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Abstract

Randomized controlled trials (RCTs) and quasi-experimental designs like regression discontinuity 

(RD) designs, instrumental variable (IV) designs, and matching and propensity score (PS) designs 

are frequently used for inferring causal effects. It is well known that the features of these designs 

facilitate the identification of a causal estimand and, thus, warrant a causal interpretation of the 

estimated effect. In this article, we discuss and compare the identifying assumptions of quasi-

experiments using causal graphs. The increasing complexity of the causal graphs as one switches 

from an RCT to RD, IV, or PS designs reveals that the assumptions become stronger as the 

researcher’s control over treatment selection diminishes. We introduce limiting graphs for the RD 

design and conditional graphs for the latent subgroups of com-pliers, always takers, and never 

takers of the IV design, and argue that the PS is a collider that offsets confounding bias via collider 

bias.
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Introduction

Randomized experiments and quasi-experimental designs play an important role in inferring 

cause–effect relationships in evaluating treatments and programs in psychology, education, 

sociology, economics, and other fields of the social and behavioral sciences. In 

implementing (quasi)-experiments with a treatment and a control condition, researchers 

frequently follow Campbell’s tradition (Shadish, Cook, and Campbell 2002; Wong et al. 

2012) in ruling out all plausible threats to internal validity, including selection, maturation, 

history, or instrumentation effects. Depending on a study’s capacities and limitations, a 

researcher may choose to implement a randomized controlled trial (RCT), a regression 
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discontinuity (RD) design, an instrumental variable (IV) design, a nonequivalent control 

group design (matching design), or an interrupted time series design (difference-

indifferences design). If the corresponding design is perfectly implemented, threats to 

validity are successfully ruled out by the specific design such that the causal effect of the 

treatment or program is identified and estimable using a consistent or unbiased estimator. In 

comparison to model-based analyses of observational data (e.g., regression or structural 

equation modeling of register or survey data), RCTs and quasi-experimental designs require 

fewer or weaker assumptions for identifying the causal effect of interest and, thus, frequently 

offer a stronger warrant for a causal interpretation of the estimated treatment or program 

effect.

However, (quasi)-experimentation is only one way for inferring cause–effect relationships. 

Alternatively, one can use substantive theory in order to derive a structural causal model 

(SCM) that reflects the causal mechanism in which researchers believe given the gathered 

empirical evidence (Heckman 2005; Pearl 2009; Spirtes, Glymour, and Scheines 2000). On 

grounds of the theory-based SCM, a researcher can then determine which covariates need to 

be measured in an observational study so that the causal effect of interest is identified 

conditional on the presumed SCM. The SCM can be depicted in a nonparametric and 

nonlinear causal graph which considerably facilitates the identification task. One of the main 

advantages of causal graphs is that they make explicit most assumptions needed for 

identifying a causal effect. Pearl (2009) and others (Brito and Pearl 2002b; Shpitser and 

Pearl 2006; Shpitser, VanderWeele, and Robins 2013) developed an exhaustive set of 

graphical identification criteria (e.g., the backdoor and front-door criteria) that allows one to 

probe a causal effect’s identification from a causal graph alone. Causal graphs and the 

corresponding SCMs represent a researcher’s qualitative causal knowledge or belief about 

the data generating mechanism which also includes aspects of the study design (like 

matching), measurement, and the data collection procedure. A brief introduction to causal 

graphs is given in Online Appendix A. For a more thorough introduction see, for instance, 

Elwert (2013), Hernán and Robins (2014), Morgan and Winship (2014), or Pearl (2010). 

Shadish and Sullivan (2012) contains a comparison between Campbell’s tradition of (quasi)-

experimentation, the Rubin Causal Model, and SCMs including causal graphs.

The aim of this article is to represent experimental and quasi-experimental designs as causal 

graphs and to demonstrate that strong designs result in simple graphs. Typically, a simple 

graph implies easier identification of causal treatment effects. The causal graphs of RCTs, 

RD, IV, matching and propensity score (PS) designs make it very clear, at least from a 

theoretical point of view, that the design assumptions underlying an RCT are weaker than for 

an RD design, which themselves are weaker than for an IV or PS design.1 The increased 

complexity of IV and PS graphs directly reflects the stronger assumptions needed for 

identification. We also use causal graphs to illustrate that different designs identify different 

causal quantities. While RCTs and PS designs allow for an identification of the average 

1.In this article, we only focus on causal graphs where the outcome is measured at one time point only and, therefore, do not discuss 
interrupted time series or difference-in-differences designs (Angrist and Pischke 2008; Lechner 2010) and single-case designs 
(Kratochwill and Levin 2013).
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treatment effect (ATE), the basic RD and IV designs only identify a local ATE: the ATE at 

the cutoff and the ATE for compliers, respectively.

While all the arguments about the relative strength and weakness of RCTs and quasi-

experimental designs are not new, the causal graphs we present for RD, IV, and PS designs 

have never been shown and discussed before. It is maybe not surprising then, that the 

graphical formalization of quasi-experiments results in new insights and a clearer 

understanding of the designs and their assumptions. For instance, contrary to the general 

belief, we show that the PS is a collider variable that offsets the confounding bias via 

collider bias. Or, in introducing a limiting graph for the RD design, we clearly see that RD is 

a randomized experiment at the cutoff. Or, in using conditional graphs for the latent 

subpopulations of compliers, always takers, and never takers, it becomes apparent that the 

treatment effect is only identified for the compliers.

Given that this article focuses on the graphical representation of (quasi)-experimental 

designs and their identifying assumptions, we do not discuss or compare the designs’ 

practical advantages or limitations with respect to estimation, implementation, or 

generalization. Instead we exclusively focus on the nonparametric identification of ATEs, 

that is, whether a causal treatment effect can be obtained from perfect data (i.e., if we would 

have an infinitely large target population) without making any functional form or 

distributional assumptions. Estimating the ATE from a finite sample requires the choice of 

an estimator and additional assumptions like functional form assumptions. Estimators and 

their underlying assumptions are covered in many introductory books and articles on causal 

inference, for instance, Angrist and Pischke (2008), Morgan and Winship (2014), or Wong et 

al. (2012).

The remainder of the article is organized as follows. The first section gives a brief 

introduction to causal graphs, SCMs, and potential outcomes and motivates the use of RCTs 

and quasi-experiments. The second section discusses the causal graph for an RCT and the 

third section focuses on the RD design. The fourth section elaborates on the IV design and is 

followed by the application of the IV design to RCT and RD designs with noncompliance in 

the fifth section. The sixth section discusses the causal graphs for matching and PS designs. 

Finally, in the discussion section, we compare the different designs and highlight their 

advantages and limitations.

Causal Graphs, Structural Causal Models, and Potential Outcomes

Figure 1A shows an example of how the data from an observational study might have been 

generated. The nodes in the causal graph represent variables or constructs, and the arrows 

indicate causal relations between the variables. The absence of an arrow between two 

variables signifies that the two variables have no direct causal connection (see Online 

Appendix A for a short introduction to causal graphs). In our causal graph, Z represents a 

dichotomous treatment variable, where Z = 1 indicates exposure to the treatment condition 

and Z = 0 indicates exposure to the control or an alternative treatment condition, and Y is the 

outcome variable of interest. For example, treatment Z might indicate a student’s 

participation in a remedial math program and Y might be a math achievement score. We are 
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interested in identifying the average causal effect of the remedial math program on the math 

outcome, that is, the average effect of the path Z ⟶ Y. However, as the graph reveals, the 

direct identification of the treatment effect is hindered by the presence of (correlated) 

pretreatment variables X1–X3 which confound the relationship between Z and Y because 

they simultaneously determine treatment Z and outcome Y, that is, Z ⟵ Xj ⟶ Y, for j = 

1, 2, 3. The confounders X1–X3 might represent students’ ability, sex, and socioeconomic 

status, which are believed to determine the selection into the remedial math program (Z) but 

also the math outcome (Y) which is measured after the end of the program. Thus, the simple 

difference in the treatment and control group’s expectation, E(Y | Z 1) E(Y | Z = 0), is 

contaminated with confounding bias. For example, if students with a low ability and low 

socioeconomic status select into the math program, the unadjusted difference in means 

would be downward biased and, thus, underestimate the causal effect of the program. The 

simple difference in the treatment and control group’s expectation is biased because the 

confounding backdoor paths Z ⟵ Xj ⟶Y, for j = 1, 2, 3, are unblocked.

