetics, or are discussed to be shared, e.g., at an
international level for dairy cattle breeding (Liu and Goddard
2018). The developed method enables increase in genomic
prediction accuracy of complex traits by means of jointly an-
alyzing the available individual-level data and summary
statistics.

Accurate integration of estimated allele substitution effects
is possible also when the complete PEC matrix is not available.
This is important because computing the exact PEC matrix and
exchanging it between analysesmight be challenging in some
cases. For the vast majority of marker arrays used in animal
and plant breeding, the calculations and data transfers should
be doable. For example, most arrays have between 10,000
and 100,000 markers, for which we need between �1 and

�80 GB of memory to store the PEC matrix and between
a minute and a day to invert it on current computers. For a
larger number of markers, commonly used in human genet-
ics, the memory requirements and computing time become
prohibitive. The results show that in such cases we can still
obtain accurate genomic predictions when the integration is
done by means of partial PECmatrices for each chromosome.
This is expected since high LD between markers mostly
occurs within chromosomes. High LD between markers on
different chromosomes may especially occur in structured
populations and populations under selection (Farnir et al.
2000; Flint-Garcia et al. 2003; Rostoks et al. 2006). Both of
these conditions are present in breeding populations. How-
ever, the results suggest that LD between chromosomes can
be ignored for the purpose of integration for populations with
both low and high diversity. The results also show that we can
successfully integrate estimated allele substitution effects
when only PEV and allele frequencies from each population
are available together with LD information of a reference
genotype panel representative of each population. Assuming
that such reference genotype panels are available, only esti-
mated allele substitution effects, associated PEV, and allele
frequencies need to be exchanged between populations for
such analyses. Similar conclusions were drawn from studies
combining only summary statistics obtained from genome-
wide association studies to perform multi-trait genomic pre-
dictions (Maier et al. 2018).

Accurate integration of estimated allele substitution effects
is possible irrespective of the diversity of the populations and
characteristics of genotypes (e.g., allele frequencies, LD). This
is obvious, and confirmed by our results, when integration is
performed by means of complete PEC matrices. When com-
plete PEC matrices are unavailable, accurate integration is
possible if the inverses of the PEC matrices can be approxi-
mated accurately from available population parameters (i.e.,

Figure 4 Regression of estimated
genetic values from the joint anal-
ysis on estimated genetic values
from different analyses in popula-
tions A and B using weighted
phenotype records in the scenario
with low diversity (values are av-
erages across the five replicates
with SE).
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LD and allele frequency information), whatever the level of
diversity and characteristics of the populations, as shown by
our results or a study combining summary statistics in human
genetics (Maier et al. 2018). In our study, the population
parameters obtained from the reference panels adequately
reflected the characteristics of the training sets. We expect
that this would be the case for populations with substantial
migration, such as, for example, Holstein dairy cattle popu-
lations. Future studies should be conducted to assess the
impact of suboptimal reference panels. Therefore, the devel-
oped method is expected to perform well on any type of data,
from animal and plant breeding to human genetics, provided
accurate information is available.

The developed method has some simplifying assumptions
that can be readily relaxed. For example, we assumed that the
same genotype coding was used in all populations. This as-
sumption can be relaxed when centered genotype coding (i.e.,
of the formof ðWi � 1v

0
iÞ) is used because variance component

estimates, estimates of allele substitution effects and PEC are
the same irrespective of the centering of the genotype coding,
provided that the model has a fixed general mean, which is
considered in the integration (Strandén and Christensen 2011).
Also, centered and scaled (standardized) genotype coding
is often used in human genetics, instead of only centered
genotype coding (Yang et al. 2010; Speed et al. 2012;
Maier et al. 2018). In practice, estimates of genetic values
are only slightly influenced by scaling of centered genotype
coding (Strandén and Christensen 2011; Bouwman et al.
2017). Therefore, assuming that the same estimated genetic
values are obtained with different scaling, allele substitution
effects estimated using one type of genotype scaling could be
obtained from a postanalysis by converting estimated genetic
values computed for a reference genotype panel into allele
substitution effects for another genotype scaling. Converting
estimated genetic values into allele substitution effects is
often referred to as back-solving of allele substitution effects
(Strandén and Garrick 2009; Strandén and Christensen
2011; Wang et al. 2012; Bouwman et al. 2017). PECs associ-
ated with the converted estimated allele substitution effects

could be derived from the (prediction error) covari-
ances of the estimated genetic values (see derivations in Ap-
pendix A4).

