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Abstract

Reward prediction errors track the extent to which rewards deviate from expectations, and aid in 

learning reward predictions. How do such errors in prediction interact with memory for the 

rewarding episode? Existing findings point to both cooperative and competitive interactions 

between learning and memory mechanisms. Here, we investigated whether learning about rewards 

in a high-risk context, with frequent, large prediction errors, gives rise to higher fidelity memory 

traces for rewarding events than learning in a low-risk context. Experiment 1, showed that 

recognition was better for items associated with larger absolute prediction errors during reward 

learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly, 

we did not find a relationship between learning rate for reward and recognition memory accuracy 

for items, suggesting that these two effects of prediction errors were due to separate underlying 

mechanisms. Experiment 2, replicated these results with a longer task that posed stronger memory 

demands and allowed for more learning. We also showed improved source and sequence memory 

for items within the high-risk context. Experiment 3 controlled for the difficulty of reward learning 

in the risk environments, again replicating the previous results. Moreover, this control revealed that 

the high-risk context enhanced item recognition memory beyond the effect of prediction errors. In 

summary, our results show that prediction errors boost both episodic item memory and 

incremental reward learning, but the two effects are likely mediated by distinct underlying 

systems.
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If you receive a surprising reward, would you remember the event better or worse than if that 

same reward were expected? And what if it was a surprising punishment? Surprising 

rewards or punishments cause “prediction errors” that are important for learning which 

outcomes to expect in the future, but it is unclear how these prediction errors affect episodic 

memory for the details of the surprising event. Theories of learning suggest that outcomes 

are integrated across experiences, yielding an average expected value for the rewarding 

source. Alternatively, we could use distinct episodic memories of past events and their 
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outcomes to help guide us towards rewarding experiences and away from punishing ones. 

Incremental learning and episodic memory systems can collaborate during decision making, 

for example, when both the expected value of an option and a distinct memory of a 

previously experienced outcome influences a decision (Biele, Erev, & Ert, 2009; Duncan & 

Shohamy, 2016). The two systems can also compete for processing resources: compromised 

feedback-based learning has been associated with enhanced episodic memory, both 

behaviorally and neurally (Foerde, Braun, & Shohamy, 2012; Wimmer, Braun, Daw, & 

Shohamy, 2014). Here, we study the nature of the interaction between incremental learning 

and episodic memory by investigating the role of reward prediction errors – rapid and 

transient reinforcement signals that track the difference between actual and expected 

outcomes – in the formation of episodic memory for rewarding events.

Reward prediction errors play a well-established role in updating stored information about 

the values of different choices, and are known to modulate dopamine release. When a reward 

is better than expected, there is an increase in the firing of dopamine neurons, and 

conversely, when the reward is worse than expected, there is a dip in dopaminergic firing 

(Schultz & Dickinson, 2000; Schultz, Dayan, & Montague, 1997). Dopamine, in turn, 

modulates plasticity in the hippocampus, a key structure for episodic memory (Lisman & 

Grace, 2005). This dopaminergic link therefore provides a potential neurobiological 

mechanism for reward prediction errors to affect episodic memory. However, there are 

several ways by which reward prediction errors could potentially influence episodic 

memory. First, if memory formation is affected by this signed prediction error, then we 

would expect an asymmetric effect on memory, such that a positive prediction error (leading 

to an increase in dopaminergic firing) would improve memory whereas a negative prediction 

error (leading to a decrease in dopaminergic firing) would worsen it.

A second possibility is that the magnitude of the prediction error could influence episodic 

memory regardless of the sign of the error, enhancing memory for events that are either 

much better or much worse than expected. Outside of reward learning, surprising feedback 

has been linked to better memory for both the content and source of feedback events in 

studies investigating the “hypercorrection” effect, where high confidence errors are more 

likely to be corrected and remembered (Butterfield & Mangels, 2003; Butterfield & 

Metcalfe, 2001; Fazio & Marsh, 2009, 2010). The same memory benefit for high-confidence 

errors has also been shown for low-confidence correct feedback, and one can envision both 

high-confidence errors and low-confidence correct trials as generating a large (unsigned) 

prediction error. These putative “high prediction-error events” have also been shown to 

modulate attention, as measured by impaired performance on a secondary task; the degree of 

this attentional capture in turn predicts subsequent memory enhancement for the feedback 

content (Butterfield & Metcalfe, 2006).

The effects of unsigned prediction errors are thought to be mediated by the locus-coeruleus-

norepinephrine (LC-NE) system, which demonstrates a transient response to unexpected 

changes in stimulus-reinforcement contingencies in both reward and fear learning (that is, 

regardless of sign; for a review, see Sara, 2009), and modulates increases in learning rate, i.e. 

the extent to which a learner updates their values, following large unsigned prediction errors 

(Behrens, Woolrich, Walton, & Rushworth, 2007; McGuire, Nassar, Gold, & Kable, 2014; 
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Nassar et al., 2012; Pearce & Hall, 1980). Importantly, recent evidence also indicates that 

the locus coeruleus co-releases dopamine with norepinephrine, giving rise to dopamine-

dependent plasticity in the hippocampus (Kempadoo, Mosharov, Choi, Sulzer, & Kandel, 

2016; Takeuchi et al., 2016). This latter pathway thereby provides a mechanism whereby 

unsigned prediction errors could affect episodic memory, by modulating hippocampal 

plasticity.

In the following experiments, we therefore tested whether signed or unsigned prediction 

errors influence learning rate and episodic memory, and whether these two effects are 

correlated. Correlated effects on learning of values and memory for events would suggest a 

common mechanism underlying both effects, whereas two uncorrelated effects are consistent 

with separate underlying mechanisms.

We also wanted to measure the effect of risk context (i.e., whether unsigned prediction errors 

were large or small, on average, in a particular environment) on episodic memory. Previous 

work on the effects of risk context show that dopamine signals scale to the reward variance 

of the learning environment (Tobler, Fiorillo, & Schultz, 2005), allowing for greater 

sensitivity to prediction errors in lower variance contexts. Moreover, behavioral learning rate 

and BOLD responses in the dopaminergic midbrain and striatum reflect this adaptation, with 

higher learning rates and increased striatal response to prediction errors when the reward 

variance is lower (Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016). We therefore 

expected higher learning rates in a low-risk context, but it was unclear whether this effect 

would interact with episodic memory. If anything, for memory we expected opposite effects, 

such that a high-risk context would induce better episodic memory, as salient feedback (like 

experiencing high magnitude prediction errors) is thought to increase autonomic arousal and 

encoding of those events (Clewett, Schoeke, & Mather, 2014). The mnemonic effects of 

higher magnitude prediction errors may also “spill over” to surrounding items, boosting 

memory for those items as well, again predicting better memory for events experienced in 

the high-risk context (Duncan, Sadanand, & Davachi, 2012; Mather, Clewett, Sakaki, & 

Harley, 2015).

