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Real-time in vivo two-photon
Imaging study reveals decreased
_cerebro-vascular volume and
e increased blood-brain barrier
e permeability in chronically
stressed mice
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. Chronic stress disrupts brain homeostasis and adversely affects the cerebro-vascular system. Even

. though the effects of chronic stress on brain system have been extensively studied, there are few in

. vivo dynamic studies on the effects of chronic stress on the cerebro-vascular system. In this study,

. the effects of chronic stress on cerebral vasculature and BBB permeability were studied using in vivo

. two-photon (2p) microscopic imaging with an injection of fluorescence-conjugated dextran. Our real-

. time 2p imaging results showed that chronic stress reduced the vessel diameter and reconstructed

© vascular volume, regardless of vessel type and branching order. BBB permeability was investigated

. with two different size of tracers. Stressed animals exhibited a greater BBB permeability to 40-kDa
dextran, but not to 70-kDa dextran, which is suggestive of weakened vascular integrity following stress.
Molecular analysis revealed significantly higher VEGFa mRNA expression and a reduction in claudin-5.
In summary, chronic stress decreases the size of cerebral vessels and increases BBB permeability. These

. results may suggest that the sustained decrease in cerebro-vascular volume due to chronic stress leads

. to a hypoxic condition that causes molecular changes such as VEGF and claudin-5, which eventually
impairs the function of BBB.

Chronic stress is known to affect our whole body and to have a negative effect on the cerebro-vascular system!~>.
© Adverse effects on the brain system of chronic stress include stroke, vascular dementia and cognitive dysfunc-
. tion*°. Especially, the detrimental effects of chronic stress on neuronal activation has been extensively studied

over the past few decades, and decreased activation of the hippocampus, amygdala, pre-frontal cortex, in chron-

ically stressed animals has been reported’~'’. Because neuronal activation is tightly linked to brain hemodynam-
ics, reduction in hemodynamics can be used as a measure of the decreased level of neuronal activation due to
chronic stress. As evidence of this, decreased hemodynamic responses, such as decreased cerebral blood volume

(CBV) and decreased BOLD fMRI signals, have been reported in chronically stressed animals and humans"!'~13,

Recently, reduced cerebral blood volume (CBV) has been reported in chronically stressed rodents'?. Chiba and

colleagues reported that chronic restraint stress induces depression-like behavior in rodents', and depression is
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known to promote decreased arterial pulsatility and cerebral blood flow in the brain!>-18. These results suggest
that chronic stress can decrease cerebro-vascular responses causing decreased hemodynamics. In theory, sus-
tained reduction of cerebral hemodynamics can eventually lead to hypoxic conditions, which can affects neuronal
deaths and cognitive dysfunction. However, these points have not been clarified yet.

Hypoxic condition results in an upregulation of hypoxia-inducible factor-1a (HIF-1cr), which in turn
increases the release of vascular endothelial growth factor (VEGF), a primary cytokine involved in angiogenesis.
Thus, we hypothesized that chronic stress-induced hypoxic conditions leads to an increase in VEGF and that an
increase in VEGF affects vessel structure plasticity, resulting in changes in capillary density'®. Consistent with the
hypothesis stated above, chronic restraint stress has been reported to result in increased HIF-1a expression and
higher levels of VEGF and its receptor VEGFR2%°-22, Furthermore, VEGF levels in the cortex have been found to
increase following corticosterone exposure, which mimics stress conditions?’. However, there is no direct in vivo
study to show cerebral blood volume changes in conjunction with VEGF and HIF-1 in restraint-rodent model
of chronic stress.

In addition to above mentioned VEGF and HIF-1g, claudin-5 and occludin, two major tight junction proteins,
have been documented to be reduced in the frontal cortex and hippocampus in a rat model of restraint stress*.
Alterations in these proteins can be a direct mechanism for blood-brain barrier (BBB) permeability changes.
In central nervous system (CNS), BBB is existing to act as selective barrier isolating CNS parenchyma from the
circulatory system?®. BBB integrity is maintained by tight junctions among brain endothelial cells*. Also, BBB
integrity is related with VEGE. VEGF has been reported to enhance BBB permeability?’-2°. BBB disruption can
facilitate the infiltration of pro-inflammatory cytokines and neurotoxic molecules into neural tissue, along with
immunoglobulin and albumin, and therefore BBB permeability changes could be a driving force of the vicious
cycle of the adverse effects of chronic stress on the brain.

Attempts have been made to evaluate BBB permeability changes under chronic stress**-**. However, mixed
results have been reported with some studies reporting that prolonged exposure to stress can affect the increases
in BBB permeability*** and others reporting no effect of chronic stress on BBB permeability*****”. Most studies
that have investigated the correlation between stress and BBB permeability have used an endpoint assay, i.e.,
extravasation of Evans blue or sodium fluorescein shown with tissue slice imaging and colorimetric quantifica-
tion®?33%39 These methods may incorrectly overestimate the signal of Evans blue or sodium fluorescein in tissue
due to insufficient perfusion power to remove all residual dyes in blood vessels®'. In addition, the permeability
of the BBB is affected by the size, hydrophobicity, and charge of molecules. Therefore, in order to better assess
the degree of BBB permeability changes due to chronic stress, it is necessary to perform real-time concomitant
measurements of BBB permeability by using different sizes of tracers. Recently, two-photon (2p) imaging has
been used to visualize and assess the cerebro-vascular structure and BBB permeability in live animals*®!. The
implantation of a chronic cranial window enables repeated brain imaging within the same subject and therefore
provide clearer picture of long-term effects of chronic stress on the brain system than before*>*.

