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Abstract

Copy number variation (CNV) is a common form of structural variation detected in human 

genomes, occurring as both constitutional and somatic events. Cytogenetic techniques like 

chromosomal microarray (CMA) are widely used in analyzing CNVs. However, CMA techniques 

cannot resolve the full nature of these structural variations (i.e. the orientation and location of 

associated breakpoint junctions) and must be combined with other cytogenetic techniques, such as 

karyotyping or FISH, to do so. This makes the development of a next-generation sequencing 

(NGS) approach capable of resolving both CNVs and breakpoint junctions desirable. Mate-pair 

sequencing (MPseq) is a NGS technology designed to find large structural rearrangements across 

the entire genome. Here we present an algorithm capable of performing copy number analysis 

from mate-pair sequencing data. The algorithm uses a step-wise procedure involving 

normalization, segmentation, and classification of the sequencing data. The segmentation 

technique combines both read depth and discordant mate-pair reads to increase the sensitivity and 

resolution of CNV calls. The method is particularly suited to MPseq, which is designed to detect 

breakpoint junctions at high resolution. This allows for the classification step to accurately 

calculate copy number levels at the relatively low read depth of MPseq. Here we compare results 

for a series of hematological cancer samples that were tested with CMA and MPseq. We 

demonstrate comparable sensitivity to the state-of-the-art CMA technology, with the benefit of 

improved breakpoint resolution. The algorithm provides a powerful analytical tool for the analysis 

of MPseq results in cancer.
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Introduction

With the rapid advances in whole-genome sequencing (WGS) technology, genetic alterations 

like single nucleotide variations (SNVs) and structural variations (SVs) have been shown to 

play important roles in a variety of diseases. In particular, cancer is a disease that is 

characterized by genetic alterations that drive uncontrolled growth across all disease types.
1–5 A major class of structural variant is copy number variation (CNV), defined as a loss or 

gain of at least 1kb genomic material.6 CNVs contribute to the natural variation in the 

healthy human genome7 and abnormal constitutional variants. They also represent a 

significant contributor to the pathogenic etiology of both constitutional and oncological 

disease. Because CNVs play a major role in cancer in modulating the expression levels of 

genes involved in cell growth and regulation8 it is important to precisely map which genes 

are gained or lost in the region and at what copy state. Traditionally, karyotyping and 

fluorescence in situ hybridization (FISH)9 have been used to identify CNVs. However, both 

methods have significant drawbacks in CNV detection. Karyotyping is low resolution and 

will only accurately determine large copy number variations (3–10 Mb) and without precise 

breakpoint location. FISH is limited in scope and only applicable in regions where a CNV 

may be suspected to occur. More recently, the most comprehensive and accurate way for 

CNVs to be detected is through an array-based comparative genomic hybridization (aCGH) 

or SNP-based microarrays, collectively described as chromosomal microarray (CMA).10,11

In brief, CMA provides an assessment of copy number in a sample genome by hybridization 

parameters compared to a reference, either by competitive hybridization of differentially 

labeled genome (aCGH) or by comparison to an in silico reference (SNP-based microarray). 

This allows for the detection of alterations in copy number throughout the genome at ~20–

50kb resolution using the highest density arrays, and even greater resolution with high-

density tiling of probes.10,12–15 While CMA offers state-of-the-art CNV detection at high 

resolution, there are also inherent advantages that NGS solutions offer.

NGS encompasses the broad advances in sequencing technology that allow for fast 

sequencing on the whole-genome scale. Mate-pair sequencing (MPseq) technology is one 

such whole-genome sequencing (WGS) method. MPseq is designed to allow for paired-end 

sequencing of large DNA fragments (2–5Kb) through the use of a modified library 

preparation.16 The longer fragments allow for the accurate determination of breakpoint 

junction locations at low base coverage. These junctions are created by the union of 

breakpoints in a genome and indicate where there has been rearrangement of chromosomal 

material. Because many CNVs involve the rearrangement of chromosomal material, the 

knowledge of a junction’s breakpoint locations afforded by MPseq greatly aids subsequent 

CNV detection and classification. With the development of such a CNV detection algorithm, 

MPseq would be a technology capable of providing a comprehensive assessment of SVs, 

while improving the breakpoint resolution of CNV calls.