To investigate the effect of prediction errors and risk context on the structure of memory, we 

asked participants to learn by trial and error which of two types of images, indoor or outdoor 

scenes, leads to larger rewards. Trial-unique indoor and outdoor images were presented in 

two different contexts or ‘rooms,’ with each room associated with a different degree of 

outcome variance. The average values of the scene categories in the two rooms were 

matched. Participants were instructed to learn the average (expected) value of each type of 

image (indoor or outdoor scenes), given the variable individual outcomes experienced for 

each scene, as is typically done in reinforcement learning tasks (e.g. O’Doherty, Dayan, 

Friston, Critchley, & Dolan, 2003; Wimmer et al., 2014).

Specifically, we asked participants to explicitly estimate, on each trial, the average value of 

the category of the current scene. The deviation between this estimate and the outcome on 

that trial defined the trial-specific subjective prediction error. These prediction errors were 

then used to calculate trial-by-trial learning rates for the average values of the categories, as 

well as to predict future memory for the specific scenes presented on each trial. At a later 
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stage, memory for the individual scenes was assessed through recognition memory (‘item’ 

memory), identification of the room the item belonged to (‘source’ or context memory; Exp. 

2–3), and the ordering of a pair of items (‘sequence’ memory). Given that both category-

value learning and individual scene memory were hypothesized to depend on the same 

prediction errors, we also characterized the relationship between learning about the average 

rewards in the task and episodic memory for the individual rewarding events.

Experiment 1

In Experiment 1, we assessed whether reward prediction errors interact with episodic 

memory for rewarding episodes. Participants learned the average reward values of images 

from two categories (indoor or outdoor scenes) in two learning contexts (‘rooms’). The two 

learning contexts had the same mean reward, but different degrees of reward variance 

(‘risk’) such that the rewards associated with scenes in the ‘high-risk room’ gave rise to 

higher absolute prediction errors than in the ‘low-risk room’. We then assessed participants’ 

recognition for the different scenes in a surprise memory test, to test how prediction errors 

due to the reward associated with each episode affected memory for that particular scene.

Method

Participants—Two hundred participants initiated an online task using Amazon 

Mechanical Turk (MTurk), and 174 completed the task. We obtained informed consent 

online, and participants had to correctly answer questions checking for their understanding 

of the instructions before proceeding (see supplementary material); procedures were 

approved by Princeton University’s Institutional Review Board. Participants were excluded 

if they (1) had a memory score (A′: Sensitivity index in signal detection; Pollack & Norman, 

1964) of less than 0.5 based on their hit rate and false alarm rate for item recognition 

memory, or (2) missed more than three trials. These criteria led to the exclusion of ten 

participants, leading to a final sample of 164 participants. Although we do not have 

demographic information for the mTurk workers who completed these experiments, an 

online demographic tracker reports that during the time we collected data, the samples were 

approximately 55% female; 40% were born before 1980, 40% were born between 1980 and 

1990, and 20% were born between 1990–1999 (Difallah, Catasta, Demartini, Ipeirotis, & 

Cudré-Mauroux, 2015; Ipeirotis, 2010).

Procedure—Participants learned by trial and error the average value of images from two 

categories (indoor or outdoor scenes) in two rooms defined by different background colors 

(see Figure 1). In each room, one type of scene was worth 40¢ on average (low-value 

category) and the other worth 60¢ (high-value category). The average values of the 

categories were matched across rooms, but the reward variance of the high-risk room was 

more than double that of the low-risk room (high-risk σ = 34.25, low-risk σ = 15.49). The 

order of the rooms (high-risk and low-risk) was randomized across participants. In an 

instruction phase, participants were explicitly told (through written instructions; see 

supplementary material) that in each room one scene category is worth more than the other 

(a ‘winning’ category) and were asked to indicate the winner after viewing all images in a 

room. They were not told the reward distributions of the rooms, nor that the rooms would 
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have different levels of variance. In addition, to motivate participants to pay attention to 

individual scenes and their outcomes, participants were told that later in the experiment they 

would have the opportunity to choose between these same scenes and receive the rewards 

associated with them as per their choices.

After the two learning blocks (one high-risk and one low-risk), participants completed a risk 

attitude questionnaire (DOSPERT, Weber, Blais, & Betz, 2002) that served to create a 5–10 

minute delay between learning and memory tests. Participants then completed a surprise 

item-recognition task (i.e., participants were never told that their memory for scenes would 

be tested, apart from instructions about the choice task as detailed above), as well as a 

sequence memory task. After the memory tests, participants made choices between 

previously seen images.

Learning: On each trial, participants were shown a trial-unique image (either an indoor or 

outdoor scene) for 2 seconds. Participants then had up to 5 seconds to estimate how much 

that type of scene is worth on average in that room (from 1 to 100 cents). In other words, 

participants were asked to provide their estimate of the average, or expected value, of the 

scene category based on the previous (variable) outcomes they had experienced from that 

scene category within the room. The scene was then presented again for 3 seconds along 

with its associated reward (see Figure 1A). In the instructions (see supplementary material), 

participants had been told that although trial-unique images can take on different rewards, 

each scene category had a stable mean reward, and on average one scene category was worth 

more than the other. Note that participants were not asked to estimate the exact outcome they 

would receive on that trial, but instead were estimating the average expected reward from 

that scene category. Accordingly, participants had also been told that their payment was not 

contingent on how accurate their guesses were relative to the reward on that trial. Instead, 

their payment was solely determined by the rewards they received, to ensure that rewards 

were meaningful for the participant. This task structure was chosen to ensure that 

participants would continue to experience prediction errors on each trial (i.e., for individual 

scenes) even after correctly estimating the expected values of the categories, as is commonly 

done in reinforcement learning tasks (e.g. Niv, Edlund, Dayan, & O’Doherty, 2012).