In addition to confounders, the causal graph also shows variables X4 and X5 that exclusively 

affect Z and Y, respectively, and error terms U1–U5, UZ, and UY that represent unobserved 

but exogenous variables (or disturbances) with respect to the Xs, Z, and Y. Except for U1 

and U3, all errors are assumed to be independent. The dashed, bidirected arrow between U1 

and U3 indicates that common causes create an association between the error terms and, as a 

consequence, variables X1 and X3 are associated with each other. In order to simplify the 

graphical representation, we summarize all confounders (in our case X1–X3) into a 

confounder vector X and absorb the independent exogenous variables X4 and X5 in the 

corresponding error terms UZ and UY, respectively.2 The confounders X might be observed 

or unobserved (for drawing a causal graph this does not make a difference, though it is of 

crucial importance when we discuss the identification of the treatment effect). Since the 

error terms for X, Z, and Y are independent, we no longer show them in the stylized graph in 

Figure 1B—this does not mean that they are absent, but as long as they are independent they 

do not affect identification. The SCM that corresponds to the stylized graph in Figure 1B is 

given by:

Xi = f i
X Ui

X

Zi = f i
Z Xi, Ui

Z

Y i = f i
Y Xi, Zi, Ui

Y ,

(1)

where f i
X , f i

Z and f i
Y are functions generating the confounder vector X, treatment Z and 

outcome Y, respectively. The subscripts i indicate that the functions may vary across the i = 

1, …, N subjects of some (in)finite target population. In particular, this implies that the 

treatment effect may be heterogeneous. Ui
X , Ui

Z and Ui
Y are independent error terms 

2.Note that the absorption of X5 does not imply that it is unimportant for estimation purposes—conditioning on X5 typically increases 
precision, but X5 is not required for identification purposes which is the focus of this article (though in nonlinear probability models 
identification requires conditioning on X5; Breen and Karlson 2013). On the other hand, one would avoid conditioning on X4 because 
it is an instrumental variable (IV) that might amplify any remaining bias.
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representing the variation due to exogenous variables (not shown in the stylized graph). 

Because all error terms are random variables, confounders X, treatment Z, and the outcome 

Y are stochastic with joint probability distribution PM. The causal graphs in Figure 1 and the 

SCM in equation (1) describe a stable and autonomous data generating mechanism. 

Autonomy implies that a real-world intervention on one variable or a change of one 

variable’s data generating mechanism does not perturb the data generating mechanism of the 

other variables (that is why the causal model is called “structural”). Stability refers to the 

faithfulness of the joint probability distribution’s independence structure as encoded in the 

causal graph and SCM, that is, the independence relations as reflected by the missing paths 

remain invariant to changes in the parameters of the data generating SCM (see Online 

Appendix A for more details; see also Pearl 2009; Pearl and Verma 1991; Spirtes et al. 

2000).

Based on the SCM, we can derive potential outcomes for each subject and define the major 

causal quantities of interest. Following Rubin (1974) and Holland (1986), each subject i has 

two potential outcomes (see also Balke and Pearl 1994; Pearl 2009): a potential control 

outcome Y i
0 , which would be observed if the subject is in the control condition, and a 

potential treatment outcome Y i
1 , which would be observed if the subject is in the treatment 

condition. Using the outcome equation of the SCM in equation (1), we obtain the potential 

control outcome by setting Zi = 0, Y i
0 = f i

Y Xi, Zi = 0, Ui
Y , and the potential treatment 

outcome by setting Zi = 1, Y i
1 = f i

Y Xi, Zi = 1, Ui
Y .3

Since the SCM in equation (1) consists of autonomous structural equations, the structural 

definition of the potential outcomes implies that the three conditions of the stable-unit-

treatment values assumption (SUTVA) are met (Rubin 1990; West, Biesanz, and Pitts 2000): 

(1) There is only one unique version of the treatment; (2) A subject’s potential outcomes do 

not depend on the treatment status of other subjects; and (3) The assignment or selection 

process does not affect the potential outcomes. For the remedial math program example, 

SUTVA implies that (1) all treatment students receive the same math training and control 

students do not receive any part of it; (2) a student’s potential outcomes are neither affected 

by the presence of peers nor by a student’s knowledge about whether his friends do or do not 

participate in the program; and (3) whether a student chose on his own to participate in the 

remedial math training or whether parents or teachers did so has no effect on the potential 

outcomes either.

The causal graphs in Figure 1 and the potential outcomes help us to define causal quantities 

of interest and to check whether they are identifiable. In this article, we are mostly interested 

in one causal quantity: the ATE of the path Z ⟶ Y, averaged across the entire population. 

Using the potential outcomes notation, we can define the ATE as:

3.In the Rubin Causal Model (Holland 1986), the definition of potential outcomes does not require structural equations. But since we 
discuss the causal graphs for experimental and quasi-experimental designs, it is useful to define the potential outcomes via the 
corresponding structural causal models (SCMs). Note that standard SCMs rely on the invariance assumption, that is, neither X nor UY 
would change if one were to intervene on Z. Thus, the definitions of the potential treatment and control outcome share the same error 
term UY. This assumption is not made in the standard formulation of the Rubin Causal Model.
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ATE = E Y i
1 − Y i

0 = E Y i
1 − E Y i

0 = E f i
Y Xi, Zi = 1, Ui

Y − E f i
Y Xi, Zi = 0, Ui

Y , (2)

that is, the expected difference between the potential treatment outcomes and the potential 

control outcomes. We can conceive of this definition as a thought intervention where we first 

expose all subjects to the treatment condition and then to the control condition, holding 

everything else constant.4

Using Pearl’s backdoor criterion, one can show that the effect Z ⟶ Y is identified in the 

causal graphs of Figure 1 if all the confounders X are observed such that the backdoor path 

Z ⟵ X ⟶ Y can be blocked. The back-door criterion states that all backdoor paths into Z 
need to be blocked, which is achieved if we condition on X (see Online Appendix A for 

more details). In probabilistic terms, the backdoor criterion corresponds to the conditional 

independence or strong ignorability assumption: Conditional on confounders X, potential 

outcomes are independent of treatment Z, (Y0; Y1)⊥ Z | X, and thus, ATE is identified (for 

details, see the section on matching jand PS designs). However, if we do not observe all 

confounders X or fail to reliably measure them, the backdoor path Z ⟵ X ⟶ Y is not 

completely blocked and ATE is not identified. For instance, in our remedial math program 

example, students’ ability is a confounder that is typically unobserved or unreliably 

measured when a math pretest is used as a proxy measure for students’ ability. Thus, 

conditioning on a set of observed covariates (instead of the theorized confounders) might not 

remove all the confounding bias.

