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CEA: Combination-based gene set 
functional enrichment analysis
Duanchen Sun1,2, Yinliang Liu1,2, Xiang-Sun Zhang1 & Ling-Yun Wu1,2

Functional enrichment analysis is a fundamental and challenging task in bioinformatics. Most of the 
current enrichment analysis approaches individually evaluate functional terms and often output a list 
of enriched terms with high similarity and redundancy, which makes it difficult for downstream studies 
to extract the underlying biological interpretation. In this paper, we proposed a novel framework 
to assess the performance of combination-based enrichment analysis. Using this framework, we 
formulated the enrichment analysis as a multi-objective combinatorial optimization problem and 
developed the CEA (Combination-based Enrichment Analysis) method. CEA provides the whole 
landscape of term combinations; therefore, it is a good benchmark for evaluating the current state-of-
the-art combination-based functional enrichment methods in a comprehensive manner. We tested the 
effectiveness of CEA on four published microarray datasets. Enriched functional terms identified by CEA 
not only involve crucial biological processes of related diseases, but also have much less redundancy and 
can serve as a preferable representation for the enriched terms found by traditional single-term-based 
methods. CEA has been implemented in the R package CopTea and is available at http://github.com/
wulingyun/CopTea/.

Functional enrichment analysis is a fundamental and challenging task in bioinformatics. The arrival of 
high-throughput technologies, such as next generation sequencing, single-cell sequencing1, and Hi-C2, has pro-
duced huge amounts of experimental data in the past few decades. Interpreting and analyzing the functions of 
key genes identified from these high-throughput experiments in a systematic level is extremely important in 
the post-genomics era. A common step in the downstream analysis of high-throughput experiments3 is gene 
set functional enrichment analysis, which aims to investigate the functional associations between a gene list of 
interest and the specific reference gene sets annotated with common functions. The important genes (aka active 
genes) identified from biological experiments are often represented by the involved functions (e.g. in biological 
processes, cellular components, molecular functions and signal pathways), and a systematic panorama of pheno-
types in experiments is derived using the back-end annotation databases, for example, Gene Ontology (GO)4,5, 
KEGG6, OMIM7 and MSigDB8,9.

The functional terms often exhibit high similarity and redundancy within and between annotation databases. 
For example, GO terms overlap with their descendants in the hierarchical structure of GO annotations. The 
KEGG pathways may largely overlap with the GO terms of similar functions. Traditional enrichment analysis 
methods that individually evaluate the functional terms assign close enrichment scores to similar terms and 
output a long list of enriched terms, which contain similar and redundant terms and make it difficult for biolo-
gists to analyze and reveal the underlying interpretations. During the past decade, a number of computational 
models were proposed to make up this drawback3,10. Among these methods, modular enrichment analysis meth-
ods, which consider the relationships between terms and return the most enriched term module, have received 
increasing attentions3, e.g., DAVID11,12, GOMA13, MGSA14, GenGO15, MCOA16, MFA17,18 and SLPR19.

Two very different strategies that evaluate sets of terms at a time have been proposed to overcome the weak-
nesses of single-term-based approaches. The first approach groups similar terms into a cluster and evaluates 
the enrichment of functional clusters11–13, instead of each individual term within the clusters. The most famous 
cluster-based method is DAVID11,12. The second method aims to identify the most significantly-enriched com-
bination of terms with complementary effects14–19. In the term combination, each single term is responsible for 
explaining a distinct subset of active genes. One single term may be not enriched in the active gene list, but the 
complementary effects between the terms ensure the overall performance of the combination. GenGO15 and 
SLPR19 are two representatives of the combination-based method.
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The cluster-based approaches are fast, and their results are closely related with the inherent term clustering 
algorithm; however, the identified term clusters are usually evaluated separately and the relationships between 
clusters are not taken into consideration. While these approaches can reduce redundancy to some extent, they 
often generate somewhat rough results. There exists a difficult trade-off between the redundancy and the rough-
ness. In contrast, combination-based approaches place the emphasis on the relationships between different terms 
and the identified terms are often distinct from each other. An enriched term combination is assumed to fully 
explain almost all active genes, and often consists of representative terms, each of which can individually explain 
a subset of active genes. Usually, combination-based approaches have more complicated models, which are built 
based upon different hypotheses of the observed active gene list. Both cluster-based and combination-based 
approaches can greatly eliminate the redundancy in the output of enrichment analysis. The combination-based 
methods can further help researchers to investigate the potential associations and interactions between enriched 
functions. Therefore, we will focus on the combination-based enrichment analysis methods in this paper.