There were 16 trials in each room (8 outdoor and 8 indoor). Rewards were 20¢, 40¢, 80¢, 

100¢ (twice each) for the high-risk–high-value category, 0¢, 20¢, 60¢, 80¢ for the high-risk–

low-value category, 45¢, 55¢, 65¢, 75¢ for the low-risk–high-value category and 25¢, 35¢, 

45¢, 55¢ for the low-risk–low-value category. All participants experienced the same 

sequence of rewards within each room, with the order of the rooms randomized.

Memory: After completing the risk questionnaire, participants were presented with a 

surprise recognition memory test in which they were asked whether different scenes were 

old or new (Figure 1) as well as their confidence for that memory judgment (from 1 

‘guessing’ to 4 ‘completely certain’). There were 32 test trials, including 16 old images (8 

from each room) and 16 foils. Participants were then asked to sequence 8 pairs of previously 

seen scenes (which were not included in the recognition memory test) by answering ‘which 

did you see first?’ (Figure 1) and by estimating how many trials apart the images had been 
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from each other. Each pair belonged to either the low (4 pairs) or the high-risk room (4 

pairs).

Choice: In the last phase of the experiment, to verify that participants had encoded and 

remembered the individual outcomes associated with different scenes, participants were 

asked to choose between pairs of previously seen scenes for a chance to receive their 

associated reward again (see Figure 1C). The pairs varied in either belonging to the same 

room or different rooms and some were matched for reward and/or average scene value in 

order to test for the effects of factors such as risk context on choice preference. The choices 

were presented without feedback.

Statistical Analysis: Analyses were conducted using paired t-tests, repeated measures 

ANOVAs, and generalized linear mixed-effects models (lme4 package in R; Bates et al., 

2015). All results reported below (t-tests and ANOVAs) were confirmed using linear or 

generalized mixed-effects models treating participant as a random effect (for both the 

intercept and slope of the fixed effect in question). We note that in all experiments, our 

results held when controlling for the between-subjects variable of room order (for brevity, 

we only explicitly report these results in Experiment 1, see below).

Results

Learning—Participants learned the average values of the high- and low-value categories 

better in the low-risk than in the high-risk room, as assessed by the deviation of their value 

estimates from the true averages of the scene categories (t(163) = 14.52, p < 0.001; Figure 

3A). We then calculated, for every scene, the prediction error (PEt associated with that scene 

by subtracting participants’ value estimates (Vt) from the reward outcome they observed (Rt; 

see Figure 2). This showed that, as we had planned, there were more high-magnitude 

prediction errors in the high-risk room as compared to the low-risk room (t(163) = 36.77, p 

< 0.001, within-subject comparison of average absolute prediction errors between the two 

rooms; Figure 3B).

Moreover, there was an interaction between risk and scene category such that participants 

overestimated the value of low-value scene category (resulting in negative prediction errors, 

on average) and underestimated the value of high-value scene category (resulting in positive 

prediction errors, on average) to a greater extent in the high-risk room than in the low-risk 

room (F(1,163) = 141.2, p < 0.001 for a within-subject interaction of the effects of room and 

scene category on the average signed prediction error; Figure 3C). This demonstrates more 

difficulty in separating the values of the categories in the high-risk room, consistent with 

previous findings showing that when people estimate the means of two largely overlapping 

distributions, they tend to average across the two distributions, thereby grouping them into 

one category instead of separating them into two (Gershman & Niv, 2013). Despite greater 

difficulty in separating the values of the high and low value categories within the high-risk 

room, most participants correctly guessed the “winner”, or the high-value scene category, 

within both the high-risk (88%) and the low-risk (89%) rooms.
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Memory by Risk and Prediction Error—We found that items within the high-risk room 

were recognized better than items within the low-risk room (z = 2.37, p = 0.02, β = 0.31; 

Figure 4A). To test the effect of reward prediction errors on item-recognition memory, we 

ran two separate mixed-effects logistic regression models of memory accuracy, one testing 

for the effect of signed and the other the effect of unsigned (absolute) prediction errors on 

recognition memory. Both models also included a risk-level regressor to test for the effects 

of risk and prediction error separately, and treated participants as a random effect. We did 

not find signed prediction errors to influence recognition memory beyond the effect of risk 

(signed prediction error (PEt): z = 0.71, p = n.s., β = 0.04; risk: z = 2.29, p = 0.02, β = 0.30). 

Instead, we found that larger prediction errors enhanced memory regardless of the sign of 

the prediction error, which also explained the modulation of memory by risk (absolute 

prediction error (|PEt|) : z = 3.36, p < 0.001, β = 0.23; risk: z = 0.9, p = n.s., β = 0.10; Figure 

4B).

We ran two subsequent models testing for confounds, one including the effect of value 

estimates and the other the actual reward outcomes associated with the items, along with the 

effect of absolute prediction errors. Absolute prediction error had a significant effect on 

recognition memory when controlling for reward outcome (|PEt| : z = 3.94, p < 0.001, β = 

0.26; Rt: z = 0.45, p = n.s., β = 0.02) and value estimates (|PEt| : z = 3.93, p < 0.001, β = 

0.26; Vt: z = −0.09, p = n.s., β = −0.005). This effect also held when modeling recognition 

memory for items in the high and low-risk rooms separately (high-risk: z = 1.90, p = 0.05, β 
= 0.18; low-risk: z = 2.17, p = 0.03, β = 0.24), and in a model of the effects of absolute 

prediction errors on recognition memory that controlled for room order (|PEt| : z = 3.90, p < 

0.001, β = 0.25; room order: z = 1.95, p = 0.05, β = 0.33). Although room order itself did 

affect recognition memory (participants who experienced the low-risk room first showed 

better memory accuracy overall), all of our main findings (including learning rate, see 

below) held when controlling for this effect.

Reward prediction errors therefore affected recognition memory, such that larger deviations 

from one’s predictions, in any direction, enhanced memory for items. Finally, we tested for 

the effect of risk on sequence memory (the correct ordering of two images seen during 

learning) and found no difference in sequence memory between pairs of images seen in the 

high and low-risk rooms (z = 0.11, p = n.s., β = 0.02).

Learning Rate by Risk and Prediction Error—We also examined the effects of risk 

and prediction errors on the reward learning process itself. For this we calculated a trial-by-

trial learning rate αt as the proportion of the current prediction error PEt = Rt − Vt that was 

applied to update the value for the next encounter of the same type of scene, Vt+1 (see Figure 

2 for schematic representing learning rate calculation). That is, we derived the trial-specific 

learning rate directly from the standard reinforcement-learning update equation Vt+1 = Vt + 

αt(Rt − Vt), as αt =
Vt + 1 − Vt

Rt − Vt
.