In this study we present our CNV detection algorithm, called CNVDetect, which consists of 

normalization, segmentation, classification, and visualization steps. The segmentation of the 

genomic data into copy number regions, also referred to as step detection, is ubiquitous in 

CNV detection algorithms.17 Most NGS methods employ either a sliding window18–20 or a 
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global approach like a Hidden Markov Model (HMM).21 Here we employ a sliding window 

approach in the interest of speed. Typically such approaches have the drawback of being 

low-resolution, being limited by the window size used and the ability to effectively capture 

the necessary statistics. However, MPseq provides breakpoint locations at ~200bp resolution 

for large structural rearrangements (gains or losses >30Kb).22 By integrating the discordant 

mate-pair reads into the algorithm we are able to effectively increase breakpoint resolution. 

In this way our method is unique in that it is optimized to take advantage of the high-

resolution breakpoint information naturally provided by the MPseq NGS technology at low 

read depth coverage. Such methods have previously been developed for use with high read-

depth paired-end sequencing data.23

This accurate breakpoint location information is especially important in analyzing cancer 

genome samples where normal cell contamination and minor clones often make precise 

CNV determination difficult. We present results from the CNV algorithm compared to 26 

samples run using the CMA technique. We assess how the inclusion of breakpoint junction 

information reported by the BioMarker Discovery Structurel Variant Pipeline (BMD SV 

Pipeline), a collection of algorithms designed to report structural variants from NGS 

sequencing data (see Materials and Methods), can aid the CNVDetect algorithm in CNV 

edge detection. Further we present a series of examples ranging from simple to complex, 

which demonstrate the power of the CNVDetect in assisting in the characterization of 

complex cancer samples.

Materials and Methods

Study population

A series of de-identified clinical samples sent to the Mayo Cytogenetics Laboratory for 

karyotype and or FISH testing were chosen based on the presence of recurrent cytogenetic 

anomalies seen in acute myeloid leukemia, acute lymphocytic leukemia and chronic 

lymphocytic leukemia. This test set is intended to represent a wide variety of abnormalities 

to provide an initial assessment of MPseq suitability for clinical cytogenetic testing.

Cytogenetics chromosomal microarray analysis

Chromosomal microarray was performed on all samples using the CytoScan HD array 

(Affymetrix) according to the manufacturer’s protocol. Data were analyzed using the 

manufacturer-provided software (ChAS) with the following laboratory defined parameters: 

Default smooth and join settings were turned off. All copy number segments were flagged 

for review when involving at least 25 markers for deletions and 50 markers for duplications. 

Additionally, all microarray data were manually reviewed to dismiss artifactual calls, refine 

CNV breakpoints called by the software, as well as to identify additional subtle copy 

number variation that was not flagged by the algorithm. Such manual calling practices are 

widely used in clinical microarray review.24 Chromosomal microarray data were reviewed 

according to standard clinical protocols, and only those CNV segments meeting laboratory 

clinical reporting criteria were evaluated against MPseq in this study.
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DNA library preparation and sequencing

DNA was isolated using the Qiagen Puregene extraction protocol. The DNA was processed 

using the Illumina Nextera Mate Pair library protocol and sequenced on the Illumina HiSeq 

2000. Pooled libraries were hybridized per flow cell and sequenced using 101-basepair reads 

and paired-end sequencing.

BMD structural variant pipeline

The analysis pipeline for MPseq sequencing data was developed to find breakpoint junction 

locations and CNVs. The pipeline is termed the BMD Structural Variant Pipeline (BMD SV 

Pipeline) and is depicted in Figure 1A. It takes as input the MPseq sequencing data detailed 

in the DNA library preparation protocol and performs a two-step process: alignment and 

structural variant analysis. Alignment is performed using the BIMA alignment method.25 

The mapped sequences are passed to the SVAtools module, which consists of a breakpoint 

junction detection step22 and a CNV detection step. This CNV detection step, termed 

CNVDetect, requires both the alignment and breakpoint junction detection steps to be 

performed before analysis can be completed.

The CNVDetect algorithm for determining CNVs in MPseq data was designed to proceed 

through four steps, normalization, segmentation, classification, and visualization (Figure 1B) 

to account for the following factors: i) the variation in copy number level due to structural or 

sequence biases, such as GC content, ii) the presence of normal cell contamination and iii) 

the presence of heterogeneous subclones with differing CNVs. Factor i) has the potential to 

increase the false positive rate of the algorithm, while factors ii) and iii) have the potential to 

increase the false negative rate.

CNVs are detected using the read count of concordant mapping fragments from MPseq 

sequencing data aligned using the BIMA alignment method.25 The first step of the algorithm 

aims to normalize the sample read count data using a previously sequenced normal genome 

sample that closely resembles the sample of interest. This step is designed to take into 

account all sequence, structural, or DNA processing biases that may contribute to variations 

in read count that do not reflect the signal of interest. The method does not rely on sequence 

data, such as GC content, to account for bias, but rather leverages existing genomic 

knowledge.