The causal graphs in Figure 1 illustrate the main problem with observational studies: First, 

our substantive theories are frequently not elaborate enough such that we would know all 

variables X that confound the relation Z ⟶ Y. Second, even if we have a strong theory we 

might lack measures for all confounders or only have fallible measures of them (Steiner, 

Cook, and Shadish 2011). Thus, in order to avoid overly strong assumptions with regard to 

the identification of ATE, one may resort, if possible, to randomized experiments or quasi-

experimental designs like RD designs or IV designs. Since all the assumptions required for a 

valid design are encoded in the corresponding causal graphs, the comparison of (quasi)-

experimental graphs strikingly highlights the advantages and disadvantages of different 

designs.

Randomized Controlled Trial

RCTs are considered as the simplest and most powerful experimental designs for identifying 

the causal effect of a treatment on an outcome (Shadish et al. 2002). RCTs work because the 

researcher controls the assignment mechanism and the implementation of the treatment. 

Randomization into treatment conditions can also occur as a “natural” process (natural 

experiment) that is not under the control of the researcher but known by the researcher 

(Gerber and Green 2012). With respect to the example of the remedial math program, 

4.In Pearl’s notation (Pearl 2009), the thought intervention at the subject level is symbolized via the do operator, that is, we first do(Z 
= 1) and then do(Z = 0).
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administrators might randomly sort the list of target students and then assign the first 50 

percent of listed students to the math program. Randomly assigning subjects to the treatment 

and control condition creates groups that are equivalent in expectation and, thus, rules out 

any confounding biases. The causal graph in Figure 2 shows the data generating model for 

an RCT, where R is the dichotomous random variable indicating treatment assignment (R = 
0 indicates assignment to the control condition, R = 1 assignment to the treatment 

condition); Z, the corresponding dichotomous indicator of treatment exposure; and Y, the 

outcome. Due to the exogenous intervention via randomization, observed and unobserved 

pretreatment variables X have no effect on Z, and they only determine the outcome and, 

thus, do not confound the relation Z ⟶ Y. The SCM of a perfectly implemented RCT is 

given by:

Xi = f i
X Ui

X

Ri = f i
R Ui

R

Zi = f z Ri

Yi = f i
Y Zi, Xi, Ui

Y

where the treatment exposure Zi = fZ(Ri) is a function of the treatment assignment Ri, which 

itself is determined by some independent noise Ui
R (e.g., toss of a coin or dice and its 

environmental factors, or the algorithm of a random number generator). Besides SUTVA, 

which requires that the randomization process has no effect on the outcome Y except via 

treatment Z, the sole design assumption is that the RCT is perfectly implemented. That is, 

(1) random assignment is correctly carried out such that each subject has a known positive 

probability of being in the treatment and control group, P(Zi = 1) > 0 (positivity 

assumption), (2) all subjects comply with the assigned treatment status R (thus, fZ is the 

identity function for all subjects), and (3) no attrition occurs. The assumptions are directly 

reflected in the RCT graph in Figure 2. There is no arrow R ⟶ Y because randomization 

must not have a direct effect on Y (SUTVA), and there are no confounders X due to perfect 

compliance and absence of attrition (i.e., there is no arrow X ⟶ Z). Also note that there is 

no arrow R ⟶ X because randomization should not affect the (measurement of) 

pretreatment covariates X (thus all covariates are ideally measured before treatment 

assignment). Consequently, there are no open backdoor paths that could confound the 

relation Z ⟶ Y. Under these conditions, the potential outcomes are independent! of 

treatment Z, (Y0, Y1)⊥ Z, and the ATE of Z ⟶ Y as defined in equation (2)is identified 

because E Y i Zi = 1 − E Y i Zi = 0 = E Y i
1 Zi = 1 − E Y i

0 Zi = 0 = E Y i
1 − E Y i

0 = ATE. It is 

important to note that the simplicity of the RCT graph and the relative ease of identification 
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are due to the researcher’s control over the data generating mechanism, in particular the 

researcher’s control over the assignment mechanism of randomly assigning subjects to 

treatment conditions, but also the control over the treatment implementation which makes 

SUTVA more likely to be met. However, random assignment is not always possible due to 

ethical or practical reasons. Instead, an RD design might be still feasible where subjects are 

deterministically assigned on the basis of a continuous assignment variable.

Regression Discontinuity Design

The causal graph in Figure 3A represents the data generating model for a perfectly 

implemented RD design, where A is a continuous assignment variable which directly 

determines the treatment status Z (A ⟶ Z). Assignment is based on a cutoff score aC such 

that subjects that score below the cutoff, A < aC, get assigned to the treatment condition and 

subjects that score above or equal to the cutoff, A ≥ aC, get assigned to the control condition 

(or vice versa). For example, A could be a math pretest measure used to assign students to a 

remedial math program. Students with a pretest score below the cutoff of 100 attend the 

remedial math program, and students who score 100 or above are assigned to the control 

group and receive no treatment. The assignment variable may also affect the outcome Y (A 
⟶ Y) and, moreover, can be related to a set of variables X as indicated by the dashed bi-

headed arrow . Note that the treatment status is exclusively determined by the 

assignment rule but completely independent of variables X given A, thus, there is no arrow 

X ⟶ Z. The SCM that corresponds to the RD graph is given by:

Xi = f i
X Ui

X

Ai = f i
A Ui

A

Zi = f z Ai = 0 if Ai ≥ aC

1 if Ai< aC

Yi = f i
Y Zi, Ai, Xi, Ui

Y ,

where the error terms Ui
X and Ui

A may be correlated.5 The RD graph and structural model 

clearly indicate that the assignment variable confounds the relation Z ⟶ Y because A 
affects both Z and Y. In addition, since all subjects scoring below the cutoff get assigned to 

the treatment condition and those scoring above or equal to the cutoff get assigned to the 

control condition, we never observe control subjects with a score below aC or treated 

5.Note that the basic regression discontinuity (RD) design¼with a single assignment variable and cutoff score is a special case of a 
known deterministic assignment rule. SCMs and causal graphs are easily derived for more complex designs, for example, multivariate 
RD designs (Wong, Steiner, and Cook 2013).
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subjects with a score above or equal to aC. Thus, since P(Z = 0 | A = a) = 0 for all subjects 

scoring below the cutoff (a < aC) and P(Z = 1 | A = a) = 0 for all subjects scoring or at cutoff 

(a ≥ aC) positivity assumption (i.e., P(Z = z | A = a) = 0) is violated for all possible values a 
of the assignment variable and ATE is neither identified for the treated subjects nor for the 

control subjects. Thus, conditioning on A in the graph of Figure 3A does not identified ATE 

via the backdoor criterion because, conditional on a specific assignment value A = a, there is 

no longer any variation in Z and Y that is caused by A. For this reason, the graph for the 

subpopulation with A = a would contain neither variable A nor arrows A ⟶ Z, A ⟶ Y 
and . Moreover, since Z constant conditional on A = a, the arrow Z ⟶ Y 
disappears as well, making the identification of ATE impossible for any assignment score a. 

A more thorough discussion of conditioning on a value of a variable is given in Online 

Appendix A. It is important to note that this is a nonparametric identification result. If one 

would be willing to make strong functional form assumptions that allow for an extrapolation 

of the treatment and control functions into the respective regions of nonoverlap, ATE would 

be parametrically identified.

However, even without making any functional form assumptions, we can identify ATE for 

the subjects that score in an (infinitesimally) close neighborhood around the cutoff. More 

formally, ATE is identified at the limiting cutoff value A ⟶ aC, that is, for subjects in the 

interval [aC – ε; aC + ε] as ε approaches zero (ε ⟶ 0).6 Identification at the limiting cutoff 

score is ppossible because the cutoff score is the sole point where treatment and control 

subjects overlap in the limit. The ATE at the limiting cutoff (ATEC) is defined as

ATEC =a aC
lim E Yi

1 Ai = a −a aC
lim E Yi

0 Ai = a =a aC
lim E Yi Ai = a −a aC

lim E Yi Ai = a .