In agreement with recent findings (e.g. Diederen et al., 2016), we found that average 

learning rate was higher in the low-risk room than in the high-risk room (t(163) = 3.37, p < 

0.001 within-subjects test; Figure 5A). Moreover, higher absolute prediction errors increased 
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trial-by-trial learning rates (αt) above and beyond the effect of risk (mixed-effects linear 

model, effect of absolute prediction error: t = 3.30, p = 0.001, β = 0.07; risk: t = 4.67, p < 

0.001, β = 0.16; Figure 5B). We did not find participant room order to influence learning 

rate (t = 0.31, p = n.s., β = −0.03). These results show that larger absolute prediction errors 

enhance value updating, and further, that learning rates adapt to the reward variance such 

that there is greater sensitivity to prediction errors in a lower-risk environment.

We next ran a mixed-effects regression model to test whether trial-by-trial learning rates 

predicted recognition memory for scenes at test. Controlling for absolute prediction error, 

we did not find that learning rate on trial t predicted memory on that same trial (αt : z = 

0.85, p = n.s., β = 0.08; |PEt| : z = 3.42, p < 0.001, β = 0.20), nor on the subsequent trial, 

(effect of αt−1 on recognition memory for the scene on trial t: z = 0.56, p = n.s., β = 0.05; |

PEt| : z = 3.06, p = 0.002, β = 0.19, where t enumerates over trials within a room). This 

demonstrates that increases in learning rate were not correlated with better (or worse) 

memory, even though both learning rate and recognition memory were enhanced by larger 

prediction errors.

Choice by Reward and Value Difference—Finally, in a manipulation test, participants 

were asked to make choices between pairs of previously-seen scenes. Choices between 

scenes with different reward outcomes served to test whether participants encoded the 

rewards associated with the images. Participants chose the image associated with the larger 

outcome more often (mixed-effects logistic regression model predicting choice based on 

outcome: z = 6.40, p < 0.001, β = 0.54), suggesting that they did indeed encode and 

remember the rewards associated with the scenes.

Some choices were between items that were associated with the same outcome feedback. 

Here we sought to test whether features of the environment such as the risk context biased 

participants away from indifference. We did not find risk level, whether the scene was from 

the low rewarding or high rewarding category, or the difference in absolute prediction error 

between the images, to additionally influence choice preference. We instead found that 

participants were more likely to choose the scene that they had initially guessed a higher 

value for (z = 3.74, p < 0.001, β = 0.01). We additionally found that even when the two 

options had led to different reward outcomes, the difference in initial value estimates for the 

scene was a significant predictor of choice, above and beyond the difference in actual reward 

outcome (value estimate difference: z = 2.27, p = 0.02, β = 0.16; reward difference: z = 7.25, 

p < 0.001, β = 0.52). This suggests that participants remembered not only the outcomes for 

different scenes, but also their initial estimates.

Discussion

In Experiment 1, we showed that the greater the magnitude of the prediction error 

experienced during value learning, the more likely participants were to recognize items 

associated with those prediction errors. We also demonstrated that both risk context and 

absolute prediction errors influenced the extent to which people updated values for the scene 

categories, i.e. their item-by-item learning rate fluctuated according to prediction errors and 

was influenced by context. In particular, learning rate was higher in the low-risk 

Rouhani et al. Page 8

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



environment, suggesting greater sensitivity to prediction errors when the variance of the 

environment was lower. Further, in both contexts, higher absolute prediction errors increased 

learning rate. Although absolute prediction errors enhanced both recognition memory and 

learning rate, we did not find learning rate to predict recognition memory, suggesting that 

absolute prediction errors affect learning and memory through distinct mechanisms.

Experiment 2

In Experiment 2, we allowed for more learning in both rooms, which posed stronger 

memory demands. We also tested for other types of episodic memory. Notably, different 

from standard reinforcement-learning paradigms, Experiment 1 involved only 16 trials of 

learning in each context, 8 for each category. The initial phase of learning, which we were 

effectively testing, is characterized by increased prediction errors and uncertainty relative to 

later learning, which might affect the relationship between prediction errors and episodic 

memory. Additionally, participants in Experiment 1 all experienced the same reward 

sequence, which inadvertently introduced regularities in the learning curves that could have 

also influenced initial learning and memory results. Finally, in this relatively short 

experiment, average recognition memory performance was near ceiling (A′ = 0.90). In 

Experiment 2, we therefore sought to replicate the results of Experiment 1 while increasing 

the number of learning and memory trials and randomizing reward sequence. With more 

trials, we were also able to test for sequence memory for items that were presented further 

apart in time, and we included a measure of source memory (i.e., which room the item 

belonged to)—a marker of episodic memory—for the context of the probed item.

Method

Participants—Two hundred participants initiated an online task run on Amazon 

Mechanical Turk, and 148 completed the task. Following the same protocol as in 

Experiment 1, twelve participants were excluded from the analysis leading to a final sample 

of 136 participants.

Procedure—The procedure was the same as in Experiment 1 but with some changes to 

learning, memory and choice. As in Experiment 1, rewards had a mean of 60¢ for the high-

value category and 40¢ for the low-value category (high-risk–high-value scenes: 20¢, 40¢, 

60¢, 80¢, 100¢; high-risk–low-value scenes: 0¢, 20¢, 40¢, 60¢, 80¢; low-risk–high-value 

scenes: 40¢, 50¢, 60¢, 70¢, 80¢; low-risk–low-value scenes: 20¢, 30¢, 40¢, 50¢, 60¢). 

However, we increased the number of learning trials from 16 to 30 trials per room, and we 

pseudo-randomized the reward sequence such that the rewards were drawn at random and 

were sampled three times without replacement.

During the item memory test, we also asked participants to indicate whether items identified 

as ‘old’ belonged to the first or second room (see Figure 1B), to measure source memory. 