Allele substitution effects estimated from analyses using
different sets of markers or different residual variances, can
be used in the integration as well. The assumption that all
individuals were genotyped at the same loci could be consid-
ered as fulfilled if small differences in the sets of markers are
corrected by assuming zero allele substitution effect and zero
accuracy for markers not used in an analysis. When large
differences between sets ofmarkers are observed, this assump-
tion can be accommodated following two approaches. A first,
postanalysis, approach consists of assuming that estimated
genetic values are the same for two different sets of markers,
allowing the conversion of estimated allele substitution effects
from one set of markers to another set of markers (Liu and
Goddard 2018). The conversion can be performed by back-
solving estimated allele substitution effects from estimated ge-
netic values, as proposed previously for different genotype
codings, or by applying a marker model to the estimated ge-
netic values with the reference set of markers (Liu and God-
dard 2018). A second approach consists of harmonizing
genotype data across populations. This approach must be per-
formed before the analyses, and requires therefore coordina-
tion between populations. Harmonization of genotype data
could be performed by identifying a subset of markers for
which all populations are genotyped, or by genotype imputa-
tion (e.g., Marchini and Howie 2010). Finally, the assumption
that residual varianceswere the same in all populations, can be
relaxed by noting that separate estimates of allele substitution
effectsca*

i ; obtained by the system of equations (2), can be also
obtained by the following different formulations:

cai
* ¼

�
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eiZiWi þ B21

i s22
ai

�21
W9

iZ
9
iMis

2
eiyi

¼
�
W9

iZ
9
iMiZiWi þ B21

i l
�21

W9
iZ

9
iMiyi

¼
�
W9

iZ
9
iMis

22
ef ZiWi þ B21

i ls22
ef

�21
W9

iZ
9
iMis

22
ef yi

Table 3 Comparison of estimated allele substitution effects from
different analyses with estimates from the joint statistical analysis
using weighted phenotype records in the scenario with low
diversity (values are averages across the five replicates with SE
between brackets)

Analysis Correlation Regression

Separate A 0.61 (0.10) 0.88 (0.13)
Separate B 0.58 (0.15) 0.62 (0.12)
Separate C 0.56 (0.12) 0.93 (0.23)
Separate D 0.33 (0.08) 0.65 (0.18)
PEC 1.00 (0.00) 0.99 (0.01)
PECwithin chromosome 0.96 (0.01) 1.01 (0.02)
PEV 0.92 (0.02) 0.80 (0.05)
LDtraining (1 marker) 0.77 (0.09) 0.83 (0.10)
LDtraining (1 chromosome) 0.83 (0.09) 0.95 (0.11)
LDvalidation (1 marker) 0.73 (0.11) 0.75 (0.13)
LDvalidation (1 chromosome) 0.71 (0.15) 0.74 (0.18)

Table 2 Comparison of estimated allele substitution effects from
different analyses with estimates from the joint statistical analysis
using single phenotype records in scenarios with low and high
diversity (values are averages across the five replicates)

Analysisa

Low diversity High diversity

Correlation Regression Correlation Regression

Separate A 0.71 1.09 0.65 1.10
Separate B 0.71 1.09 0.65 1.10
Separate C 0.71 1.09 0.65 1.11
Separate D 0.71 1.09 0.64 1.10
PEC 1.00 1.00 1.00 1.00
PECwithin chromosome 0.99 0.98 0.97 0.95
PEV 0.96 0.80 0.96 0.89
LDtraining 1.00 1.00 0.98 0.97
LDvalidation 0.96 0.88 0.93 0.84
a SE are between 0.00 and 0.01.
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where s2
ei