The difference in limits represents the discontinuity (i.e., the treatment effect) at the cutoff 

aC as we approach the cutoff from below (a ↑ aC) and above (a ↓ aC). The limiting graph for 

the subpopulation with A ⟶ aC is shown in Figure 3B. Two design assumptions besides 

SUTVA are required for the identification of ATEC (Hahn, Todd, and van der Klaauw 2001; 

Imbens and Lemieux 2007; Lee and Lemieux 2010). First, the assignment rule is 

implemented perfectly such that the probability of receiving treatment drops at the cutoff 

from 1 to 0: a aC
lim E Zi Ai = a −a aC

lim E Zi Ai = a = 1. Thus, the limiting RD graph shows an 

arrow A ⟶ Z indicating that Z is solely determined by A. Note that this is different to the 

previous discussion of conditioning on A = a, where the arrow A ⟶ Z would vanish (see 

Online Appendix A).

Second, the potential outcomes must be continuous at the cutoff (i.e., there is no 

discontinuity at the cutoff), a aC
lim E Y i

0 Ai = a = a aC
lim E Y i

0 Ai = a  and 

a aC
lim E Y i

1 Ai = a = a aC
lim E Y i

1 Ai = a . That is, the expected potential outcomes for the 

6.We use A ⟶ aC as a shorthand notation for [aC − ε , aC + ε] with ε ⟶ 0. Note that the arrows used for the limits are entirely 
unrelated to the arrows used in the causal diagrams.
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treatment and control subjects need to be connected at the cutoff (the limits from below and 

above the cutoff score are identical). This assumption assures that no threats to validity like 

differential instrumentation, competing treatments, or manipulation of the assignment score 

around the cutoff are present. In the limiting RD graph (Figure 3B), the continuity 

assumption is reflected by the absence of the arrow A ⟶ Y because, at the limiting cutoff 

aC, the assignment variable A has no longer a direct effect on Y (i.e., the limits from below 

and above in the expected potential outcomes are identical). From the continuity assumption 

and the SCM also follows that A is unrelated to X in the limit, that is, 

a aC
lim E Xi Ai = a =a aC

lim E Xi Ai = a ; otherwise, the discontinuity in X would result in 

discontinuous potential outcomes.

From the limiting RD graph in Figure 3B, it is apparent that ATEC is identified because the 

causal relation Z ⟶ Y is neither confounded by A nor by X. Not surprisingly, the limiting 

RD graph is identical to the RCT graph in Figure 2. At the limit aC, assigning subjects 

according to A is equivalent to random assignment since an infinitesimally small amount to 

the left and the right of the cutoff the covariate and potential outcomes distributions are 

identical (Lee and Lemieux 2010). However, the main limitation of an RD design is that, 

without making functional form assumptions, only a very local ATE—for the population in 

the very close vicinity of the cutoff score—is identified.

Instrumental Variable Design

Although RCTs and RD designs are strong designs for causal inference in practice, the 

assignment of subjects to treatment and control conditions might be, due to noncompliance 

issues, not fully under the researcher’s control or entirely infeasible because of ethical or 

practical reasons. In both cases, the lack of control over treatment assignment results in 

confounding bias with respect to the relation Z ⟶ Y, which can only be removed if all the 

con founding variables are observed (see the section on matching and PS designs). However, 

even if all the confounding variables X are not known or unobserved, the effect of Z on Y is 

identifiable if we are in the possession of an IV, that is, a variable that is predictive of 

treatment Z but has no direct or indirect effect on the outcome Y except via Z (Angrist, 

Imbens, and Rubin 1996; Angrist and Pischke 2008; Brito 2010; Brito and Pearl 2002a). An 

IV might be available because it is part of the intervention, like in an RCT with 

noncompliance or an encouragement design (Holland 1988), or it is passively observed and 

identified after the data were collected. The causal graph in Figure 4 shows the basic data 

generating structure of the IV design where confounders X are assumed to be (partially) 

unobserved. Besides SUTVA, the two crucial design features of the IV design are: (1) the IV 

must be predictive of treatment Z and (2) the IV must be independent of the potential 

outcomes, IV ⊥ (Y0, Y1) (exclusion restriction). These two assumptions are also clearly 

reflected in the causal graph and the corresponding SCM:
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Xi = f i
X Ui

X

IV i = f i
IV Ui

IV

Zi = f i
Z Xi, IV i, Ui

Z

Zi = f i
Y Xi, Zi, Ui

Y .

(3)

First, the IV affects the treatment Z as shown by the arrow IV ⟶ Z and, thus, the IV is 

predictive of Z.7 Second, the IV has no effect on the outcome Y other than through the path 

IV ⟵ Z ⟶Y. Thus, the structural equation for the outcome f i
Y Xi, Zi, Ui

Y  but also the 

error term Ui
Y are independent of IV. The exclusion of paths other than IV ⟵ Z ⟶ Y 

implies that the IV represents a source of exogenous variation (like random assignment in an 

RCT). Continuing our example on the remedial math program, some of the confounders X 
might actually be unknown or unobserved like students’ ability such that we cannot 

condition on X. But we might be able to find an IV. If the remedial math program is offered 

during summer, participation in the program might also be determined by the distance 

between a student’s home and the school offering the program. Students living far away 

from the school might have a lower likelihood in participating than students living closer to 

the school. If we believe that the distance between a student’s home and school neither 

affects the math outcome directly nor indirectly, except via program participation (i.e., we 

believe that the exclusion restriction holds), then we can use the distance as an IV. In the 

following, we assume that the IV and treatment Z are dichotomous variables, where a value 

of 1 indicates treatment assignment and treatment receipt, respectively, and a value of 0 

indicates assignment and receipt of the control condition.

We cannot remove the bias that confounds the relation Z ⟶ Y by conditioning on X 
because the confounders X in Figure 4 are (partially) unobserved—thus, ATE is not 

identifiable via the backdoor criterion. However, since the IV is related to the outcome only 

via treatment Z but is otherwise completely unrelated to Y (exclusion restriction), we are at 

least able to identify the average effect of the IV (AIVE) on Y, AIVE = E(Y | IV = 1) – E(Y 
| IV = 0). For RCT with noncompliance where random assignment is an IV, this effect is 

known as intent-to-treat effect (ITT). In addition, also the average effect of IV on Z is 

identified because the relation IV ⟶ Z is unconfounded due to the IV’s exogeneity.

Although AIVE can be of its own interest, we also would like to identify ATE, that is, the 

average effect of Z ⟶ Y in Figure 4. However, Z ⟶ Y is not identified unless we can 

reasonably assume monotonicity in addition to the two design assumptions discussed above 

(Angrist et al. 1996; Brito 2010).8 In order to discuss the monotonicity assumption, also 

7.Note that the IV does not necessarily need to be causally related to Z. A correlational association between IV and Z is sufficient as 
long as the exclusion restriction holds (Brito 2010; Pearl 2009). However, a causal interpretation of the IV’s effect on Y is only 
warranted if the IV causally determines Z as in our SCM. If the IV is only associated with Z a causal interpretation is unwarranted.
8.In case of a continuous or multivalued treatment variable, the identification of the complier average treatment effect (CATE) also 
requires a linearity assumption with respect to the compliers’ outcome generating model, that is, 

Y i = f i
Y Xi, Zi, Ui

Y = gi
Y Xi + τiZi + Ui

Y .
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called no-defiers assumption, we need to distinguish between four latent subgroups (S), 

com-pliers, always takers, never takers, and defiers, where the latent group status is 

determined by (unobserved) confounders X and an independent error term: Si = f i
S Xi, Ui