Additionally, given that sequence memory improves with greater distance between events 

(DuBrow & Davachi, 2013), here we asked participants to order items that were as far as 

13–14 trials apart, in contrast to the maximum of 8 trials apart in Experiment 1. Finally, 

satisfied by the manipulation check in the choice tasks in Experiment 1, we asked 

participants to choose only between pairs of scenes matched for reward outcome.
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Results

Learning—As in Experiment 1, participants learned better in the low-risk than in the high-

risk room (assessed by the average deviation of participants’ value estimates from the true 

means of the category values; t(135) = 13.11, p < 0.001; Figure 6A). They experienced 

larger absolute prediction errors in the high-risk room (t(135) = 39.65, p < 0.001; Figure 

6B), and there was again an interaction between risk and scene category value such that in 

the high-risk room, participants overestimated the value of the low-value scene category and 

underestimated the value of the high-value scene category to a greater extent than in the low-

risk room (F(1,135) = 77.5, p < 0.001; interaction of the effects of room and category on 

average prediction error experienced; Figure 6C). Again, participants guessed the high-value 

scene category at the end of each room equally well in the high-risk (90%) and low-risk 

(89%) rooms.

Memory by Risk and Prediction Error—By increasing the number of learning and 

memory trials, we significantly reduced average recognition memory performance from 

Experiment 1 (A′ = 0.86, t(275.23) = 3.04, p = 0.003 when comparing overall memory 

performance between Experiment 1 and 2). We nevertheless replicated the main results of 

Experiment 1: items from the high-risk room were better recognized than items from the 

low-risk room (z = 2.51, p = 0.01, β = 0.19 when testing for the effect of risk on item-

recognition memory; Figure 7A). In a separate model, higher absolute prediction errors 

enhanced recognition memory for scenes, while again explaining the effect of risk (|PEt| : z 

= 3.44, p < 0.001, β = 0.16; risk: z = 1.76, p = 0.08, β = 0.14, Figure 7B). Like in 

Experiment 1, in subsequent models testing for potential confounds, this effect was 

significant when controlling for the outcomes associated with the items (|PEt| : z = 4.14, p < 

0.001, β = 0.18; outcome Rt: z = −1.71, p = n.s., β = −0.06) as well as for the value estimate 

for the scene category (|PEt| : z = 4.15, p < 0.001, β = 0.19; estimate Vt: z = −1.16, p = n.s., 

β = −0.04).

In addition, for the scenes correctly identified as old, we found better source memory for 

scenes from the high-risk room (z = 2.05, p = 0.04, β = 0.25 in a mixed-effects logistic 

regression model testing for the effect of risk on source memory; Figure 7C). This effect was 

not modulated by absolute prediction error. Rather, it was a context effect: the source of a 

recognized image was better remembered if that item was seen in the high-risk room 

(absolute prediction errors: z = −0.60, p = n.s., β = −0.03; risk: z = 2.17, p = 0.03, β = 0.27). 

To verify that participants were not simply attributing remembered items to the high-risk 

context, we looked at the proportion of high-risk source judgments for recognition hits and 

false alarms separately. We did not find a greater proportion of high-risk source judgments 

for false alarms, indicating that participants were not biased to report that remembered items 

belonged to a high-risk context (for high-risk hits: mean = 0.57, standard error = 0.02; for 

false alarms: mean = 0.49, standard error = 0.04; chance response is 0.50).

Participants also exhibited better sequence memory for pairs from the high-risk room (z = 

2.70, p = 0.007, β = 0.56 in a mixed-effects logistic regression model testing for the effect of 

risk on sequence memory; Figure 7D). Although we did not see this effect in Experiment 1, 

the longer training in Experiment 2 allowed us to test pairs that were more distant from each 
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other (the most distant items were 13 and 14 trials apart). Indeed, in a model additionally 

testing for the effect of distance between tested pairs, greater distance predicted better 

sequence memory, controlling for risk (distance: z = 1.92, p = 0.05, β = 0.39; risk: z = 2.70, 

p = 0.006, β = 0.56). We therefore replicated our original results and further showed that 

other forms of episodic memory—source and sequence memory—were also enhanced in a 

high-risk context.

Learning Rate by Risk and Prediction Error—We replicated the results of 

Experiment 1 with respect to learning rates as well: participants had higher learning rates for 

the low-risk relative to the high-risk room, and higher absolute prediction errors additionally 

increased learning rates in a mixed-effects regression model testing for the effect of risk and 

absolute prediction error on learning rate (absolute prediction error: t = 5.12, p < 0.001, β = 

0.09; risk: t = 7.01, p < 0.001, β = 0.18; Figure 8A–B). Controlling for absolute prediction 

error, we again did not find learning rate to predict recognition memory on the current trial 

(αt : z = −0.29, p = n.s., β = −0.01; |PEt| : z = 4.44, p < 0.001, β = 0.20), nor the subsequent 

trial (αt−1 : z = 0.68, p = n.s., β = 0.03; |PEt| : z = 3.53, p < 0.001, β = 0.17).

Choice by Value Difference—In this experiment, all choices were between images with 

matched reward outcomes. We replicated the results of Experiment 1 such that choice was 

predicted by the difference in participants’ initial value estimates for the scenes (z = 2.78, p 

= 0.005, β = 0.18, Figure 9). In particular, even in this better-powered test (12 choice trials 

as compared to 4 choice trials with matched outcomes in Experiment 1), there was no 

evidence for preference for images from one risk context versus the other (z = −1.56, p = 

n.s., β = −0.08).

Discussion

In Experiment 2, we doubled the number of training trials and replicated the results of 

Experiment 1, showing that large prediction errors increase learning rate and improve 

recognition memory, but that higher learning rates do not predict better item recognition. In 

fact, like in Experiment 1, learning rates were higher in the low-risk room, but item 

recognition was better in the high-risk room. Moreover, in this experiment, we demonstrated 

additional risk-context effects on episodic memory by showing better sequence and source 

memory for items that were encountered in the high-risk learning context. These results 

were separate from the effect of absolute prediction errors, but perhaps point to general 

memory enhancement for events occurring in a putatively more arousing environment.

Experiment 3

A possible confound of the effects of risk on memory and learning in Experiments 1 and 2 is 

that there was higher overlap between the outcomes for the two categories in the high-risk 

context as compared to the low-risk context. The distributions of outcomes for the indoor 

and outdoor scenes shared values from 20¢ to 80¢ (Exp. 1 & 2) in the high-risk room, but 

only 45¢ to 55¢ (Exp. 1) and 40¢ to 60¢ (Exp. 2) in the low-risk room. This greater overlap 

in the high-risk context could have made learning more difficult in comparison to the low-

risk room, and therefore influenced the effects of absolute prediction error on subsequent 
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memory. To test for this possibility, in Experiment 3 we made the learning conditions in the 

two rooms more similar by eliminating any overlap between the outcomes of the two 

categories.