�
s2
ef

�
is the residual variance used for the i-th (fo-

cal) analysis, and l ¼ s2
eis

22
ai

:

For integration of cai
*;

	
PEC

�cai
*
�
21

must be approxi-

mated using the residual variance of the focal population
(s2

ef ) and the effective numbers of records per marker es-

timated using variance components of the i-th analysis.
Another way to relax this assumption is to extend our uni-
variate model to a bivariate model, similarly to methods de-
veloped to combine different genetic evaluations in animal
breeding (Schaeffer 1994; Vandenplas et al. 2015). In a bi-
variate model, one trait would represent individual-level
data, while the other trait would represent summary statis-
tics. The genetic correlation between the two traits could be
estimated based on a subset of individual-level data available
for both datasets or based on summary statistics (Bulik-Sullivan
et al. 2015). Such an approach would also allow the integra-
tion of summary statistics expressed on a different scale (e.g.,
different measure units, trait definitions) than the scale of
the focal population (Vandenplas et al. 2015).

The developedmethod can be readily generalized tomulti-
trait models and is therefore a generalization of previous
works that were based on several (implicit) assumptions
(Liu and Goddard 2018; Maier et al. 2018). For example,
previous works assumed that no individual-level data were
available. It was also (implicitly) assumed that only single
phenotype records with homogeneous residual variance
(Maier et al. 2018), or that the least-squares part of the sep-
arate analyses (Liu and Goddard 2018), were available for
integrating estimated allele substitution effects. Both as-
sumptions lead to simple and accurate approximations of
PEC matrices as shown in our study. However, we relax all
these assumptions, such that our method can jointly analyze
individual-level data and summary statistics, with possibly
multiple phenotype records per individual.

With all the proposed generalizations, the developed
method could be used in different contexts. For example, in
human genetics, allele substitution effects with associated SE
are publicly available (Yang et al. 2012; Vilhjálmsson et al.
2015; Maier et al. 2018). In animal breeding, individuals9
genetic values with associated reliabilities are publicly avail-
able and in the case of dairy cattle extensively combined
across multiple populations (Schaeffer 1994; VanRaden
and Sullivan 2010; Jorjani et al. 2012; Vandenplas et al.
2017). The developed method can be used in both contexts,
but, in the latter case, individuals9 genetic valuesmust be first
back-solved to allele substitution effects (Strandén and Garrick
2009; Strandén and Christensen 2011; Wang et al. 2012;
Bouwman et al. 2017). It is worth noting that our method
assumes that summary statistics from one population are free
of information from other populations. This suggest that it
can be used when there is no, or limited, sharing of informa-
tion between populations, as is, for example, the case in beef
cattle, but not in dairy cattle populations such as Holstein,
where pseudophenotypes summarizing information from

multiple populations are used extensively (VanRaden and
Sullivan 2010; Jorjani et al. 2012). This assumption can be
relaxed by performing separate analyzes free of information
from other populations, or by correcting for double-counting
of information, which has bee developed for the integra-
tion of estimated genetic values from different populations
(Vandenplas et al. 2014, 2017; VanRaden et al. 2014). This
correction for double-counting of information is not yet de-
veloped for the integration of summary statistics, and should
be investigated in future studies.

Conclusions

We developed a method for genomic prediction that accurately
integrates summary statistics obtained fromanalyses of separate
populations intoananalysisof individual-leveldata.Themethod
accommodates use of multiple phenotype (pseudo)records
per individual, and further extensionshavebeenpresented to
accommodate for differences in residual variances or genotype
codings used in the populations. When complete summary
statistics information is available the method gives identical
genomic predictions as the joint analysis of individual-level data
fromallpopulations.Whensummary statistics information isnot
complete we can use a series of approximations that give very
accurate and well-calibrated genomic predictions.
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Appendix A1: Exact Integration

Here, we detail the derivation of exact integration by means of absorbing the set of equations that pertain to one dataset.
We start with the system of equations for separate analysis of dataset 1:
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and the system of equations for the joint analysis of datasets 1 and 2:
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From the first set of equations ðcb1Þ in (A1.2) it follows:cb1 ¼
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�
: (A1.3)