S .9 

For instance, a subject’s sociodemographic characteristics, health status, or attitudes might 

determine group membership. Each of the four subgroups is characterized by a different 

compliance behavior with respect to the IV, that is, how the IV determines a subject’s 

treatment status Z. Subjects whose treatment status is exclusively determined by the IV such 

that they take treatment if IV = 1 and take the control condition if IV = 0 are called 

compliers (Si = C) because they always comply with the treatment status suggested by the 

IV: Z = 1 if IV = 1 and Z = 0 if IV = 0. Because the compliers’ treatment status Z is 

exclusively determined by the IV, Zi = f i
Z IV i , Z is independent of X (and UZ) as shown in 

the complier graph in Figure 5A (the arrow X ⟶ Z is missing). Always takers (Si = A) 

always select into the treatment group irrespective of their IV status:Z = 1 if IV = 0 and Z = 

1 if IV = 1. Never takers (Si = N) always show up in the control condition independent of 

their IV status: Z = 0 if IV = 0 and Z = 0 if IV = 1. Thus, the treatment status of always 

takers and never takers is solely determined by X and UZ and is independent of IV. That is, 

Zi = f i
Z Xi, Ui

Z  is a function of X and UZ alone, as shown in the corresponding graph for 

always and never takers in Figure 5B (the independence is reflected by the missing arrow IV 
⟶ Z). Finally, defiers (Si = D) always do the opposite to what the IV indicates: Z = 0 if IV 
= 1 and Z = 1 if IV = 0. As with compliers, the defiers’ treatment status is exclusively 

determined by the IV but, for identification reasons, we need to assume that no defiers are 

present, that is, P(Si = D) = 0 (as becomes clear from the proofs in Online Appendix B). The 

absence of defiers is referred to as monotonicity (no-defiers) assumption. For our remedial 

math example, the monotonicity assumption implies the absence of students that would not 

participate in math training if the program school is close but participate if the school is far 

away. The population of compliers consists of students that would participate in the math 

training if the program school is close but would not participate if the school is remote.

With regard to the causal graphs in Figure 5, a couple of remarks are indicated.10 First, for 

always takers and never takers, (1) the effect Z ⟶ Y is not identified because we neither 

observe X nor will an always taker ever be observed in the control condition and a never 

taker in the treatment condition, and (2) the effect IV ⟶ Y is zero because the IV is 

unrelated to Z and Y. Second, for compliers, (1) the effect Z ⟶ Y is identified because X 
does not confound the relation Z ⟶ Y and (2) the effect IV ⟶ Y is equivalent to the 

effect Z ⟶ Y and, thus, identified. This is so, because treatment status Z is solely 

determined by the IV (i.e., Z = IV). Also note that the complier graph is identical to the RCT 

graph in Figure 2. Third, though we are theoretically able to identify the causal effect Z ⟶ 
Y for compliers from the complier graph in Figure 5A, it is practically impossible because 

the latent subgroup of compliers is not observable (as are the subgroups of always takers and 

9.The compliance status S is a latent variable, which we assume to be fully explained by confounders X and other exogenous factors 
US. Thus, we could add S and the arrow X ⟶ S to the graph in Figure 4 and later condition on the corresponding subpopulations. 
We refrained from doing so because we found it more distracting than clarifying.
10.Similar to our separation of graphs for compliers, always and never takers, and no-defiers, Morgan and Winship (2012, 2014) draw 
separate graphs for the sub-populations of compliers and noncompliers.
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never takers). The group of compliers cannot be empirically determined because the subjects 

in the treatment condition (Z = 1) with IV = 1 consist of and always takers, and subjects with 

Z = 0 and IV = 0 consist of compliers and never takers, making it impossible to empirically 

separate compliers from always takers and never takers. Thus, the identification of the 

complier average treatment effect (CATE) must be based on the causal graph for the 

observable but mixed population of compliers, always takers and never takers together (C + 

A + N). Because defiers are assumed to be absent, we refer to the mixed population as no-

defiers population (Figure 5C). Interestingly, the ATE for compliers is still identified from 

the nodefiers graph. The main argument can already be seen from the causal graphs in 

Figure 5. Since only the group of compliers has a nonzero effect IV ⟶ Z, the effect of the 

IV on Z and Y in the no-defiers graph can only be due to compliers and no other latent 

group.

The SCM for the no-defiers population (i.e., the population of compliers, always takers and 

never takers) is the same as in equation (3) but now with defiers excluded. Again, note that 

the subscript i in f i
Y of the structural outcome model indicates that the treatment effects may 

vary across subjects, implying that the ATEs for the latent subgroups of compliers, always 

takers, and never takers can be different. Assuming monotonicity, the CATE (Z ⟶ Y in the 

complier graph) is then defined as

CATE = E Yi
1 Si = C − E Yi

0 Si = C = E Yi
1 − Yi

0 Si = C

= E f i
Y Xi, Zi = 1, Ui

Y − f i
Y Xi, Zi = 0, Ui

Y Si = C

= E τi Si = C = τC,

where the expectation is taken over all units in the complier population. The CATE, τC, is 

shown in the complier graph in Figure 6A. Since the effect IV ⟶ Z is equal to 1 (because 

Z = IV) the average effect of IV on Y is also τC (the formal proof is given in proof 1 in 

Online Appendix B).

We now show how CATE can be identified from the no-defiers graph in Figure 6B. The 

identification argument involves three steps:

(1) The average effect IV ⟶ Z in the no-defiers graph is given by the complier 

probability γ = P(Si = C).

(2) The AIVE on Y, IV ⟵ Z ⟶ Y, is the product of the complier probability and 

CATE, that is, γτC.

(3) Using the results from steps (1) and (2), CATE is then given by the ratio of the 

effects of IV ⟵ Z ⟶ Y and IV ⟶ Z, that is, 
γτC

γ = τC

First, using the IV’s independence of X, proof 2 of Online Appendix B shows that the effect 

IV ⟶ Z is given by complier probability γ = E(Zi | IVi = 1) – E(Zi | IVi = 0) = p(Si = C). 

This is also clear from the causal graphs Figure 5. For the complier graph, the path IV ⟶ Z 
is equal to one (γ = 1) because all subjects comply with the treatment indicated by the 

instrument, while in the always-taker and never-taker graph the corresponding effect is zero 
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(γ = 0). Thus, in the no-defiers graph in Figure 6B, γ represents the weighted average of the 

effects IV ⟶ Z across the three latent subgroups: 1 × P(Si = C) + 0 × P(Si = A) + 0 × P(Si 

= N) = P(Si = C) with P(Si = C) + P(Si = A) + P(Si = N) = 1.

Second, due to the IV’s exogeneity, the AIVE on Y is identified in the no-defiers graph and 

is given by γτC:

AIVE = E Y i IV i = 1 − E Y i IV i = 0 =
= P Si = C E Y i

1 Si = C − E Y i
0 Si = C

= γτC .

(4)

This result is formally proven in proof 3 of Online Appendix B, but it is also clear from the 

causal graphs in Figure 5. Since the IV has no effect on Y for always takers and never takers, 

the IV’s effect on Y in the no-defiers graph can only be due to the compliers whose effect is 

τC. Thus, AIVE is obtained as the weighted average τC P(Si = C) + 0 × p(Si = A) + 0 × p(Si 

= N) = γτC, and CATE is obtained as the ratio of AIVE and the complier probability:

CATE = AIVE
P Si = C

=
γτC

γ = τC

With the mechanics of the IV design in hand, we now revisit the RCT and RD designs and 

discuss the identification of CATEs in the case of noncompliance.