Method

Participants—We conducted a simulation-based power analysis of the effect of absolute 

prediction errors on item-recognition memory. This revealed that we would have sufficient 

power (80% probability) to replicate the results of Experiments 1 and 2 with as few as 55 

participants. As a result, we had 100 participants initiate the study, of which 86 completed 

the task. Three participants were excluded based on our exclusion criteria (see Experiment 

1) leaving a final sample of 83 participants.

Procedure—We followed the same procedure as in Experiment 2 but changed the rewards 

such that they had a mean of 80¢ for the high-value category and 20¢ for the low-value 

category, and there was no overlap between the outcomes for scenes from the two categories 

(high-risk–high-value scenes: 60¢, 70¢, 80¢, 90¢, 100¢; high-risk–low-value scenes: 0¢, 

10¢, 20¢, 30¢, 40¢; low-risk–high-value scenes: 70¢, 75¢, 80¢, 85¢, 90¢; low-risk–low-

value scenes: 10¢, 15¢, 20¢, 25¢, 30¢).

Results

Learning—As in Experiment 1 and 2, participants learned better in the low-risk than in the 

high-risk room (t(82) = 6.28, p < 0.001 in a paired t test comparing the average deviation of 

estimates from the true means of the categories across rooms; Figure 9A). However, learning 

in the two rooms was more similar here than in Experiment 2, as assessed by first computing 

the difference in learning (average deviation of estimates from the true means of the scene 

categories) between the high and low-risk rooms for each participant, and then comparing 

this value between participants in Experiments 2 and 3 (t(148.98) = 1.84, p = 0.03). The 

range of prediction errors in the two rooms was also more similar in comparison to 

Experiment 1 and 2 (Figure 9B), allowing us to better assess the effects of risk context on 

learning and memory, when controlling for prediction errors (see below). As in previous 

experiments, there was an interaction between risk and scene category such that participants 

overestimated the low-value category and underestimated the high-value category more in 

the high-risk than in the low-risk room, (F(1,82) = 23.02, p < 0.001; Figure 9C). 

Nonetheless, participants correctly guessed the high-value category equally well (and at a 

higher proportion than in Experiment 1 and 2) in the high-risk (95%) and low-risk (96%) 

rooms.

Memory by Risk and Prediction Error—We replicated the results of Experiments 1 

and 2, and further found separate effects of context and unsigned prediction error on 

recognition memory. A high-risk context and larger absolute prediction errors enhanced 

recognition memory for scenes, even with both predictors in the same model, indicating 

independent effects (|PEt| : z = 2.24, p = 0.02, β = 0.12; risk: z = 2.58, p = 0.009, β = 0.24, 

Figure 10A–B). This effect was again significant when controlling for reward outcome (|

PEt| : z = 2.72, p = 0.007, β = 0.15; Rt: z = −0.38, p = n.s., β = −0.02) and value estimates (|

PEt| : z = 2.70, p = 0.007, β = 0.15; Vt: z = −0.74, p = n.s., β = −0.03). Similar to 
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Experiment 2, we again found better sequence memory for items within the high-risk 

context, while controlling for the effect of distance (risk: z = 2.47, p = 0.01, β = 0.57; 

distance: z = 2.36, p = 0.02, β = 0.55). For source memory, we did not have the power to 

detect the effect in Experiment 2, and this difference was not statistically significant 

although it was in the same direction.

It is worth noting here that there was a stronger effect of context in modulating recognition 

memory than in Experiments 1 and 2 (the context effect remained when controlling for 

absolute prediction errors, unlike in Experiments 1 and 2). That is, when learning was more 

similar in the two rooms, an independent effect of risk in increasing recognition memory 

became apparent. One possible explanation for this finding is that memory-boosting effects 

of reward prediction errors might “spill over” to adjacent trials, enhancing memory for those 

items as well. To test for these “spill over” effects in the high-risk context, we measured 

whether immediately previous and subsequent absolute prediction errors proactively or 

retroactively strengthened recognition memory for a scene, while controlling for the absolute 

prediction error experienced for that particular scene. We ran two mixed-effects logistic-

regression models testing for the effect of adjacent absolute prediction errors (one for 

previous and one for subsequent prediction error) on recognition memory. We did not find 

any effect of adjacent prediction errors (|PEt−1| : z = −1.71, p = n.s., β = −0.13; |PEt+1| : z = 

−0.93, p = n.s., β = −0.08), suggesting that the memory-enhancing effect of the high-risk 

context may be due to general enhanced memory for items experienced in a high-risk, and 

potentially more arousing, environment.

Learning Rate by Risk and Prediction Error—As in Experiments 1 and 2, absolute 

prediction errors increased learning rates in both rooms, and there was a trend for higher 

learning rates in the low-risk room (|PEt|: t = 3.33, p < 0.001, β = 0.06; risk: t = 1.84, p = 

0.06, β = 0.06; Figure 11A–B). We again did not find learning rate for values to predict 

recognition memory for the scene on the current trial (z = −0.26, p = n.s., β = −0.01), nor 

the subsequent trial (z = −1.22, p = n.s., β = −0.08), while controlling for the effect of 

absolute prediction error on the current trial.

Choice by Value Difference—As in Experiment 2, all choices (12 trials) were between 

scenes that had matched reward outcomes. Here too we replicated the results of Experiment 

1 and 2, such that participants were more likely to choose the scene that they had initially 

guessed a higher value for (z = 3.98, p < 0.001, β = 0.29).

Discussion

In Experiment 3, we eliminated all overlap between the reward outcomes of the high and 

low-value categories in both rooms—a potential confound in Experiment 1 and 2—and 

replicated our previous results. Additionally, given the more similar range of prediction 

errors in the high and low-risk contexts, we were able to detect an independent effect of risk 

context on recognition memory. Improved recognition memory in the high-risk room, like 

the better source and sequence memory observed for high-risk events in Experiment 2, 

points to general memory enhancement for events experienced in an environment with 

greater reward variance.
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General Discussion

Our aim was to determine how reward prediction errors influence episodic memory, above 

and beyond their known influence on learning. In Experiment 1, we demonstrated that 

unsigned, or absolute prediction errors enhanced recognition memory for a rewarding 

episode. That is, trial-unique scenes that were accompanied by a large reward prediction 

error, whether positive (receiving much more reward than expected) or negative (receiving 

much less reward than expected) were better recognized in a subsequent surprise recognition 

test. We additionally found that risk context and absolute prediction errors modulated the 

trial-by-trial rate by which participants used the rewards to update their estimate of the 

general worth of that category of scenes. In particular, learning rate was higher in a low-risk 

environment, and there was more learning from rewards that generated larger prediction 

errors. Notably, although large prediction errors increased learning from rewards on that 

specific trial, and enhanced memory for the scene in the trial, we did not find a trial-by-trial 

relationship between learning rate and memory accuracy. In fact, the high-risk context led to 

lower learning rates but better recognition memory on average, suggesting separate 

mechanisms underlying these two effects of prediction errors.