The second step of the algorithm segments the genomic data into copy number regions. It 

uses a sliding window algorithm for step detection, repeated for bin sizes ranging from 

100Kb–1Mb. All positions with statistically significant changes in read depth are considered 

possible edges of CNV regions. We increase the edge detection resolution by incorporating 

breakpoint junctions detected in the SVAtools22 to supplement the statistically determined 

edges.

The third step of the algorithm takes the potential copy number regions and classifies them 

as loss, gain, or normal copy state. It is assumed that through segmentation the data within a 

copy number region belong to the same probability distribution. This probability distribution 

for the region is estimated and the peak of the distribution is taken as the expected read 

depth for the region. This value is then compared to the calculated read depth level for a 
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normal 2N copy state to determine if it deviates significantly enough to be classified as a 

copy number loss or a copy number gain. The method can account for copy number variants 

present in at least 20% of cells. Each CNV is reported with a Normalized Read Depth 

(NRD) score that provides a quantitative measure of how far the CNV deviates from the 

calculated normal read depth level (normal NRD=2.0).

The final step of the algorithm visualizes the results using a novel genome visualization 

scheme called the genome plot.26 The results can also be visualized using other common 

techniques like a linear layout or a circos plot. Each of these steps is provided in more detail 

in the Supplementary Methods section. Full quality information for the MPseq data is 

provided in Supplementary Files (QCData_CNV.xlsx). In addition, a filtering was applied to 

the raw output from the pipeline for these cases to show how the reported CNV number can 

be reduced to a more reasonable number for manual analysis. This filter marked which 

called CNVs had >20% of the region covered by masked positions. These masked positions 

provide some indication as to whether the CNV called may be incorrect due to overlap with 

a polymorphic or highly homologous region. Filtered CNVs were occasionally incorporated 

into the final analysis for regions, such as the Y chromosome, where it was known that large 

areas are masked due to homology but the CNV was deemed likely real. The full BMD SV 

Pipeline is available for use by the wider scientific community by contacting the authors.

Results

A set of 26 bone marrow samples representing various hematologic neoplasms with CNVs 

previously characterized by CMA was selected for analysis using the BMD SV Pipeline. 

Following sequencing, mapping, and breakpoint junction detection, CNV analysis was 

performed in the CNVDetect module. These cases ranged from simple (1 small reported 

variant) to complex (>10 reported variants). In order to compare the CMA gold standard to 

the CNVDetect output a filtering was performed on the raw output, similar to filtering 

performed in the clinical CMA analysis. Both the CMA filtering technique and the 

CNVDetect filtering technique are described in the Methods section. The raw number of 

CNV calls and the number of CNV calls that pass the respective filters are presented in 

Table 1 and a full set of CMA and CNVDetect output files for the 26 sample cases are 

provided as Supplementary Files (CMA_Unfiltered.xlsx, CMA_Filtered.xlsx, and 

CNVDetect_Output.xlsx). The number of CMA and CNVDetect CNV calls can be 

compared to the final set of CNV calls reported through standard clinical analysis of the 

CMA data. This analysis includes a manual review process that further excludes CNV calls 

after filtering. The reasons a CNV call may be manually excluded during CMA analysis is 

described in more detail in the Methods section. The final number of reported CNV calls is 

considerably smaller than either the filtered CMA analysis or filtered CNVDetect analysis 

produces. Our method often produces a higher number of filtered CNV calls than the CMA 

filter, but on the same order, and the reasons for this are further described in the Discussion 

section along with strategies that could be employed to reduce the number. The CMA 

analysis reports a higher raw number of CNVs than CNVDetect, as there is no restriction on 

the size of a CNV call in the raw CMA analysis.
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Since our gold standard used a manual review to produce the final set of reported CNVs, the 

final analysis of our method focused only on these reported CNV locations. We aimed to 

determine whether these same CNV locations were called using MPseq+CNVDetect and 

thus determine whether MPseq+CNVDetect results could similarly be manually reviewed to 

recapitulate the gold standard results. Table 2 provides relevant sample data for each of the 

cases and a comparison to results found using CNVDetect.

For each case the reported variants were collected and CNVDetect output was analyzed to 

see if there was a copy number region available for comparison. If an equivalent region in 

the genome was segmented in our method, it was counted as a true call and the normalized 

read depth (NRD) and edge locations were compared to the copy number (termed CN in 

CMA) and edge locations from the CMA output. If CNVDetect segmented a region called 

by CMA into more than one region, but with similar NRD values and variant type, these 

regions were combined and a weighted average NRD reported for comparison. If no such 

region in the genome was found, a false negative was reported.