In this study, the long-term effects of chronic stress on the cerebro-vascular volume and BBB permeabil-
ity are investigated using longitudinal in vivo 2p dynamic imaging and we show that chronic restraint stress
decreases the size of cerebral vessels and increases BBB permeability, accompanied with up-regulation of VEGF
and down-regulation of claudin-5 in mRNA level.

Results

Effects of chronic stress on behavior, weight, corticosterone level, and blood pressure. The
elevated plus maze (EPM) test confirmed that the 3-week administration of restraint stress (RS) induced behav-
ioral despair (Fig. 1A). The RS animals stayed in the closed area for significantly longer than the control animals,
which is a typical depressed-like stress behavior***®. In addition, RS animals showed higher corticosterone plasma
levels and a lower weight gain compared to control animals (Fig. 1B,C)***". Blood pressure (BP) was not signifi-
cantly different between control and RS animals following the 3-weeks RS stress paradigm (Fig. 1D).

Effects of chronic stress on cerebro-vasculature. Representative images of the cerebro-vasculature
taken before and after RS modeling are shown for the control and RS groups (Fig. 2A). The control group exhib-
ited no significant diameter changes in all vessels at 3 weeks (3 w) compared to 0 week (0 w). In contrast, the RS
group revealed a decreased diameter of all vessels at 3 w compared to 0 w (Fig. 2A-C, see Supplementary Fig. S1
for raw data).

Since the sum of voxels of the acquired image represents the CBV weighted signal of the region of interest
(ROI), the total CBV weighted signal was estimated by measuring the volume of the fluorescent signal of ROI.
When we performed within-group comparison of CBV weighted signal between 0 w and 3 w, no statistically sig-
nificant change was observed in the control group (3w/0w = 105.86 & 5.78% (mean & SD); p= 0.077). However,
in the RS group, the CBV weighted signal was reduced at 3 w compared to 0 w (3w/0w =93.65+6.71%, p =
0.049). In addition, the RS group had a significantly lower total CBV weighted signal of vessels compared to the
control group at 3 w (p=0.008, Fig. 2D).

To quantify these structural changes in detail, we performed developed 3D vessel analysis methods mentioned
in methods section (see Supplementary Fig. S2 for details). The diameters of each vessel type in the two groups
were plotted between 0 w and 3 w (Fig. 3A). The linear regression trend line based on plotted vessels showed no
changes between 0 w and 3 w in control group, i.e., the slope is close to one. On the other hand, the RS group
showed a significant within-group decrease in slop of trend line between 0 w and 3 w. When we compare mean
value of classified segments based on the size of diameter, there was no change in the control group at 3 w vs.
0 w, whereas significant decreases were found in the capillary (<9 pm), intermediate size (<14 pm) and large
(>14pm) vessel type of RS group at 3 w vs. 0 w. Also, the same tendency was observed when the diameter was con-
verted into the reconstructed volume based on the analysis described in the Methods (Fig. 3B). This reconstructed
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Figure 1. Validation of the chronic restraint stress (RS) animal model. (A) Cumulative time in open, closed,
and center areas in the elevated plus maze (EPM), and heat map of animals’ movements on the EPM. (B) The
level of plasma corticosterone (CORT) one day after the last stress exposure. (C) Body weight changes over the
3-week period. (D) Blood pressure one day after the last stress exposure. CTR, control group; RS, restraint stress
group; *p < 0.05; **p < 0.01; ***p < 0.001.

volume data reflects CBV weighted intensity of selected vessel segments. This also makes it possible to directly
compare the changes in selected vessel segments obtained between 0 w and 3 w. As shown in Fig. 2, 3A and B,
the constriction response of vessels was prominent in the RS group regardless of vessel size.

When we compared vessel responses in relation to vessel type and branching order, similar results were
obtained (Fig. 3C and D, and Tables 1 and 2). Namely, artery diameter in the control group shows increased trend
for the all vessel orders at 3 w compared to 0 w, whereas artery diameter in the RS group shows decreased trend
for all vessel orders at 3 w compared to 0 w. Similarly, vein diameter in the control group tend to increase for all
vessel orders at 3 w compared to 0 w, whereas vein diameter in the RS group significantly decreased for all vessel
orders at 3 w compared to 0 w. Consistent with diameter change, reconstructed volume of all shows statistically
significant decrease in the stress group, regardless of vessel type and branching order (Fig. 3C and D).