Randomized Experiment and RD Design With Noncompliance

RCTs and RD designs are frequently not perfectly implemented since it is common for some 

subjects not to comply with the assigned treatment or control condition. In this case, ATE is 

generally not identified but CATE still is because the treatment status assigned can be used 

as an IV. We first discuss the RCT with noncompliance and then the RD design. The causal 

graph in Figure 7 represents the data generating mechanism of an RCT with noncompliance. 

Due to noncompliance, treatment status Zi = f i
Z Ri, Xi, Ui

Z  is now also determined by 

confounders X (X ⟶ Z) and factors UZ (the latter are unrelated to the outcome Y and not 

shown in the graph). Since the confounders X are in general unobserved, the average effect 

Z ⟶ Y is not identified. However, since the randomly assigned treatment status R usually 

meets the IV assumptions (predictive first stage, exclusion restriction, and no-defiers), CATE 

is identified. Note that the causal graph in Figure 7 is identical to the IV graph in Figure 4, 

thus, identification is analogous. For the case of one-sided noncompliance (i.e., there are no 

always takers such that noncompliance is only due to never takers), one can show that the 

ATE on the treated (ATT) is identified (Bloom 1984; Frölich and Melly 2008).

The graph in Figure 8A displays the data generating mechanism for the RD design with 

noncompliance, also called fuzzy RD design. In comparison to the RD graph with full 
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compliance (Figure 3), we now have an additional variable D in the graph, which indicates 

the assigned treatment status, while Z indicates treatment received. The structural equations 

for D and Z are:

Di = f D Ai = 0 if Ai ≥ aC

1 if Ai< aC Zi = f i
Z Di, Xi, Ui

Z .

As for the RCT with noncompliance, X now directly confounds the relation Z ⟶ Y, even 

after conditioning on the limiting cutoff aC (Figure 8B). Thus, without observing X, ATE at 

the cutoff is no longer identified. However, as the limiting graph in Figure 8B indicates, we 

can use the assignment status D as an instrument for identifying CATE at the cutoff. Again, 

in case of one-sided noncompliance (i.e., no always takers are present) ATT at the cutoff is 

identified.

Matching and Propensity Score Designs

Although RCT, RD, and IV designs are strong designs for causal inference, they might not 

be feasible in practice because treatment assignment is not always under the researcher’s 

control and an IV might not be available or unambiguously identifiable (i.e., whether the 

exclusion restriction and the monotonicity assumption actually hold might be in doubt). 

However, if a researcher has reliable knowledge about the selection mechanism and reliable 

measures of all variables X that confound the relation between treatment Z and the outcome 

Y, the average causal effect of Z ⟶ Y is identified. More general, identification requires a 

set of variables X that blocks all confounding paths. Instead of a confounder Xj one can 

measure any intermediate variable Xm lying on the confounding path Z ⟵ Xj ⟶ Y, that 

is, Z ⟵ Xj ⟶ Xm ⟶ Y or Z ⟵ Xm ⟵ Xj ⟶ Y). For simplicity reasons, we only 

confounders in our structural models and causal graphs. With respect to our remedial math 

example, identification requires that all confounders like student’s ability, sex, or 

socioeconomic status are known and reliably measured. The causal graph in Figure 9A 

shows the presumed data generating structure. The corresponding SCM is given by:

Xi = f i
X Ui

X

Zi = f i
Z Xi, Ui

Z

Yi = f i
Y Xi, Zi, Ui

Y

which is identical to equation (1) discussed in the introduction section. The ATE of Z on Y 
(Z ⟶ Y) is identified if two assumptions in addition to SUTVA are met: First, all 

confounders X must be observed and reliably measured such that, conditional on X, the 

potential outcomes are independent of treatment selection (Y0; Y1)⊥ Z | X. Second, the 
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conditional probability of receiving the treatment given the confounders must be strictly 

between zero and one, 0 < P(Z = 1| X) < 1 (positivity assumption). These two assumptions 

are frequently referred to as strong ignorability (Rosenbaum and Rubin 1983). In the data 

generating graph in Figure 9A, the first part of the strong ignorability assumption is reflected 

by the absence of any backdoor path via an unobserved confounder or a latent construct that 

has been unreliably measured—only backdoor paths via X exist where all confounders X are 

assumed to be known and reliably measured. The second part of strong ignorability, 0 < P(Z 
= 1| X) < 1, cannot directly be seen from the causal graph but the assumption requires that 

ATE is identified for all subpopulations with X = x′, where x′ takes on all possible 

combinations of x values. Thus, for each realization x′, there must be variation in Z; 

otherwise, the effect Z ⟶ Y would not be identified for X = x′. That is, if all subjects with 

X = x′ always end up in the treatment condition such that P(Z = 1 | X = x′) = 1it then 

impossible infer their outcomes under the control condition because not even a single 

subject will ever be in the control condition. For such a subpopulation with P(Z = 1 | X = x′) 

= 1 we would neither draw the arrow X ⟶ Z nor Z ⟶ Y because there is neither 

variation in X nor in Z (analogous for P(Z = 1 | X = x′) = 0).

Given strong ignorability, the data generating graph in Figure 9A ensures that the average 

effect Z ⟶ Y is identified via the backdoor criterion (Pearl 2009). Conditioning on 

confounders X blocks the backdoor path Z ⟵ X ⟶ Y and, thus, ATE is identified. In 

terms of potential outcomes, we get 

E E Y i Zi = 1, Xi − E E Y i Zi = 0, Xi = E E Y i
1 Z = 1, X − E E Y i

0 Zi = 0, X = E Y i
1

− E Y i
0 = ATE

.

If strong ignorability is met, one can directly estimate the treatment effect parametrically via 

standard regression methods or nonparametrically via multivariate stratification. 

Alternatively, one can employ a matching design before estimating the treatment effect. 

Since matching is a procedure that constrains the naturally occurring data generating process 

(i.e., unmatched data are removed), the matching step needs to be reflected by the causal 

graph. Figure 9 represents the graphs for the matching design where the match indicator S 

indicates whether a subject got matched (S = 1) or not matched (S = 0). If matching is done 

before treatment implementation, unmatched cases do not become a part of the study. If 

subjects are matched after treatment exposure and the collection of outcome data, 

unmatched cases are removed from the data. Since matching treatment and control cases on 

observed confounders requires knowledge of both Z and X, that is, S is causally determined 

by Z and X, the arrows in Figure 9B point from Z and X into S, making S a collider on the 

path Z ⟶ S ⟵ X (Mansournia, Hernán, and Greenland 2013; Shahar and Shahar 2012). 

Because S is a collider, conditioning on the match status S introduces an association 

(collider bias) between Z and X as shown in Figure 9C by the dashed path. The box around 

S symbolizes the conditioning. If matching is implemented with a constant matching ratio 

(i.e., 1:1 or 1:k matching), then the collider bias X---Z exactly offsets the confounding 

relation X ⟶ Z in the matched data with S = 1 (Mansournia et al. 2013; Shahar and Shahar 

2012). For the matched data, the graph in Figure 9D shows that X and Z are no longer 

related to each other (S is no longer shown because it is a constant in the matched data set, S 
= 1; see Online Appendix A for further explanations). Since the graph for the matched data 
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is identical to the RCT graph (Figure 2), one can say that a matching design tries to mimic 

an RCT—though on observed covariates only. Given the independence of X and Z, the ATE, 

in this case the ATT, is identified without any further adjustments. Importantly, the ATT is 

identified not because all the confounding backdoor paths have been blocked but because 

matching with a constant matching ratio offsets the confounding relation between X and Z 
via collider bias.