Overall we found that there were 107 CNVs reported by the cytogenetics laboratory in the 

26 relevant patient cases. All but 10 were reported with high accuracy by our NGS method 

(91% true positive calls). Of the events that were not found by CNVDetect, eight were not 

called due to low calculated tumor percentage in the sample analyzed. Three of these eight 

were calculated by CMA to have a tumor percentage at or below the threshold of detection 

by the CNVDetect algorithm (20% tumor). Two of the eight were found to be >20% tumor 

by CMA and had mate-pair supporting fragments reported by the breakpoint junction 

detection algorithm, but the reported NRD value was below the 20% tumor threshold in 

CNVDetect and were not reported by the algorithm. The final three of the eight were found 

to be >20% tumor by CMA but had no read depth or MP support to suggest that the event 

occurred in our data. Additionally, one event was only partially called by CNVDetect and 

had to be considered a false negative (EV88089) and one event had MP and CNVDetect 

support for being a normal copy number region rather than the loss reported in the CMA 

data (EV88103). When analyzing the boundaries of the CNV regions it was found that our 

method covered >95% of the copy number calls in all but six of the calls. In these cases the 

discrepancy was due to regions with high homology or low probe density for CMA 

(centromere, telomere, or segmental duplication regions) where the CNV boundary location 

is difficult to determine in both methods.

All comparisons to CMA are limited to the CNV calls reported after manual cytogenetic 

analysis, as far more regions in any given genome will be predicted as a loss or gain by the 

CMA analysis software (ChAS) than will ultimately be reported (Table 1). However, we also 

allow for CNVDetect to calculate a variant cutoff value based on the noise detected in the 

sample and automatically make loss and gain calls, much like how filters are used in 

reporting raw CMA results. These results would still need to be manually curated to account 

for false positives due to noise, homology, etc., but provide a basis for visualization. An 

example of a visual representation of these CNVDetect results is presented as a genome plot 

Figure 2A for sample EV88086. Areas that have been calculated to be a loss of genetic 

material in comparison to the neutral 2N level are colored red, while areas that have been 

calculated to be a gain of genetic material in comparison to neutral 2N are colored blue. All 
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regions that do not deviate from the calculated normal level in a statistically significant way 

are colored as grey. A comparison to the linear visualization provided in ChAS is provided 

in Figure 2B. This is also a good example of where the fuller context of breakpoint junctions 

and read-depth analysis allow for the reporting of CNVs that may not be considered 

significant enough for reporting through CMA alone. Note that in Figure 2A there is a small 

deletion in chromosome 2 connected to the complex event on chromosome 11 (connecting 

magenta lines in Figure 2A). While the gain and loss on chromosome 11 are reported in 

CMA (Table 2), this connecting loss is not. With the full context on how this complex event 

occurs, the deletion on chromosome 2 can be reported by MPseq.

This visualization of the CNV results highlights the major benefit of CNVDetect compared 

to other CNV detection methods, including the CMA method. SVAtools calculates and 

reports the location of breakpoint junctions within a sample (magenta lines in Figure 2A). 

CNVDetect has been designed to use the breakpoint locations from these junctions to 

segment the genome into potential CNV regions. The SVAtools algorithm will provide 

breakpoint locations at ~200bp resolution for >90% of the breakpoint junctions in a sample.
22 CNVDetect combines this information with edges determined through a statistical edge 

detection method (see Methods). Statistical methods, like sliding window, top-down, or 

bottom-down methods, are what are commonly used for segmenting copy number regions. 

The combination of statistical information and breakpoint junction information allows for 

more accurate reporting of the edges of a CNV region compared to a statistical method 

alone. An example shown here from case EV88090 is a classic Philadelphia chromosome in 

a Chronic Myeloid Leukemia (CML) case where small deletions result from the 

translocation between chromosomes 9 and 22 (Figure 3A). From MPseq we have both a 

copy number loss illustrated (small red regions which indicate loss in read depth) and the 

breakpoint junction reported by SVAtools (magenta line). Using both pieces of information 

we are able to put the edges of the CNV region at positions 130728000 on chromosome 9 

and 23290000 on chromosome 22 at 1kb resolution. Both these positions are ~11Kb and 

~4Kb away from what is reported by CMA (positions 130717717 on chromosome 9 and 

23293899 on chromosome 22).