Effects of chronic stress on the dynamic BBB permeability. Two different molecular sizes of
fluorescence-labeled dextran were delivered via intravenous injection, and the extravasation of fluorescent sig-
nals was measured simultaneously using in vivo 2p imaging (Fig. 4A). We monitored the leakage of dextran for
30 min after the injections, and we observed clear leakage of fluorescent dye into the perivascular area, with the
extent depending on the size of the molecule. Extravasation of representative images significantly increased in
the RS group following the 40-kDa FITC-conjugated dextran injection, but not the 70-kDa Texas-red conjugated
dextran injection, compared to the control group (Fig. 4A). As shown in Fig. 4B, 70-kDa dextran showed about
1.5 times increase in RS group and about 1.2 times increase in control group at extravascular intensity after
30 min. Meanwhile, 40-kDa dextran showed about 3 times increase in RS group and about 1.2 times increase in
control group at extravascular intensity after 30 min. The intravascular intensity was maintained at the similar
level between RS and control groups in 40-kDa and 70-kDa dextran injection for 30 min.

The permeability constant calculated by our modified formula revealed an increased permeability of the BBB
to the 40-kDa dextran but not to the 70-kDa dextran in the RS group compared to the control group (Fig. 4C, full
time video in Supplementary Video S1).

Expression of mRNA related to the BBB. Prolonged reduction of cerebral blood volume, as observed
via the lower vessel intensities in the RS group, can lead to a lack of oxygen for brain parenchyma. This hypoxic
condition can induce alterations in HIF-1o and VEGFa expression. There was an increase in HIF-1ae mRNA
expression that nearly reached significance in the RS group (P =0.0506), and the HIF-1c target gene, VEGFa,
and VEGFR2 mRNA had significantly higher expression levels in the RS group compared to the control group
(Fig. 5A-C). The mRNA expression of occludin and claudin-3 did not differ between the RS and control groups
(Fig. 5D,E). In contrast, claudin-5 was significantly lower in the RS group compared to the control group (Fig. 5F).
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Figure 2. Cerebro-vascular structure following chronic restraint stress. (A) Representative images were
longitudinally acquired in the control and RS groups. Two-dimensional images (dashed square) are the
maximum intensity projection of 3D images with a 100 um thickness (dashed cube). a-f indicate vessel
diameter. Vascular diameter changes of representative images in the CTR (B) and RS (C). (D) Cerebral blood
volume (CBV) weighted intensity signal at 3 w shown as the ratio to 0 w. CTR, control group; RS, restraint stress
group; *p < 0.05.

Discussion

In the present study, we investigated whether repeated restraint stress induced decreases in cerebro vascular vol-
ume and BBB permeability in mouse cortex with in vivo 2p imaging. Even though there have been a few studies for
cerebro-vascular alteration of RS animal, there is no study providing direct comparison of cerebro-vasculatures
before and after the stress regime. Also, whether chronic stress affects BBB permeability is still questionable, par-
ticularly for intermediate-sized molecules®*-*.

By utilizing real-time in vivo 2p imaging, we found that chronic RS induced the decreases in the diameter
of all vessel type, reconstructed volume of the selected cerebral vasculature and increased BBB permeability for
intermediate-sized molecules. In addition, our chronic RS mice showed behavioral changes and increased plasma
corticosterone level, which was typical findings in stressed animals consistent with previous study'*4647. It was
reported that corticosterone is related with the regulation of heme oxygenase-2 (HO-2) and nitric oxide synthase
(NOS) in the rat brain*%. Chronic stress induces the corticosterone induction followed by the reduction of NOS
and HO-2 expression!? and eventually the reduction of nitric oxide (NO)*-! and carbon monoxide (CO), major
vasodilators in the brain. Thus, these chain reactions would inevitably result in the reduction of cerebro-vascular
volume and affects overall hemodynamics in the cortex.

Vascular volume reduction caused by RS was confirmed in this study from 2p fluorescent imaging data.
Indeed, vascular volume reduction, based on volume-reconstruction of selected vessel segment, was found for
all types of blood vessels, i.e., artery and vein, regardless of vessel size and branching order in stressed animals
compared to control animals. However, since the animals were under anesthesia, there was a chance that anesthe-
sia might affect the outcome of this study. Indeed, the effect of anesthesia on neurovascular regulation has been
extensively investigated® and even isoflurane has been reported to dilate blood vessels®*™.

To minimize the influence anesthesia level fluctuation on vascular dynamics, we ensured stable anesthetic
condition by frequent monitoring of the pedal reflex and respiratory pattern during imaging. In addition, we also
tracked anesthesia level during imaging by monitoring heart rate (HR). As shown in the Supplementary Fig. S5,
no significant change in HR was observed during imaging. Still, there was a potential for a certain level of fluc-
tuation in anesthesia depth caused by different dosage and different kind of anesthesia agents, which might have
affected the measurements. Therefore, we explored whether the depth of anesthesia (e.g., % isoflurane), different
kind of anesthesia actually does affect the vessel diameter measurements.
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Figure 3. Volume and diameter of classified vessels based on size, type, and branching order. (A) The
correlation of vessel diameter between 0 w and 3 w of the CTR (left) and RS (right). (B) The diameter of vessel
at 0 w and 3 w in all sizes of vessels (left), and the reconstructed volume change shown as the ratio to 0 w (right).
(C) Artery diameter (left) and reconstructed volume change (right) in the CTR and RS based on branching
order. (D) Vein diameter (left) and reconstructed volume change (right) in the CTR and RS based on branching
order. CTR, control group; RS, restraint stress group; B,,, number of branches; *p < 0.05; **p < 0.01; 'p < 0.05;
p < 0.01.