In Experiment 2, we increased the number of trials therefore allowing for more learning in 

each context, and placing more demands on memory. We replicated all the effects from 

Experiment 1, and further showed that source and sequence-memory were better for images 

encountered in the high-risk context. In Experiment 3, we eliminated a potential confound 

by equating learning difficulty in the high-risk and low-risk contexts, again reproducing the 

original results. This manipulation also resulted in a more similar range of prediction errors 

in both risk contexts, which uncovered a separate effect of risk on episodic memory, above 

and beyond that of absolute prediction errors.

Previous work has shown both a collaboration between learning and memory systems, such 

as boosting of memory for items experienced during reward anticipation (Adcock et al., 

2006) including oddball events (Murty & Adcock, 2014), as well as a competition between 

the systems, where the successful encoding of items experienced prior to reward outcome is 

thought to interfere with neural prediction errors (Wimmer et al., 2014). Here, in all three 

experiments, we showed that incremental learning and episodic memory systems 

collaborate, as learning signals. Specifically, large reward prediction errors both increase 

learning rate for the value of the rewarding source and enhance memory for the scene that 

led to the prediction error. However, the fact that the effects of prediction errors on learning 

rate and episodic memory were uncorrelated suggests that these effects are mediated by 

somewhat separate neural mechanisms.

Although we only tested behavior, the impetus for our experiments were neurobiological 

accounts adjudicating between the effects of signed and unsigned reward prediction errors 

on memory. Neurally, reward prediction error modulation of dopamine signaling provides a 

strong putative link between trial-and-error learning and dopamine-induced plasticity in the 

hippocampus. Such an effect of (signed) dopaminergic prediction errors from the ventral 

tegmental area (VTA) to the hippocampus would have predicted an asymmetric effect on 

memory, such that memories benefit from a positive prediction error (signaled by an 
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increase in dopaminergic firing from the VTA), but not a negative prediction error (signaled 

by decreased dopaminergic firing). Instead, we found that the absolute magnitude of 

prediction errors, regardless of the sign, enhanced memory. This mechanism perhaps 

explains the finding that extreme outcomes are recalled first, are perceived as having 

occurred more frequently, and increase preference for a risky option (Ludvig, Madan, & 

Spetch, 2014; Madan, Ludvig, & Spetch, 2014).

In our task, each outcome was sampled with equal probability (uniform distributions), 

meaning that extreme outcomes were not rare. However, the mnemonic effects that we 

identified could potentially also contribute to the well-demonstrated phenomenon of 

nonlinear responses to reward probability in choice and in the brain, characterized by the 

overweighting of low-probability events and the underweighting of high-probability ones 

(Hsu, Krajbich, Zhao, & Camerer, 2009; Kahneman & Tversky, 1979). In particular, large 

prediction errors due to the occurrence of rare events would mean that these events affect 

learning and memory disproportionately strongly. Similarly, the underweighting of very 

common events could arise from the rare cases in which the common event does not occur, 

giving rise to large and influential prediction errors. Our results suggest that these distortions 

of weighting would be especially prominent when episodic memory is used in performing 

the task.

The influence of unsigned reward prediction errors on recognition memory is also 

reminiscent of work demonstrating better memory for surprising feedback outside of 

reinforcement learning, such as a recent study showing improved encoding of unexpected 

paired associates (Greve, Cooper, Kaula, Anderson, & Henson, 2017). Another potentially 

related paradigm is the hypercorrection effect (Butterfield & Metcalfe, 2001), where high-

confidence errors and low-confidence correct feedback (both potentially generating large 

prediction errors) lead to greater attentional capture and improved memory (Butterfield & 

Metcalfe, 2006).

Neuroscientific work has linked surprising feedback to increases in arousal and the 

noradrenergic locus coeruleus (LC; Clewett et al., 2014; Mather et al., 2015; 

Miendlarzewska, Bavelier, & Schwartz, 2016). Our finding that absolute prediction errors 

influenced subsequent memory is in line with a mechanism (also described in the 

Introduction) whereby the LC-norepinephrine system responds to salient (surprising) events, 

and dopamine co-released with norepinephrine from LC neurons strengthens hippocampal 

memories (Kempadoo et al., 2016; Takeuchi et al., 2016). This proposed mechanism would 

seem to imply that increases in learning rate (previously linked to norepinephrine release) 

and enhanced episodic memory (linked to dopamine release) should be correlated across 

trials, given the hypothesized common cause of LC activation. However, we found that 

increases in learning rate were uncorrelated with enhanced memory, suggesting that the 

actual mechanism may involve additional (or different) steps from the one described above.

In our task, learning rate not only increased with the magnitude of prediction error, but also 

changed with the riskiness of the environment. In line with our results, recent work shows 

that learning rate scales inversely with reward variance, with higher learning rates in lower 

variance contexts (Diederen & Schultz, 2015; Diederen et al., 2016). Greater sensitivity to 
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the same magnitude prediction errors in a low versus a high-variance environment 

demonstrates adaptation to reward statistics, where in a low-risk context, even small 

prediction errors are more relevant to learning than they would be when there is greater 

reward variance. This heightened sensitivity to unexpected rewards in the low-risk 

environment, however, was not associated with improved episodic memory in any of our 

experiments. In fact, in Experiment 3, we found that memory was better for items 

experienced in the high-risk context, even when controlling for the magnitude of trial-by-

trial reward prediction errors. The opposing effects of risk on learning rate and episodic 

memory again suggest distinct underlying mechanisms, in agreement with work 

characterizing learning and memory systems as separate and even antagonistic (Foerde et al., 

2012; Wimmer et al., 2014).