From the third set of equations ðâÞ in (A1.2) it follows:
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Inserting (A1.3) into (A1.4) gives, after some algebra:
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Now the system of equations (A1.2) can be rewritten with the first set of equations ðcb1Þ absorbed as:"
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Similarly, the absorption of the first set of equations ðcb*
1Þ in separate analysis of dataset 1 (A1.1) leads to:�
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where
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is the inverse matrix of prediction error covariances of ca1
*:

Combining (A1.4) and (A1.5) with the use of (A1.6) enables the exact integration of estimates from the separate analysis of
dataset 1 into the separate analysis of dataset 2 with the following system of equations:
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Appendix A2: Approximate Integration

Here, we detail the derivation of different approximate integrations by means of simplified assumptions and use of
summary statistics. We start with the expression for prediction error covariance matrix of allele substitution effects from
dataset 1:
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If we assume that: (1) every individual has a single phenotype record, i.e., Z1 ¼ I; (2) residual variance is homogeneous, i.e.
R1 ¼ I; and (3) only overall mean is fitted as a fixed effect, i.e., X1 ¼ 1; then we can simplify (A2.1) as:
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because ðI2X1ðX9
1X1Þ

21
X9
1Þ ¼ I21ð191Þ2119 ¼ I2119=nind;1 will tend to the identity matrix I with increasing nind;1: The

matrix ðI2119=nind;1Þ; also known as the centering matrix, is a symmetric and idempotent matrix with off-diagonal elements
equal to 21=nind;1 and with diagonal elements equal to 1=nind;1:

When genotypes from the dataset 1 are not available, but variance components s2
a1

and s2
e are, we “only” need to

approximate the unknown matrix of genotype sum of squares W9
1W1 in (A2.2). This product can be approximated from

linkage-disequilibrium and allele frequency information of the dataset 1, as shown in the following (similarly to Yang et al.
2012, Vilhjálmsson et al. 2015, and Maier et al. 2018). Assume that LD between two markers is represented by the correlation
of their unphased genotypes (Rogers and Huff 2009). Then, a matrix of all pairwise correlations between markers is:
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where the matrix T1 contains centered genotypes of dataset 1 (T1 ¼ ðI2119=nind;1ÞW1 ¼ W1 21=nind;1119W1). The matrix
product T9

1T1 can be computed as:
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where p ¼ 1=2nind;1W9
11 are allele frequencies in dataset 1 (Strandén and Christensen 2011). Assuming Hardy-Weinberg

equilibrium, the i-th diagonal element of the matrix product T9
1T1; is equivalent to expected genotype sum of squares at the i-th

marker, nind;12pi;1ð12 pi;1Þ with pi;1 being the allele frequency of the i-th marker in dataset 1.
Combining (A2.3) and (A2.4) we can approximate the unknown matrix of genotype sum of squares W9

1W1 as:

W9
1W1 � 4nind;1pp9þ V

1
2CV

1
2; (A2.5)

where V is diagonal matrix of expected genotype sum of squares with the i-th diagonal element equal to nind;12pi;1ð12 pi;1Þ:

Multi-Population Genomic Prediction 67



Appendix A3: Estimation of the Effective Number of Records Per Marker

Here, we detail the algorithm for computing the effective number of records per marker by use of available popula-

tion parameters (i.e. LD, and allele frequency information) and PEVs of ca1
*

	
PEV

�ca1
*
�


of the dataset 1. We start with

the expression for the PEC matrix of allele substitution effects from dataset 1:
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:

If the number of individuals and the number of records per individual are unknown, we can assume that a nmar 3 nmar diagonal
matrix L1 exists such that:
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whereC is a nmar 3 nmar diagonal matrix with the j-th diagonal element equal to 2pj;1ð12 pj;1Þ, and the squared j-th diagonal
element of L1 represents the effective number of records for the j-th marker. The term

�
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1
2CC

1
2
�
is similar to the

approximation of the unknown matrix of genotype sum of squares W9
1W1 (i.e., W

9
1W1 � 4nind;1pp9þ V1=2CV1=2) in Appen-

dix A.2. However, it does not involve the number of individuals nind;1 because it is confounded with the effective number of
records.