First, images were repeatedly acquired with the anesthetic concentration of 1.5% isoflurane for either 30 min-
ute or 60 minute. During these prolonged anesthesia, the change of vessel diameter was checked in naive ani-
mals and stressed animals respectively to ensure whether vaso-fluctuations is prominent. Our result confirmed
that there were no significant fluctuation in vessel diameter for both naive condition and stressed condition.
(Supplementary Fig. S3, S4). In addition, when anesthetic concentration was increased to 2% isoflurane in
stressed animals’ imaging, there was also no significant fluctuation in vessel diameter (Supplementary Fig. S3, S4).
These results indicate the prolonged anesthesia at 1.5% or 2% isoflurane will not cause significant fluctuations in
vessel diameter. Although there was some vaso-dilation due to changes in anesthesia level (1.5% to 2%), a larger pat-
tern emerges when comparing pre-stress images to those after chronic stress regime (Supplementary Fig. S3, $4).
Additionally, we have confirmed that alternative ketamine-xylazine anesthesia results in consistent results with
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Average | 6.688 | 6.886 10.95 |11.708 22.004 |23.028 1.0972 1.1822 1.0805 1.0974
CTR |5 3192 0.413 0.182 0.207
S.D. 0.589 | 0.499 0.207 | 1.093 5.464 | 6.545 0.16123 0.23096 0.13161 0.16462
0.024 0.034 0.019 0.041
Average | 6.715 | 6.407 10.887 | 10.067 20.142 | 18.745 0.9085 0.8596 0.8835 0.8831
RS |6 3646 0.008 0.001 0.006
S.D. 0.734 1 0.759 0.19 0.28 2778 | 2.13 0.05313 0.05571 0.09656 0.05266

Table 1. Estimated diameter and reconstructed volume of selected blood vessels.

Average |21.853 |22.983 15.246 | 16.14 9.903 | 10.822 1112 1.125 1.169 1.1096
CTR |5 0.063 0.116 0.315
S.D. 6.193 | 6.354 4.799 | 5238 2.365 | 3.839 0.125 0.121 0.267 0.12829
Artery 0.047 0.01 0.046 0.043
Average |24.235 | 22.977 18.006 | 16.327 12.347 | 11.041 0.925 0.859 0.829 0.8957
RS |5 0.357 0.121 0.107
S.D. 4.04 1.572 6.464 | 5.034 2.658 | 1.666 0.174 0.13 0.146 0.15208
Average |20.091 |20.909 12.788 | 13.662 8.335 | 8.713 1.077 1.106 1.085 1.099
CTIR |5 0.321 0.201 0.43
S.D. 4.658 | 5.489 4.338 | 5227 0.362 | 1.262 0.146 0.144 0.196 0.163
Vein 0.014 0.006 0.016 0.028
Average |21.067 | 19.537 13.467 | 12.305 8.164 | 7.398 0.87 0.864 0.829 0.862
RS |6 0.022 0.023 0.003
S.D. 7.385 | 6.48 5.188 | 4.429 0.971 | 0.959 0.077 0.074 0.079 0.068

Table 2. Estimated diameter and reconstructed volume of selected blood vessels based on vessel type and
branching order.

results from isoflurane anesthetic condition (Supplementary Fig. S6), supporting that the chronic stress shrinks
blood vessels.

There are several studies showed decreased cerebral blood volume (CBV) following chronic stress in animals
and humans"!!-13, Prior exposure to chronic stress was reported to occlude strong activation of the somatosen-
sory cortex by CO, inhalation using functional Magnetic Resonance Imaging (fMRI) and to exhibit a decreased
hemodynamic response in the somatosensory cortex during hind paw electrical stimulation using optical intrin-
sic signal imaging''2. According to the Poiseuille’s law of fluid dynamics, i.e., flow proportional to the fourth
power of vessel radius, assuming that the blood pressure within the vessel is maintained, this would lead to ~23%
reduction in cerebral blood flow, which could significantly impact the neurovascular regulation and brain metab-
olism®®. Consistent with mRNA analysis, the velocity of RBC was significantly decreased in capillary vessels of
chronically stressed animals compared to the naive animal prior to the stress regime. (Supplementary Fig. S8).
More research is needed, but we suspect that the cause of RBC velocity decline is due to increased resistance of the
vessel wall and decreased blood flow due to contraction of blood vessel. Inadequate CBF and CBV can result in
insufficient oxygen supply; considering that neurons and glial cells receive oxygen from blood vessels, a reduced
CBV may induce hypoxic condition and trigger HIF-1a expression and sequential expression of VEGF***". These
two molecules are typical molecules in the hypoxic state and are known to affect angiogenesis in particular®.
Under cerebral ischemia, VEGF enhanced angiogenesis when administration at late stage but increased BBB leak-
age at early stage?. In inflammatory CNS condition such as multiple sclerosis (MS) stress condition, astrocytic
expression of VEGF-A is reported to a key driver of BBB permeability in mice®. Stress also induces neuroinflam-
mation®*-*!. Under inflammatory condition, VEGF-A induces BBB disruption than angiogenesis.