To explain the beneficial effect of high-risk environments on episodic memory, we 

hypothesized that better memory for large-prediction-error events could potentially “spill 

over” to surrounding items, in line with work showing that inducing an “encoding” state 

(such as through the presentation of novel items) introduces a lingering bias to encode 

subsequent items (Duncan & Shohamy, 2016; Duncan et al., 2012). These effects, however, 

did not explain how risk context modulated memory in our task, as we did not find 

prediction error events to additionally improve memory for adjacent items. Instead, we 

speculate that this context effect is due to improved encoding when in a putatively more 

aroused state, although future studies should more directly characterize the link between 

arousal and enhanced memory in risky environments.

Finally, we did not find effects of absolute prediction error or risk context on preferences in 

a later choice test. It remains, however, to be determined whether memories enhanced by 

large prediction errors may still bias decisions by prioritizing which experiences are sampled 

or reinstated during decision making.

In conclusion, we show that surprisingly large or small rewards and high-risk contexts 

improve memory, revealing that prediction errors and risk modulate episodic memory. We 

further demonstrated that absolute prediction errors have dissociable effects on learning rate 

and memory, pointing to separate influences on incremental learning and episodic memory 

processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task Design. A: Example learning trial. On each trial, participants were shown an image 

(“cue”), and were asked to estimate how much on average that type of scene (indoor or 

outdoor) was worth (“estimate”). They then saw the image again with a monetary outcome 

(“reward”). Each image appeared on one trial only. B: Memory tests. Participants completed 

item recognition, source (Exp. 2,3) and sequence memory tasks. C: Choice task. Participants 

chose between previously seen images that were matched for reward outcome, risk context, 

and/or scene category value.
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Figure 2. 
Schematic of prediction error (PE) and learning rate (α) calculation for two consecutive 

trials that involve the same scene category, in the learning phase of the experiment. Based on 

the learning equation Vt+1 = Vt + αt* PEt, we calculated the trial-by-trial learning rate as 

(Vt+1 − Vt) / PEt. Note that all components of this equation are measured explicitly: Vt and 

Vt+1 are two consecutive estimates of the value of a scene from a single category (e.g., 

outdoor scenes), and the prediction error on trial t is the difference between the reward given 

on that trial, and the participants’ estimate of the value of scene on the same trial. We 

assume here that separate values are learned and updated for each of the scene categories.
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Figure 3. 
Experiment 1, learning results. A: Average estimates for the high and low-value categories 

as a function of trial number for the high and low-risk rooms. Participants learned better in 

the low-risk room, indicated by the proximity of their guesses to the true values of the scenes 

(dashed horizontal lines). Cent values represent the outcome participants received on that 

trial (after entering their value estimate). B: Density plot of prediction errors (PEt) in each 

room. There were more high-magnitude prediction errors in the high-risk in comparison to 

the low-risk room. C: There was an interaction for positive and negative prediction errors 

between risk context and category value, such that participants overestimated the value of 

the low-value category and underestimated the value of the high-value category to a greater 

extent in the high-risk room. Error bars represent standard error of the mean.
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Figure 4. 
Experiment 1, recognition memory results. A: Recognition memory was better for items 

within the high-risk room. B: There was better recognition memory for items associated 

with a higher absolute prediction error. Item memory was binned by the quartile values of 

prediction errors within each risk room. Each dot represents the average value within that 

quartile. Error bars represent standard error of the mean.
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Figure 5. 
Experiment 1, learning rate results. A: Learning rate was higher in the low-risk context. 

Average learning rate plotted by risk context and category value. B: Both absolute prediction 

errors and a low-risk context increased learning rate. Learning rates were binned by 

prediction errors that occurred on the same trial (each dot represents the average prediction 

error within the binned range). Error bars represent standard error of the mean.
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Figure 6. 
Experiment 2, learning results. A: Average estimates for the high and low-value categories 

as a function of trial number for the high and low-risk rooms. Participants learned better in 

the low-risk room, indicated by the proximity of their guesses to the true values of the scenes 

(dashed horizontal lines). B: Density plot of prediction errors (PEt) in each room. There 

were more high-magnitude prediction errors in the high-risk in comparison to the low-risk 

room. C: There was an interaction for positive and negative prediction errors between risk 

context and category value, such that participants overestimated the value of the low-value 

category and underestimated the value of the high-value category to a greater extent in the 

high-risk room. Error bars represent standard error of the mean.
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Figure 7. 
Experiment 2, memory results. A: Recognition memory was better for items within the high-

risk context. B: Absolute prediction errors enhanced recognition memory for the scenes. 

Item memory was binned by the quartile values of prediction errors within each risk room, 

each dot represents the average value within that quartile. C: For correctly remembered 

items, source memory was better for items within the high-risk context. D: A high-risk 

context and distance between items (number of trials between pairs) increased sequence 

memory. Error bars represent the standard error of the mean.
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Figure 8. 
Experiment 2, learning rate results. A: Learning rate was higher in the low-risk context. 

Average learning rate plotted by risk context and category value. B: Both absolute prediction 

errors and a low-risk context increased learning rate. Learning rates were binned by 

prediction errors that occurred on the same trial (each dot represents the average prediction 

error within the binned range). Error bars represent standard error of the mean.
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Figure 9. 
Experiment 3, learning results. A: Average estimates for the high and low-value categories 

as a function of trial number, separately for the high-risk and low-risk rooms. Participants 

learned better in the low-risk room (although the difference in learning between risk rooms 

was smaller than in Exp. 1 & 2). B: Density plot of experienced prediction errors (PEt) in 

each room. Compared to Exp 1 & 2, there were higher-magnitude prediction errors in the 

low-risk room, making the range of prediction errors more similar between rooms. C: 

Prediction errors show an interaction between risk context and category value, such that 

participants overestimated the value of the low-value category and underestimated the value 

of the high-value category to a greater extent in the high-risk room. Error bars represent the 

standard error of the mean.
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Figure 10. 
Experiment 3, recognition memory results. A: Recognition memory was better for scenes 

that were encountered in the high-risk context. B: Both absolute prediction errors and a 

high-risk context independently enhanced recognition memory for scenes. Item memory was 

binned by the quartile values of prediction errors within each risk room. Each dot represents 

the average value within that quartile. Error bars represent the standard error of the mean.
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Figure 11. 
Experiment 3, learning rate results. A: There was a trend for higher average learning rates in 

the low-risk context. B: Absolute prediction errors increased learning rate. Learning rates 

were binned by prediction errors on the same trial (each dot represents the average 

prediction error within the binned range). Error bars represent standard error of the mean.
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