Figure 3B shows a close-up on this breakpoint junction visualizing the MPseq reads 

connecting 9q34.12 to 22q11.23. The two green dots indicate the CNV edges output by our 

algorithm for each loci, the orange dots are the copy number edges provided in CMA, and 

the blue dots are the edge locations as found in a sequenced split read that sequenced 

through the breakpoint junction. Unsurprisingly, our method outputs CNV edges close to the 

middle of the junction plot where the SVAtools junction detection algorithm estimates the 

breakpoints to be. CMA on the other hand does not have that supplemental information to 

help in edge location and must depend on individual probe performance and spacing to 

estimate the breakpoint. As expected, MPseq with SVAtools and CNVDetect provides more 

precise breakpoint prediction than CMA. Most importantly, we can see that the CNVDetect 

estimate, even on 1kb resolution, is close to the edge location found via the split read, which 

determined the Philadelphia translocation to occur in the common e13a2 form. CMA, 

without supplemental information, cannot provide edge locations with the necessary 

resolution to determine the fusion location on an exon resolution. This shows how the 
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breakpoint locations determined in SVAtools can be used to supplement the otherwise low-

resolution statistical method used in CNVDetect to call CNV edges at ~1000 bp resolution.

This ability to combine breakpoint and CNV information also allows for the ability to 

correctly call CNVs that are connected by a complex event that is not apparent by CMA or 

karyotyping alone. Shown here in Figure 4A is a complex event that was initially 

characterized by karyotyping as 46,XY,t(5;6)(q13;q23)[10]/47,XY,+12[2]/46,XY[8], with 

half of the cells demonstrating a t(5;6) translocation. From CMA, the deletions on 

chromosome 6 were called (EV88059 in Table 2), but little can be done from the 

information to fully elucidate the translocation and how the aberrant genome comes 

together.

With the combination of the SVAtools breakpoint locations CNVDetect is able to correctly 

call a small deletion in chromosome 5, which is not called by CMA, and elucidate where 

each breakpoint of the t(5;6) translocation resides (magenta lines in Figure 4A). With the 

additional breakpoint junction information, this small deletion on chromosome 5, which was 

not significant enough to be reported through CMA analysis, was connected to the larger, 

more complex event. This context makes reporting through MPseq analysis straightforward. 

Note also that this is a case where the breakpoint junction detection module in SVAtools did 

not report a breakpoint junction that connects the proximal deletion in chromosome 6 to the 

distal deletion (green arrows in figure 4A). Despite the lack of breakpoint information in 

those two locations, CNVDetect was still able to call the CNVs by relying on the more 

traditional statistical method of CNV segmentation (see Methods). The proximal boundary 

of the first event was called at 85379000 of chromosome 6 and the proximal boundary of the 

second event was called at 154636000 of chromosome 6. Interrogation of the predicted 

edges revealed two discordant fragments in support of a breakpoint junction (Figure 4B). 

With this breakpoint junction the BMD SV Pipeline is able to fully elucidate the 

rearrangement, which can be characterized more accurately as 46,XY, der(5)t(5;6)

(q12.3;q25.3),der(6)del(6)(q14.3;q22.1)inv(6)(q22.1;q25.2)del(6)(q25.2;q25.3)t(5;6)

(q12.3;q22.1).

From these example we can see how traditional CNV detection methods can be 

supplemented with newer NGS breakpoint location information to not only increase the 

sensitivity of the method, but also the resolution of the calls made. For a method whose 

primary goal is to report which genes are gained, lost, deleted in homozygous state, or 

amplified, increasing the resolution and certainty on the bounds of these calls is important. A 

difference of 10kb in the call may be the difference between a gene being predicted to be 

included in an amplified region or not.

Discussion

Aberrant breakpoint junctions in tumor DNA can now be found by WGS. One such 

technique is MPseq, which is inexpensive, uses larger fragments capable of jumping over 

small repetitive regions, and can effectively bridge breakpoint junctions. Here we present a 

CNV detection algorithm, CNVDetect, which is designed for use with MPseq data. Most 

CNV detection algorithms rely solely on a statistical method to find boundaries between 
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CNV regions and then to classify each region as either a loss or gain of genetic material. 