Our results showed significantly higher HIF-1a, VEGFa, and VEGFR2 mRNA expression level in chron-
ically stressed brain than control brain. VEGF and its receptors, particularly VEGFR?2, are essential regula-
tors of patterning the vessel structures in development and vascular permeability®>®. Extensive research has
focused on the relationship between VEGF and stress. These studies reported diverse changes in VEGF expres-
sion levels in relation to stress type and brain area??*$4%%, For example, oral administration of corticosterone
for 7 weeks or treatment of cultured neuronal cells increased VEGF protein levels and decreased Flk-1 protein
(VEGFR?2) levels®. Researchers have shown that acute restraint stress increased VEGF protein and mRNA lev-
els in the ascending aorta and endothelial cell proliferation, which was modulated by nerve growth factor and
its receptor®. Based on our results and the results of these papers, it can be inferred that chronic stress causes a
decrease in cerebro-vascular volume and thus increases in levels of HIF-1aand VEGE. In addition, while reduced
cerebro-vascular volume could increase systemic blood pressure as a compensation mechanism, it is controversial
whether stress affects systemic blood pressure™®”¢® and we found no changes in systemic blood pressure following
chronic RS.

In addition, our results showed downregulation of mRNA levels of claudin-5, one of the tight junction pro-
teins, but not that of occludin or claudin-3. Previous studies have reported that claudin-5 is more sensitive to
stress conditions than occludin® and that chronic stress significantly reduced the level of claudin-5 but not
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Figure 4. BBB permeability increases following chronic restraint stress. (A) Representative images of leaking
fluorescence-labeled dextran. The middle panel shows the raw images of the insert squares in the left panel.
Time-lapse raw images were visualized with the color intensity scale, as shown in the right panel. (B) The
intensity of fluorescence in the extravessel (left) and intravessel (right). The intensity of the 40-kDa tracer
significantly increased in the extravessel area of the RS from 0 to 30 min. Arrows indicate time points for time-
lapse raw images in right panel of A. (C) The permeability constant of the 40-kDa tracer (left) and 70-kDa tracer
(right). CTR, control group; RS, restraint stress group; *p < 0.05; **p < 0.01; ***p < 0.001.

that of occludin®?. Over-expression of VEGFa and down-expression of claudin-5 are closely related to BBB
permeability®.

Therefore, we evaluated the BBB permeability in chronically stressed brains using two different sizes of
fluorescence-labeled dextran (40-kDa as intermediate size and 70-kDa as large size) and real-time in vivo 2p
imaging. For the BBB permeability study, we used thinned skull window, which is advantageous for minimally
invasive imaging of the cortical surface; however, regrowth of the skull limits the number of observation and
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Figure 5. mRNA expression of hypoxia related factors and tight junction proteins underlying BBB permeability.
(A-C) The expression of hypoxia related factors, HIF-1a, VEGFa, and VEGFR2 in the somatosensory cortex.
(D-F) The expression of tight junction proteins, occludin, claudin-3, and claudin-5 in the somatosensory cortex.
CTR, control group; RS, restraint stress group; *p < 0.05.

imaging depth in longitudinal study®. As BBB permeability can be measured at the cortical surface and does not
require repeated measurements, we chose thinned-skull window for the permeability study. The extravasation
of 40-kDa FITC dextran was significantly increased in the chronic RS group compared to the control group, but
no significant changes were observed for 70-kDa dextran. This confirmed results from a previous study using a
70-kDa size tracer®.

Several papers have reported that stress induces higher BBB permeability in mice’®”! but others have sug-
gested otherwise®'*. This difference may have been caused by using different kinds of tracers. Two papers showed
stress-induced BBB permeability changes with pyridostigmine (181-Da)”® and 99mTc (98-Da)" as tracers, and
two other papers found no relation of stress to BBB permeability with Evans blue (68 kDa)**. A recent publi-
cation reported that chronic stress does not increase BBB permeability in mice to sodium fluorescein (376-Da)
and FITC dextran (70-kDa)*. Generally, the BBB occludes molecules over 400-Da. These results appear to be
dependent on the tracer, particularly the size.

Body temperature has also been reported to be an important factor in the regulation of BBB permeability**.
In our study, the animal’s body temperature was kept at 37 °C using a heating pad during the live 2p imaging.
Because most of previous studies are tissue-based studies postmortem, this study may provide more informa-
tion about BBB permeability under real live conditions. As 2p imaging can assess dynamic changes over a long
period of time, this study could provide valuable information in relation to not only the time-course of molecular
leakage but also better assessment of BBB permeability changes in brain tissue. To summarize our BBB results,
chronic RS increased BBB permeability but did not induce BBB disruption, which was assessed using the 70-kDa
tracer. These increases in BBB permeability could be due to the decreased expression of the tight junction protein,
claudin-5, possibly resulting from increased expression of VEGFa and VEGFR2.