We now extend this identification result for matching designs with a constant matching ratio 

(Mansournia et al. 2013; Shahar and Shahar 2012) to PS designs (for an introduction to PS 

methods, see Schafer and Kang 2008; Steiner and Cook 2013). We demonstrate that collider 

bias not only offsets the confounding relation in PS matching designs (with constant 

matching ratio) but more generally also in PS designs that use full matching, stratification or 

inverse-propensity weighting. This general result is obtained because the PS itself is a 

collider variable and, thus, conditioning on the PS offsets the confounding relation X ⟶ Z 
regardless of the choice of a specific PS design—matching, stratification, or weighting. The 

PS is defined as the conditional probability of receiving the treatment, given observed 

variables X: PSi = PX;Z(Zi = 1| X = xi). The PS is a balancing score that balances the 

baseline differences between the treatment and control group in observed confounders X 
such that the conditional distribution of X given PS is the same for treated and control 

subjects, P(X | Z; PS) = P(X | PS). Conse quently, X is independent of Z given PS, X ⊥Z | 

PS. Rosenbaum and Rubin (1983) showed that if selection is strongly ignorable given X, it is 

also ignorable given the PS alone: (Y0; Y1)⊥Z | PS. That is, ATE or ATT is identified by 

conditioning on the PS alone—once the PS is determined, variables X are not longer needed 

for identifying ATE or ATT. However, other than for conditioning on confounders X, 

conditioning on the PS does not identify ATE via blocking the confounding backdoor path Z 
⟵ X ⟶ Y because the PS does not lie on the backdoor path. Instead, the PS removes the 

confounding effect of X by offsetting the relation X ⟶ Z via collider bias. Since this is in 

contrast to explanations of other authors who argue that the PS essentially blocks the 

backdoor path (Baker and Lindeman 2013; Shrier 2008, 2009; Sjölander 2009), a more 

thorough discussion of the PS is required.11

Consider how the PS is generated for a finite target population of size N. Since the PS is 

inherently unknown and defined as a function of observed covariates (Rosenbaum and Rubin 

1983), the joint distribution of X and Z has to be determined in a first step: 

PX, Z X = x, Z = z = F X = x, Z = z
N  where F(.) is the frequency function. Then, using the 

distribution function PX,Z, a single subject’s PS is determined as the conditional probability 

of being in the treatment group (Z = 1), given the observed covariates xi:

11.Researchers who argue that the propensity score (PS) essentially blocks the back-door path either replace the confounders by the 
PS and, thus, directly locate the PS on the backdoor between Z and Y, or draw the PS as a separate node but as a descendant of X 
alone instead of a collider with respect to X and Z.
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PSi = f X, Z
PS Xi = PX, Z Z = 1 X = xi

=
PX, Z X = xi, Z = 1

PX, Z X = xi, Z = 0 + PX, Z X = xi, Z = 1

It is important to realize that (1) the PS function f X, Z
PS  has subscripts X and Z because it can 

only be determined after the joint probability function Px,z has been determined from 

population data X and Z and that (2) f X, Z
PS  is the same for all subjects (i.e., the PS function 

does not have a subscript i like the other structural equations of the SCM). Thus, the PS 

function f X, Z
PS  is constant across subjects but depends on the population’s realized values of 

X and Z. Once Px,z and thus f X, Z
PS  is known, the PS is only a function of x, PSi = f X, Z

PS

because the PS for a treated and control subject with identical covariate values xi is the 

same. However, because the computation of the PS first requires the determination of PX,Z 

from population data X and Z, the PS is necessarily a function of both X and Z as shown in 

Figure 10B where two arrows point into PS, Z ⟶ PS ⟵ X.

This definition of the PS as a function of X and Z deviates from the usual practice of 

defining the PS as a function of observed covariates X alone, PSi = e(xi) (e.g., Rosenbaum 

and Rubin 1983). Such a definition neglects the fact that the PS cannot be determined 

without observing Z because the PS has to balance group differences in the observed 

covariate distribution caused by selection Zi = f i
Z Xi, Ui

Z  In order for the PS to be a 

balancing score, it necessarily has to change whenever one intervenes on covariates X or the 

selection mechanism f i
Z Xi, Ui

Z . Thus, the PS is causally determined by both X and Z.12

Because PS = f X, Z
PS x  is many-to-one function of X, that is, different x values result in the 

same PS (i.e., for some X′ ≠ X*, f X, Z
PS X′ = f X, Z

PS X * ), conditioning on the PS does not 

fully block the backdoor path Z ⟵ X ⟶Y (see also Pearl 2009, footnote 7 on p. 348).13 

That is, conditional on a single PS = s, confounders X still vary and thus transmit 

information to Z and Y. But since this conditional variation no longer confounds the relation 

Z ⟶ Y, one could argue that the PS filters out or blocks that part of X’s variation that is 

responsible for the confounding while the variation in X that does not confound the relation 

Z ⟶ Y remains unblocked. However, we argue that conditioning on the PS induces a 

12.To further illustrate that the PS actually is a function of both X and Z, assume a linear probability model that is sufficient for 
generating the balancing PS for the entire target population. First, regression coefficients b are determined as a function of X and Z, 

that is, β = (X′X)−1X′Z. Then, the PSs f X, Z
PS x , are obtained according to f X, Z

PS X = X′β = X′ X′X −1X′Z. This clearly 

indicates that the PS is of both X and Z. Because the PS has to be a balancing score, the regression coefficients β and, thus, the PS 

change whenever the selection mechanism Zi = f i
Z Xi, Ui

Z  changes. Again, after the coefficients β have been determined, the PS 

solely depends on X; but the βs are unknown and need to be computed from X and Z.
13.Only if there would be a one-to-one relationship between the PS and X, the PS would actually block the backdoor path because in 
this case the PS is only an alternative representation of X. However, the PS typically is a many-to-one function of X (Rosenbaum and 
Rubin 1983).
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collider bias that exactly offsets the confounding relation X ⟶ Z. This is so, because the 

PS is defined as a balancing score that balances the baseline differences between the 

treatment and control group in observed confounders X. The collider argument also holds if 

one would believe that a latent PS instead of X directly determines Z, that is, Y ⟵ Z ⟵ 
PS ⟵X ⟶ Y. Because such a latent PS is inherently unobservable, the balancing PS also 

needs to be determined from both X and Z.14

The causal graph in Figure 10B shows the PS as a collider on the path Z ⟶ PS ⟵ X ⟶ 
Y. Conditioning on PS in order to identify the ATE of Z on Y actually induces a spurious 

relation between X and Z as shown by the dashed path in the conditional graph in Figure 

10C. The spurious relation created by conditioning on the PS exactly offsets the effect X 
⟶ Z because the PS is a balancing score such that X ⊥Z | PS More formally, though X and 

Z are marginally dependent, P(X; Z) ≠ P(X) P (Z), conditional on the PS they are 

independent: P(X,Z | PS) = P(X | PS)P(Z | PS) If the PS were not a balancing score,  | 

PS, but any other derived from X and Z (or X alone) it would not offset the relation X ⟶ 
Z; bias in the outcome would remain or even increase (e.g., the collider bias might go into 

the same direction as the confounding bias and, thus, increase the overall bias).

The independence structure resulting from conditioning on the PS via any type of PS 

matching, PS stratification, or inverse-propensity weighting is reflected by the graph in 

Figure 10D. The relations X ⟶ Z and Z ⟶ PS are no longer present because of the PS’s 

balancing property which also implies that Z is independent of PS given X: Z⊥PS | X, that 

is,P(Z | X, PS) = P(Z | X).15 Thus, after the PS adjustment the effect Z ⟶ Y is identified 

without any further conditioning. In this sense, PS designs create a matched, stratified, or 

weighted data set that mimics a randomized experiment—the RCT graph in Figure 2 is 

essentially identical to the graph in Figure 10D. A causal search algorithm like IC (Inductive 

Causation), PC (Peter Clark, named after Peter Spirtes and Clark Glymour), or FCI (Fast 

Causal Inference; Pearl and Verma 1991; Spirtes et al. 2000; Spirtes, Meek, and Richardson 

1999) would exactly reveal these independencies in the matched or weighted data set.