CNVDetect employs a similar statistical method, but supplements the edge detection 

algorithm with DNA breakpoint information to increase sensitivity and resolution of the 

reported CNV regions. This combination of information for genome segmentation is 

important as it allows the method to report CNVs with increased boundary resolution, while 

also maintaining the ability to call CNVs that are not expected to have breakpoint junction 

support. This is particularly important in cancer as terminal, whole-arm, and whole-

chromosome rearrangements are widely observed, but may not have breakpoint support on 

one or both sides of the CNV region. In this way we are able to report CNVs with higher 

accuracy than state-of-the-art CMA technology, directly from NGS data in a single test. A 

single NGS-based test capable of detecting all classes of structural variation, balanced and 

unbalanced, throughout the genome, such as the one we have developed for MPseq is the 

natural next step in cytogenetics.

Here we show a comparison between CMA data and CNVDetect output to show the 

effectiveness of MPseq. Along with the accurate determination of breakpoint junctions 

shown in Johnson et al.,22 these data demonstrate how a single test may be a capable 

substitute for cytogenetic tests like CMA in the near future. We currently have the ability to 

detect over 90% of the copy number variants reported through CMA on 26 cases. The cases 

where CNVDetect did not report similar copy number variants were largely instances where 

tumor percentage dropped to near or below 20% in the sample analyzed by CNVDetect. At 

that level, the variation in the MPseq data can make it difficult for accurate CNV detection. 

Future research will aim to improve the normalization step to reduce noise in the data. With 

reduced noise, this detection limit could likely be lowered to <15%. Further, if the method 

were to be used to detect copy number variants on a large region, whole-arm, or whole-

chromosome level, the statistical methods could be tailored to the region size and the lower 

limit could be further reduced. At the moment, the method has been developed to detect 

copy number variants down to ~100kb size, without consideration of how detection could be 

improved for known variant locations. Along with continued improvement of the resolution 

and sensitivity of the algorithm future avenues of research will aim to produce a head-to-

head comparison of MPseq/CNVDetect and CMA, where the method’s sensitivity will be 

assessed without prior knowledge of CMA results.

As MPseq becomes more widely used, the sample preparation and sequencing will be 

further optimized to improve the quality and read-depth of the data used in the CNVDetect 

algorithm. This improvement in data quality could also reduce the lower limit of detection. 

Theoretically, the underlying statistical distribution for the read depth data is a Poisson 

distribution. Any increase or decrease in read depth should not affect the performance of 

CNV detection given this distribution as the mean and standard deviation both increase and 

decrease linearly at the same rate. However, particularly for low read depth cases like we 

have using MPseq technology, higher read depth will improve the sensitivity of the method 

due to a reduction in detection size. As read depth increases, smaller windows can be used in 

the copy number variant detection, and the increased available data will allow for more 

sensitive CNV detection and the detection of smaller CNVs. Additionally, increased read 

depth will increase the bridged-coverage for a sample and increase the sensitivity for 

breakpoint junction detection. This would allow for increased CNV edge resolution for a 
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sample, and help increase the performance of the method, particularly in cases with low 

tumor cellularity. Such read depth dependent performance is typical for any read-based CNV 

detection method, however the use of both breakpoint junctions and read depth in the CNV 

calculation helps mitigate this effect compared to many other methods.

Much can be learned from comparing the CNVDetect results to a manually curated CMA 

output. Both the CMA method without manual review and our algorithmic CNV detection 

method are prone to reporting false positives, as demonstrated by the considerably higher 

number of CNV calls made by both CMA and CNVDetect as compared to the final number 

of Reported CNV calls (Table 1). In CMA analysis these excluded CNV calls often result 

from sequencing and hybridization artifacts and polymorphisms that may make reported 

results difficult to analyze. Alternately, CNVDetect reports a higher number of CNV calls 

after filtering for two reasons. The first is that since we are dealing with NGS data there are 

sequencing biases that must be dealt with prior to CNV calling. We use a normalization step 

to reduce this bias (see Methods) but for lower quality samples with abnormal levels of bias, 

normalization can be difficult and incorrect CNVs calls can result. Further sequencing of 

normals will make such failures in normalization more rare by better covering the sample 

landscape. Additionally, the incorporation of bias correction, such as GC bias correction, 

into the method could aid in reducing the effect of sequencing bias rather than relying only 

on matching normal samples.