Our study are limited on only cerebral cortex because of using 2p imaging with live animals. Many studies
have reported the effect of stress on hippocampus but hippocampus is hard to study using 2p imaging with live
animals owing to the current technical limitation. Stress animal models are diverse in strain of animal, stressor,
and duration. We studied only one kind of stress animal model and we displayed only small information about
stress. Previously, many researchers also have studied different kind of stress animal models and a few studies
focused BBB permeability. In rat model of stress, it was reported that chronic unpredictable stress for 10 days and
acute immobilization stress for 20 minutes had no change in BBB permeability*>?*. Early life stress, such as prena-
tal stress (E10-20) and postnatal stress (P2-20), was reported to induce BBB disruption in rat brain by increasing
caveolae-mediated transport in brain endothelial cells**. In mice model of stress, acute forced swim stress was
reported to induce no significant changes in extravasation of sodium fluorescein (376-Da) and FITC-dextran
(70-kDa)*. On the other experiment with mice model, it was reported that acute immobilization stress for
30 minutes induced BBB disruption in hippocampus, diencephalon, cerebellum, and brainstem demonstrating
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involvement of CRH (corticotropin releasing hormone) and mast cells increases in regulating BBB permeability”!.
Therefore, more studies using more variety of stress models should be made in the future. A better understanding
of stress to the cerebro-vascular changes based on diverse stress model and methodology will aid the development
of novel methods to restore vascular plasticity in stress-related neurodegenerative and neurological diseases.

In sum, this study provides empirical evidence of alterations in cerebro-vascular volume and BBB permea-
bility induced by chronic stress. Namely, prolonged exposure to RS may lead to a decrease in the diameter of all
types of blood vessels and a decrease in reconstructed volume of selected vessel, and that these changes could be
a driving force for re-shaping the neurovascular structure as well as BBB permeability.

Methods

Animal Care. All experimental processes conformed to the national guidelines of the Korean Ministry
of Food and Drug Safety on the care and use of laboratory animals and were approved by the Institutional
Animal Care and the Use Committee (IACUC, Permit #: SKKUIACUC 2016-05-0002-2) of the Sungkyunkwan
University. The animals were caged in an environment maintained with a 12 hour inverted light/dark cycle
(lights on at 9:00 pm), at a temperature of 24-25 °C, and 50-60 % humidity. Male mice 9-11 weeks old were used
for this study. Tie2GFP (control: n=2; RS: n=4; STOCK Tg(TIE2GFP)287Sato/] (Stock No: 003658, Jackson
Laboratory) and CX3CR1-eGFP (control: n=3; RS: n =2; B6.129P-Cx3cr1™ILi[] (Stock No: 005582, Jackson
Laboratory) mice were used for repeated imaging of the cerebral vasculature. After cranial window surgery, mice
were reared in individual cages with a recovery period of 4-6 weeks before imaging. Wild-type C57BL/6 mice
(OrientBio, South Korea) were used for BBB permeability imaging (control: n=3; RS: n=3) and blood pressure
measurements (control: n=28; RS: n=7).

Restraint stress model. To induce chronic restraint stress, mice were immobilized with a plastic bag
(Decapicones, Braintree Scientific Inc.) in their home cages 6 hours per day for 3 weeks. The time of stress admin-
istration was fixed in the morning (9:30 am). During stress exposure, food and water were restricted. Mice in the
control group were not restrained and remained in their home cages during this 3-week period. Body weight and
food intake were monitored weekly. In the RS group, all imaging experiments and brain tissue and blood sample
collection were performed one day after the last stress exposure.

Chronic cranial window surgery for in vivo 2p microscopicimaging. To perform in vivo 2p micro-
scopic imaging of the brain, animals underwent a cranial window installation surgery. Before the installation,
animals were anesthetized by isoflurane inhalation (MIP Company, OR). Body temperature was maintained at
37°C by a homeothermic heating pad system (FHC, ME), which was controlled by a rectal probe. The isoflurane
level was 3 % for the initial anesthesia induction and maintained at 1.5 % during the cranial window surgical
procedure. Heart rate and SpO, of animals were monitored throughout the entire procedure to ensure physio-
logical health (PhysioSuite, Kent Scientific, CT). During the window installation procedure, animals were fixed
in a stereotaxic frame (David Kopf Instruments, CA). A cranial window 3 mm in diameter was made in the
right hemisphere and centered at ML, +2.5mm, AP, —1.5mm. A customized chamber frame (Narishige, Tokyo,
Japan) was placed around the opened skull and fixed with cyanoacrylic glue. The exposed cortex was covered
with a 4-mm glass coverslip (Warner instruments, CT), which was fixed with cyanoacrylic glue. The rest of the
cranial window margin and skull area were filled with dental resin. After the window installation surgery, the
animals were injected with enrofloxacin (Baytril, anti-biotic) and meloxicam (Metacam, anti-inflammatory and
analgesic drug) and underwent a 4-6 week recovery period before imaging experiments to avoid any confound-
ing neuro-inflammatory effects on imaging data. We found that cranial windows could be maintained for 4-5
months.