However, the two conditional independencies X⊥Z | PS and Z⊥ PS | X encoded in the 

causal graph (Figure 10D) are unfaithful because slight changes in or misspecifications of 

the PS model would immediately induce a dependence not only between X and Z but also 

between Z and PS.16 This reveals an essential difference between observational studies and 

an RCT: While an RCT establishes a faithful independence structure via randomization (i.e., 

a natural data generating process), a PS-adjusted observational study relies on unfaithful 

independencies that need to be established via a computational procedure using observed 

covariates X and treatment Z. Moreover, the PS adjustment only establishes independence 

14.Note that Rosenbaum and Rubin (1983) never considered the PS as a latent score that directly determines selection because the PS 
is defined as a function of observed covariates and, therefore, depends on the actual selection of covariates X. Since different choices 
of X and, thus, different PSs can establish an ignorable selection mechanism, it is hard to think of a unique latent PS that causally 
determines selection into treatment conditions. However, if such a latent PS would actually be known and observed, then it would, of 
course, block the backdoor path.
15.Because PS = f X, Z

PS x  is a function of X, all the information in PS is also contained in X and thus, P Z X, PS = P Z X .
16.Mansournia et al (2013) the make same argument for matching with constant matching ratios. The faithfulness assumption (also 
called stability assumption) requires that the independencies implied by the joint probability distribution of X, Z, and Y are stable, that 
is, they remain invariant to changes in the parameters of the data generating SCM (see Online Appendix A for more details).
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with regard to the observed covariates X but not with regard to unobserved or unreliably 

measured confounders (in our discussion, we assumed that all confounders are reliably 

measured, i.e., strong ignorability is met).

Discussion

In this article, we presented the causal graphs of randomized experiments and quasi-

experimental designs for inferring causal effects from experimental and observational data. 

The graphical representation of experimental and quasi-experimental designs has the 

advantage that it makes the crucial design assumptions explicit and facilitates determining 

whether a treatment effect is identified. In introducing the concepts of limiting and 

conditional graphs and by explicitly including the PS in the graph, we were able to 

graphically demonstrate that both the RD and IV designs identify only local ATEs and that 

the PS is a collider that offsets confounding bias via collider bias. Overall, we believe that 

the graphical representation of quasi-experiments will help practitioners in getting a better 

understanding of the designs’ assumptions and limitations and, finally, in doing better causal 

studies.

In comparing the causal graphs of the discussed designs, it becomes clear that RCTs rely on 

the weakest and fewest assumptions for identifying the ATE. The RD graph reveals that 

deterministic assignment on the basis of an assignment variable typically results in 

confounding bias. However, in limiting the causal graph to the close vicinity around the 

cutoff score, the RD graph reduces to an RCT graph and, thus, allows the ATEC to be 

identified. A major disadvantage of the RD design is that it only identifies a very local 

treatment effect (at the cutoff) that is not generalizable to the overall target population 

without further assumptions (particularly functional form assumptions).

The IV design results in a series of causal graphs highlighting the design’s complexities. 

Although an IV represents a source of exogenous variation just like random assignment, 

other factors might simultaneously determine the treatment status and the outcome and 

confound the treatment effect. However, assuming monotonicity, it is possible to identify the 

ATE for the latent subgroup of compliers from the observable no-defiers population (i.e., 

com-pliers, always takers, and never takers). Again, because the graph for the latent 

subpopulation of compliers is identical to an RCT graph, the CATE is identified, though not 

directly observable. Thus, in comparison to an RCT, the IV design requires stronger 

assumptions and it only identifies the ATE for the latent subpopulation of compliers which 

depends on the instrument chosen.

Although the data generating graphs of the matching and PS designs are similar to the data 

generating IV graph, the two designs differ completely in their identification strategy. While 

the IV design tries to identify the CATE via an exogenous source of variation, matching and 

PS designs aim to identify the ATE by neutralizing the confounding backdoor paths via 

collider bias. However, the ATE is identified only if all confounders have been reliably 

measured, which is not required for the IV design. The graphs resulting from matching or 

conditioning on the PS mimic an RCT graph—there are no longer any confounders present 

that could confound the treatment effect.
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From a theoretical point of view, the causal graphs highlight that the identifying assumptions 

become stronger as a researcher’s control over treatment selection diminishes. The active 

interventions associated with RCTs and RD designs result in fewer assumptions for 

identifying causal effects than passive observations which are typically used in IV, matching, 

and PS designs. This suggests that one should prefer RCTs and RD designs over IV, 

matching, and PS designs. However, from a practical point of view, it is frequently not 

possible to directly control the assignment of subjects to treatment and control conditions, so 

a researcher needs to rely on observational data. In that case, IV, matching, and PS designs 

are viable designs given that one is either in the possession of an IV or of reliable measures 

of all the confounding variables.

The causal graphs discussed in this article only represent the basic RCT and quasi-

experimental designs for cross-sectional data with respect to the effect of a single treatment 

on a single outcome. The causal graphs can naturally be extended to reflect more complex 

designs that address plausible threats to validity, for instance, RD designs with a matched 

comparison group (Wing and Cook 2013), conditional or multiple IV designs (Brito 2010), 

PS matching designs with the added design elements of multiple nonequivalent comparison 

groups or nonequivalent outcomes (Shadish et al. 2002), or comparative interrupted time 

series (difference-in-differences) designs (Lechner 2010; Wong, Cook, and Steiner, 2015).

Causal graphs also can and need to reflect violations or relaxations of SUTVA, attrition 

issues, measurement errors, nonresponse problems, or more complex treatment regimes 

(including mediated effects). Not surprisingly, these graphs will almost always indicate that 

the identification of causal treatment effects requires stronger and an increased number of 

assumptions that are most likely not met in practice. Thus, we claim that strong causal 

inferences should rely on studies whose basic designs are associated with simple and 

credible causal graphs—well-implemented randomized trials and quasi-experiments, in 

particular RD designs, may meet this claim.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal graph of an observational study: complete and stylized representation.
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Figure 2. 
Data generating graph of a randomized controlled trial.
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Figure 3. 
Causal graphs of a regression discontinuity (RD) design. (A) Data generating graph. (B) 

Limiting graph for A = aC ± ε with ε ⟶ 0.
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Figure 4. 
Data generating graph of an instrumental variable design.
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Figure 5. 
Data generating IV graphs for (A) compliers, (B) always takers and never takers, and (C) 

compliers, always takers and never takers together (i.e., no defiers).
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Figure 6. 
IV graphs for (A) compliers and (B) compliers, always takers, and never takers together (i.e., 

no defiers).
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Figure 7. 
Causal graph of the randomized controlled trial with noncompliance.
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Figure 8. 
Causal graphs for the fuzzy regression discontinuity (RD) design. (A) Data generating 

graph. (B) Limiting graph for A = aC ± ε with ε ⟶ 0.
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Figure 9. 
Causal graphs for a matching design (with constant matching ratio).(A) Data generating 

directed acyclic graph. (B) Computation of match indicator S.(C) Conditioning on the match 

indicator S. (D) The independence structure after matching (S = 1).
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Figure 10. 
Causal graphs for propensity score designs. (A) Data generating directed acyclic graph. (B) 

Computation of the propensity score (PS). (C) Conditioning on the PS. (D) The 

independence structure after PS adjustment.
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