The second reason CNVDetect reports a higher number of CNV calls is that our method 

often segments a single reportable CNV region into two or more regions. There are two 

ways we found that CNV regions were incorrectly split. The first is through the erroneous 

statistical identification of a CNV edge and the second is through the splitting of the region 

by a detected breakpoint junction that did not in fact result in a change in CNV level. If the 

regions were split without breakpoint support and through the statistical means alone, then 

adjacent regions with reported CNVs were merged in cases where the adjacent regions were 

within the expected detection limit from one another (limit of 20% deviation). If the regions 

were split due to a supporting breakpoint, then the supporting breakpoint junction was 

analyzed to determine whether it represented a junction type that would explain the lack or 

presence of a change in CNV. Balanced translocations, inversions, and transposons are all 

breakpoint junction types that would explain the presence of a junction without a resulting 

copy number change and the adjacent regions could be merged. Additionally, for cases 

where large copy number changes were detected (>40% deviation) without breakpoint 

junction support, the location of the change could be analyzed to locate a missing breakpoint 

junction that may have been filtered, masked, or have low mate-pair support, as was the case 

in EV88059 (Figure 4). Improved filtering criteria are valuable for the future development of 

MPseq with CNVDetection as a stand-alone tool for cytogenetic analysis of genomic 

samples.

As we look forward to the use of NGS technologies in individualized medicine, we can see 

how for a technology like MPseq, algorithmic methods like CNVDetect will become 

invaluable. This algorithm is able to resolve complex chromosomal rearrangements that 

involve numerous breakpoint junctions and CNVs. So while complex events like 

chromothripsis and chromoplexis, which have been shown to be pervasive in aggressive 
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cancers, are typically difficult to analyze on a whole-genome level, our method can resolve 

them accurately. Additionally, we show how CNVDetect is capable of more accurately 

reporting the location of a CNV boundary. As individualized monitoring and therapeutics 

advance, the accurate determination of breakpoint junction locations will become 

increasingly valuable. Such breakpoint junctions can be used for the development of specific 

molecular assays for monitoring disease and tracking the effectiveness of targeted treatment.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Mayo Clinic Center for Individualized Medicine (CIM) and by Award Number R01 
CA177734 from the National Cancer Institute.

Bibliography

1. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major 
cancer types. Nature. 2013; 502(7471):333–339. [PubMed: 24132290] 

2. Killcoyne S, del Sol A. Identification of large-scale genomic variation in cancer genomes using in 
silico reference models. Nucleic Acids Research. 2016; 44(1):e5–e5. [PubMed: 26264669] 

3. Moncunill V, Gonzalez S, Bea S, et al. Comprehensive characterization of complex structural 
variations in cancer by directly comparing genome sequence reads. Nat Biotech. 2014; 32(11):
1106–1112.

4. Tubio JMC. Somatic structural variation and cancer. Briefings in Functional Genomics. 2015; 14(5):
339–351. [PubMed: 25903743] 

5. Yang L, Luquette LJ, Gehlenborg N, et al. Diverse mechanisms of somatic structural variations in 
human cancer genomes. Cell. 2013; 153(4):919–929. [PubMed: 23663786] 

6. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. 
nature. 2006; 444(7118):444–454. [PubMed: 17122850] 

7. Sebat J, Lakshmi B, Troge J, et al. Large-Scale Copy Number Polymorphism in the Human 
Genome. Science. 2004; 305(5683):525. [PubMed: 15273396] 

8. Stranger BE, Forrest MS, Dunning M, et al. Relative Impact of Nucleotide and Copy Number 
Variation on Gene Expression Phenotypes. Science. 2007; 315(5813):848. [PubMed: 17289997] 

9. Buysse K, Delle Chiaie B, Van Coster R, et al. Challenges for CNV interpretation in clinical 
molecular karyotyping: Lessons learned from a 1001 sample experience. European Journal of 
Medical Genetics. 2009; 52(6):398–403. [PubMed: 19765681] 

10. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. 
Nat Genet. 2007

11. Snijders AM, Nowak N, Segraves R, et al. Assembly of microarrays for genome-wide 
measurement of DNA copy number. Nat Genet. 2001; 29(3):263–264. [PubMed: 11687795] 

12. Haraksingh RR, Abyzov A, Urban AE. Comprehensive performance comparison of high-resolution 
array platforms for genome-wide Copy Number Variation (CNV) analysis in humans. BMC 
genomics. 2017; 18(1):321. [PubMed: 28438122] 

13. Wiszniewska J, Bi W, Shaw C, et al. Combined array CGH plus SNP genome analyses in a single 
assay for optimized clinical testing. European Journal of Human Genetics. 2014; 22(1):79–87. 
[PubMed: 23695279] 

14. Schaaf CP, Wiszniewska J, Beaudet AL. Copy number and SNP arrays in clinical diagnostics. 
Annual review of genomics and human genetics. 2011; 12:25–51.

15. Beaudet AL. The utility of chromosomal microarray analysis in developmental and behavioral 
pediatrics. Child development. 2012; 84(1):121–132.