Longitudinal vasculature imaging using in vivo 2p microscopy. The RS group was imaged using 2p
microscopy (TCS SP8 MP, Leica Microsystems, Germany) before stress exposure and at the end of the 3-week
stress exposure. The control group was also imaged twice, with a 3-week interval. For in vivo 2p imaging, mice
were anesthetized with 3 % isoflurane for induction and 1.5 % isoflurane for maintaining anesthesia state dur-
ing imaging. After confirmation of proper anesthesia, mice were placed on a head-fixing apparatus (MAG-1,
Narishige, Japan) under a 2p microscopic imaging system. Body temperature was maintained at 37°C by a
homeothermic heating pad system (FHC), which was controlled by a rectal probe. Fluorescein isothiocyanate
(FITC)-conjugated dextran 70-kDa (Sigma Aldrich) or Texas red-conjugated dextran 70-kDa (Molecular probes)
was delivered via the retro-orbital sinus (5 % dextran solution (1.5 pul/g of body weight)) to image the vessel struc-
ture. The brain was excited with an 800 nm or 910 nm Ti:Sapphire tunable femtosecond laser (Chameleon Vison
11, Coherent, Inc., Santa Clara, California), and the emitted fluorescent signal was detected by HyD (hybrid detec-
tor), which is newly developed from Leica for taking advantages of both photomultiplier tube and the avalanche
photodiode, through a 525/40 bandpass filter cube for FITC-conjugated dextran imaging, and a 617/73 band-
pass filter cube for Texas-red conjugated dextran. The imaged brain size was 354.29 x 354.29 pm? (512 x 512 or
1024 x 1024 pixels), which was acquired by a 25X/0.95 NA water-immersion objective lens (HCX IRAPO) from
Leica. The imaging depth was approximately 400-500 pm from the brain surface with a z-axis resolution of 1 pm.

Vascular analysis. We used IMARIS 8.2 software (Bitplane, Switzerland) and Fiji (Image]) to preprocess
longitudinal images. For preprocessing, the acquired images at 0 weeks (0 w) and 3 weeks (3 w) were smoothed
by a 3D Gaussian filter with a 1.38 pm full width at half maximum (FWHM) kernel size for background blurring
and homogenization of vessel. Then, to enhance the signal-to-noise ratio, background subtraction using a roll-
ing ball algorithm, which is a Fiji plugin, was conducted. After smoothing and background subtraction, z-slice
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normalization was performed to correct attenuation of scans from the physical depth. This z-slice normalization
is performed to adjust the mean and standard deviation (SD) values of individual z-slice images to the grand
mean and SD values of the whole image. Next, we corrected non-homogenous illumination of the x-y plane,
resulting from a shadow of an apical pial artery and vein, by dividing the preprocessed image into a maximum
intensity projection (MIP) image. Specifically, the MIP image was generated by excluding 100 um of apical surface
and then smoothed by a 3D Gaussian filter with a 13.8 pm FWHM kernel size to obtain an intensity nonuniform-
ity (bias) field. Then, we applied the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm in
the Fiji plugin to enhance micro-vessel contrast’>. We generated a binary image using a Mexican Hat filter-based
thresholding technique, termed “local contrast”, in the IMARIS software (Supplementary Fig. S2A).

We also applied skeletonize and diameter mapping algorithms to obtain information on vascular morphol-
ogy. First, we calculated the vessel diameter using Euclidean distance transformation of the fitted sphere located
at the center point of the binary vessel images”®. Then, for longitudinal analysis in the same coordinate, each of
the 3 w diameter maps were registered to each of the 0 w diameter maps using non-rigid 3D transformation
(Supplementary Fig. S2B)”. Second, we generated a skeleton of the 0 w binary image using the 3D skeletonize
plugin in Fiji and converted it into a network graph based on a 26-cell cubic neighborhood (Supplementary
Fig. S2C). Next, we merged the diameter map with the vessel network map to classify vessel segments into large
vessels (>14 pm), medium vessels (<14 pm), or capillaries (<9 m) (Supplementary Fig. S2E-vascular classifica-
tion). To calculate a volume of the classified vessels, the volume of the all segments was reconstructed using the
diameter information from each voxel in each segment under the assumption of that the vessels are in cylinder
form. This means that the cylinders, which has a height of voxel resolution, were constructed at the voxels on all
network graphs (Supplementary Fig. S2D-volume estimation). Thus, the sum of the cylinder volumes per voxels
represents the approximate volume of a vessel segment. The formula used is as follows:

N
SV = S ri(n)nl

n=1

T
Reconstructed vascular volume = ZSV(t)
=1

where, SV denotes the volume of segments corresponding to the ¢-th segment, and T denotes the total number
of segments. Subsequently, 7(n) is half the diameter mapped to the n-th voxel of the network graph, and N is the
number of voxels in a segment. 7 is the circumference, and [ is the resolution of the voxel, which is 1 pm in this
analysis. We estimated the approximated regional CBV by using this reconstructed CBV.

Next, to classify vessel type and branching order, the arteries and veins were separated according to the visual
observation of the RBC shadow and the micro vascular fluctuation at apical cortex. We manually identified the
starting point of the pial artery and the vein network. The diameter and volume of the artery and vein were
further quantified by dividing vessels into the 0, 1%t and 2" order branches. The 0™, 1%, and 2™ order branches
were defined by the thickest branch that stemmed from the starting point, the first branch extending from the 0
order, and the next branches, respectively (Supplementary Fig. S2E). The reconstructed volume of selected vessel
was calculated in the same way as above for the divided branches, and the change in volume by vessel type was
compared in the CTR and RS groups.