The diagonal matrix L1 can be estimated by solving the nonlinear system of equations
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through a fixed-point iteration algorithm (Burden and Faires 2010) as follows:
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where P0 is a diagonal matrix with the i-th diagonal element equal to the PEV of the i-th marker and diagð4pp9þC1=2CC1=2Þ
contains the diagonal elements of ð4pp9þC1=2CC1=2Þ;

2) L0
1 ¼

ffiffiffiffiffiffi
Q0

1

q
3) k ¼ 1
4) Pk ¼ diagððLk21

1 ð4pp9þC1=2CC1=2ÞLk21
1 s22

e þ B21
1 s22

a1
Þ21Þ

5) H ¼ ðPk21 2B21
1 s22

a1
Þ*ðdiagð4pp9þC1=2CC1=2Þs22

e Þ21

6) Sk ¼ Q0
1 2H

7) If trace of Sk is not sufficiently small:
a.Qk

1 ¼ Qk21
1 þH

b. If any diagonal element in Qk
1 is negative, set it to 0

c. Lk
1 ¼

ffiffiffiffiffiffi
Qk

1

q
d. k ¼ kþ 1
e. Repeat from 4)

8) Lk
1 ¼

ffiffiffiffiffiffi
Qk

1

q
It is worth noting that the proposed algorithm is similar to algorithms to estimate effective number of records per individual,
where “effective”means that they are free of contributions from relatives (Misztal andWiggans 1988; Vandenplas and Gengler
2012). The j-th diagonal element ofQk

1 can therefore equivalently be considered as the effective number of records for the j-th
marker.

Appendix A4: Conversion of Allele Substitution Effects

Here we detail a postanalysis to obtain allele substitution effects estimated using one type of genotype coding
�ca**

1

�
by

converting estimated genetic values computed for a reference genotype panel with allele substitution effects for another

genotype coding
�ca1

*
�
. We assume that allele substitution effects

�ca1
*
�
are available with the associated prediction error

(co)variance matrix
	
PEC

�ca1
*
�


, as well as the (co)variance matrix of a1
*
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�
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�


, and genotypes of a reference panel
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using a particular type of genotype coding (G*). Estimates of genetic values for the reference individuals are obtained ascg*
1 ¼ G*ca1

*:

Assuming that estimatedgenetic values are not influencedby scaling of centeredgenotype coding (StrandénandChristensen
2011; Bouwman et al. 2017), and that the (co)variances of genetic values are the same irrespective of the genotype coding, we
can write that cg**

1 ¼ G**ca**
1 ¼cg*1 withG** being a matrix with reference genotypes using another type of genotype coding than

G* and cg**
1 being a vector of estimated genetic values using this type of genotype coding. Therefore, ca**

1 can be computed by
back-solving as follows (Strandén and Garrick 2009; Wang et al. 2012; Bouwman et al. 2017):da**

1 ¼ B**
1 G**0

�
G**B**

1 G**0�21cg*1 ¼ Tcg*1
where B**

1 is a diagonal matrix (e.g., an identity matrix I) with optional different weights to differentially shrink different loci.
Based on the properties of mixed models (Henderson 1984), the prediction error covariance matrix of ca**

1 ; PECðca**
1 Þ; can be

obtained as follows:

PEC
�da**

1

�
¼ Var

�
a**
1

�
2Var

�da**
1

�
¼ Var

�
a**
1

�
2Var

�
Tcg*1� ¼ Var

�
a**
1

�
2TVar

�cg*1�T9
¼ Var

�
a**
1

�
2T

�
Var
�
g*1
�
2 PEC

�cg*1��T9 ¼ Var
�
a**
1

�
2T

�
G*Var

�
a1
*
�
G*92G*PEC

�ca1
*
�
G*9
�
T9

¼ Var
�
a**
1

�
2TG*

�
Var
�
a1
*
�
2 PEC

�ca1
*
��

G*9T9
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