Smadbeck et al. Page 11

Genes Chromosomes Cancer. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Murphy SJ, Cheville JC, Zarei S, et al. Mate pair sequencing of whole-genome-amplified DNA 
following laser capture microdissection of prostate cancer. DNA research. 2012; 19(5):395–406. 
[PubMed: 22991452] 

17. Wang H, Nettleton D, Ying K. Copy number variation detection using next generation sequencing 
read counts. BMC Bioinformatics. 2014; 15(1):109. [PubMed: 24731174] 

18. Chiang DY, Getz G, Jaffe DB, et al. High-resolution mapping of copy-number alterations with 
massively parallel sequencing. Nat Meth. 2009; 6(1):99–103.

19. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number 
variants using read depth of coverage. Genome Research. 2009; 19(9):1586–1592. [PubMed: 
19657104] 

20. Kim T-M, Luquette LJ, Xi R, Park PJ. rSW-seq: Algorithm for detection of copy number 
alterations in deep sequencing data. BMC Bioinformatics. 2010; 11(1):432. [PubMed: 20718989] 

21. Ivakhno S, Royce T, Cox AJ, Evers DJ, Cheetham RK, Tavare S. CNAseg - a novel framework for 
identification of copy number changes in cancer from second-generation sequencing data. 
Bioinformatics. 2010; 26

22. Johnson SH, Smadbeck JB, Smoley SA, et al. Molecular karyotypes: SVAtools for junction 
detection of genome-wide chromosomal rearrangements by mate-pair sequencing (MPseq). Cancer 
Genetics. 2018; (221):1–18.

23. Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M. Detecting copy number variation with 
mated short reads. Genome research. 2010; 20(11):1613–1622. [PubMed: 20805290] 

24. Genetics AWGotACoM, Genomics Laboratory Quality Assurance C. American College of Medical 
Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome 
abnormalities in neoplastic disorders. Genet Med. 2013; 15(6):484–494. [PubMed: 23619274] 

25. Drucker TM, Johnson SH, Murphy SJ, Cradic KW, Therneau TM, Vasmatzis G. BIMA V3: an 
aligner customized for mate pair library sequencing. Bioinformatics. 2014 btu078. 

26. Gaitatzes A, Johnson SH, Smadbeck JB, Vasmatzis G. Genome U-Plot: A Whole Genome 
Visualization. Bioinformatics. 2017 btx829. 

Smadbeck et al. Page 12

Genes Chromosomes Cancer. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Flow diagram for CNVDetect detection algorithm
1A) The BMD SV Pipeline is presented in four stages: Library Protocol, NGS Sequencing, 

Mapping, and SV Analysis. CNVDetect’s place in the overall pipeline is highlighted in red. 

1B) The CNVDetect algorithm proceeds in four stages: Normalization, Segmentation, 

Classification, and Visualization. It depends on output from the previous stages in the BMD 

SV Pipeline as well as from the Junction Detection algorithm within SVAtools.
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Figure 2. Visualization of BMD SV Pipeline results for MPseq data
2A) The output of the BMD SV Pipeline for case EV88086 is presented as a genome plot. 

This plot depicts the read depth of the sequencing data as dots along a chromosome’s length. 

A magenta line is drawn where there is evidence of a chromosomal junction between two 

disparate locations in the genome. Regions where CNVs have been detected by the 

CNVDetect algorithm are colored red to indicate a loss in genomic material and blue to 

indicate a gain in genetic material. 2B) For comparison the CMA data for EV88086 is 

provided as visualized by ChAS.
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Figure 3. CNV edge location comparison
3A) The genome plot for EV88090 is depicted, which contains a Philadelphia chromosome 

t(9;22) (q34;q11) (magenta line connecting chromosomes 9 and 22). This event is balanced, 

but results in small regions of loss in both chromosome 9 and chromosome 22 (colored red 

in both locations). 3B) A junction plot for one of the junctions is provided. The orange dots 

indicate where CMA determined the CNV edges resulting from this translocation to be. The 

green dots indicate where CNVDetect determined the CNV edges to be. The blue dots 

indicate where a split read found sequence evidence for the exact location of the junction 

locations.
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Figure 4. Complex case elucidated by SVAtools
4A) A complex rearrangement between chromosomes 5 and 6 is depicted. Two junctions 

connecting the chromosomes are shown as magenta lines. We identify two breakpoint 

locations without junctions in CNVDetect (green arrows) using traditional statistical CNV 

segmentation techniques. 4B) A junction plot depicting the two regions around the green 

arrows is provided. Supporting fragments for the missing junction are shown as two black 

lines that span the two regions.
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