BBB permeability measurement. To measure BBB permeability in the control and RS groups,
time-lapse imaging of the pial arteries was acquired followed by an intravenous injection of two molecule size of
fluorophore-tagged dextran (40-kDa and 70-kDa). We made an observation window above the somatosensory
cortex by thinning the skull to ~30 pm. All procedures were performed very carefully to prevent damage to the
cortex and vessel structures. First, animals received 70-kDa Texas-red dextran to visualize vessel structures, and
the 2D imaging plane was positioned at the center of the pial vessels under a 2p microscope. Then, 40-kDa FITC
dextran was delivered through an intravenous catheter after a 30 sec image acquisition excited with an 820nm
laser. The 512 x 512 images were taken at 1-sec intervals for 30 min with a 25X objective lens. To check the
thickness of the thinned skull, reflectance imaging was performed using confocal microscopy with a combined
excitation of 488, 568, and 647 nm lasers. The reflected signals were collected through PMT detectors with wave-
length ranges of 488 + 10, 568 & 10, and 647 & 10 nm, respectively. To quantify BBB permeability, we applied the
modified formula developed by Dreher et al. and Nhan et al.”®””.

d,

dt
(1) 1,(8)

1 - HCT V1V,

el Vi

P(t) =

where V, is the volume of the extravascular region, V; is the volume of the intravascular region, and I, and I; are
the extravascular and intravascular fluorescence intensities, respectively. HCT is 0.45 and represents the average
hematocrit level of all blood vessels within the imaging field of view. V,/V; is the volume fraction.

To define V;and V,, we generated intravascular and extravascular mask images using the 70-kDa image. Then,
using the mask image, we divided the fluorescence intensity of 70-kDa and 40-kDa dextran into extra- and intra-
vascular intensity. Then, we calculated BBB permeability using the above formula. In general, BBB permeability
is known to be high near capillaries and veins’®”°. Thus, we only considered fluorescence dynamics and BBB
permeability at five circular capillary-containing ROIs (25 pm in diameter) per animal.
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Behavioral test. The elevated plus maze (EPM) test was performed one day after the last stress exposure
and at equivalent time point in the control group to analyze anxiety-like behaviors of the mice. The plus maze
consisted of four arms (32.5cm x 5cm). Two arms faced one another. Two opposite arms were enclosed by
20-cm walls (closed platform) and the other two arms were not enclosed by walls (open platform). Movements
on the platforms were recorded for 5min using a video recording and analysis system (Ethovision XT, Noldus,
Wageningen, Netherlands). The total time spent in the open platform, closed platform, and center area was auto-
matically calculated using the behavior analysis software.

Blood pressure. Blood pressure (BP) was measured one day after the last stress exposure, 60 times over
1 hour, using a physiological monitoring system (CODA monitor, Kent Scientific, CT) by attaching a cuff to the
tail of the mouse. To prevent the distortion of BP due to mouse movement, the mice were anesthetized with ket-
amine and xylazine (100 mg/kg and 10 mg/kg, IP) 5min prior to BP measurements.

Measurement of blood plasma corticosterone levels. After the 3-week RS paradigm, mice were
briefly anesthetized with 3 % isoflurane, and approximately 200 ul of blood was collected in heparin-coated tubes
(BD Vacutainer, Becton Dickinson, NJ). The blood samples were centrifuged at 13,000 rpm for 15 min at 4°C.
The concentration of corticosterone in plasma was analyzed using a corticosterone ELISA kit (Assaypro LLC,
MO). The absorbance at 450 nm was measured using a microplate reader (Synergy HT Multi-Mode Microplate
Reader, BioTek Instruments, Inc., VT). A standard curve was generated using standard solutions, and the plasma
corticosterone level was determined from the standard curve.

Quantitative real-time PCR.  Total RNA was isolated from the somatosensory cortex of a coronal section
using an RNeasy Mini Kit (Qiagen, Hilden, Germany), and the concentration of RNA was measured using a
Take3 Micro-Volume plate/Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, Inc., VT). cDNA
synthesis was completed using a High Capacity RNA-to-cDNA Kit (ThermoFisher, MA). Quantitative real-time
PCR was performed in duplicate with specific primers (Supplementary Table S2) using SYBR Green PCR Master
Mix (ThermoFisher, MA) and QuantStudio 3 Real-Time PCR System (ThermoFisher, MA). The real-time PCR
cycle consisted of 1 cycle at 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 sec and 60 °C for 1 min. A melt-
ing curve analysis was conducted at the end of the real-time PCR reaction for each specific primer pair. The values
were calculated as relative changes to the control after normalization to the beta-actin gene.

Statistics. We validated the normal distribution of all data through the Shapiro-Wilk test and then divided
it into Independent Student’s t-test and Mann-Whitney U test according to the results of normality test.
Independent Student’s t-test was performed to ascertain statistical significance in behavior test, the level of plasma
corticosterone, body weight changes, blood pressure, most of vascular diameter and volume, intensity fold change
in BBB permeability and mRNA expression between control and RS group. Mann-Whitney U test was used to
confirm the statistical significance of permeability constant and 0" order artery between two groups (control and
RS). We also used paired Student’s t-test to confirm the statistical significance of changes in the vascular diameter
and volume within groups. Data are expressed as the mean 4= SD except mRNA expression as the mean £ SE.
Statistical significance was set at p < 0.05. Statistical analysis was performed using the SPSS (IBM SPSS statistics
20, NY).

Data Availability Statement

All data are available from the corresponding authors upon request.
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