Most existing combination-based enrichment analysis methods have a principal hypothesis about the active 
gene list. For example, MGSA, GenGO, MCOA and MFA assume that the active gene list is explainable via gene 
set activation by using a generative model and SLPR assumes that the activity of multiple gene sets has an additive 
impact on the gene-level statistics. Using simulated data with a known ground truth, the performance of differ-
ent methods can be assessed using measures such as accuracy, receiver operating characteristic (ROC) curves, 
and precision-recall curves. However, the evaluation based on simulation might be strongly biased toward the 
methods with similar hypothesis as the simulation19. On the other hand, it is difficult to evaluate and compare the 
results of different combination-based methods for real data. This can confuse end users and make choosing an 
appropriate model and related parameters difficult20. Therefore, biologists need a unified approach to serve as a 
benchmark for evaluating and comparing these methods in a comprehensive perspective.

In this work, we proposed a novel statistical framework for evaluating term combinations, in which each 
term combination is regarded as a pseudo composite term and assessed by the Fisher’s exact test21. Unlike 
single-term-based methods, it is computationally intractable to enumerate and evaluate all possible term combi-
nations due to the combinatorial explosion, i.e., the number of possible term combinations increases exponen-
tially. To address this issue, we formulated the problem of identifying the most enriched term combination into 
a multi-objective combinatorial optimization problem. Based on this framework, we developed a novel method 
named CEA (Combination-based Enrichment Analysis) to perform the enrichment analysis. The advantages of 
CEA can be briefly summarized as follows. First, CEA not only outputs the most enriched term combination, 
but also clearly shows the distribution of candidate term combinations. This landscape of term combinations is a 
good benchmark for us to evaluate the existing combination-based functional enrichment analysis methods in a 
comprehensive perspective. Second, CEA does not require an inherent hypothesis about the generation of active 
gene lists. By using the multi-objective optimization framework originating from the Fisher’s exact test, CEA 
can obtain enriched term combinations with comparable performance with other hypothesis-driven approaches. 
Third, the output criteria of CEA, such as the size of the final output, the p-value cutoff, and the coverage, are very 
flexible, which allows users to customize based on specific research aims and requirements. Last but not least, 
CEA is a universal tool that can be applied on any species and any functional annotations in real applications.

Results
GO terms identified by CEA involve crucial biological processes.  To test the effectiveness of CEA, a 
novel combination-based gene set functional enrichment analysis method, we evaluated its performance on four 
real microarray datasets of complex human diseases. The procedure for generating the active gene list from each 
dataset can be found in Materials and Methods.

In this section, we reported the most enriched 10 GO terms identified by CEA and compared them with 
the results of GenGO, MGSA and SLPR (Fig. 1). The full lists of enriched terms identified by each method can 
be found in Tables 1–4 and Supplementary Materials (Tables S2–S13). The terms identified by CEA have large 
overlap with term sets identified by other methods and the specific identified terms are also not irrelevant terms, 
which are biologically meaningful as shown below.

For the lung cancer dataset, CEA uniquely identified two terms (GO: 0015014 and GO: 2000832). GO: 
0015014 (heparan sulfate proteoglycan biosynthetic process, polysaccharide chain biosynthetic process) can be 
identified under another parameter combination of GenGO. Another term GO: 2000832 is related with the reg-
ulation of steroid hormone secretion. Researchers have shown that the female sex is a favorable factor in lung 
cancer prognostics, which indicates that the steroid hormone is closely related with lung cancer22.

For the ulcerative colitis dataset, CEA identified two GO terms (GO: 2000533 and GO: 0055059) that other 
methods failed to find. With regard to GO: 0055059 (asymmetric neuroblast division), asymmetric neuroblast 
division was observed with overexpression of Bazooka/Par-3 (Baz), a key regulator of cell polarity in neuroblasts. 
Protein phosphatase 2A (PP2A) dephosphorylates Baz at the conserved serine residue. Loss of PP2A function 
leads to complete reversal of polarity in neuroblasts23,24. The somatic mutations of the PP2A Aα and Aβ subunits 
have been reported in colon cancer25,26.

For the cervical carcinogenesis dataset, two terms GO: 0010652 (positive regulation of cell communication 
by chemical coupling) and GO: 0014740 (negative regulation of muscle hyperplasia) were uniquely identified by 
CEA. The former term involves the regulation of cell-cell communication. Studies have found that the mechanism 
of gap-junctional communication in cancer cells is impaired27,28. As for the latter GO term, muscle hyperplasia 
has been reported in cervical carcinogenesis patients29.

For the renal cell carcinoma dataset, most of the identified GO terms are not ranked at the top positions by 
the Fisher’s exact test, whereas the term combination is significantly enriched (p = 8.37e-28). Four GO terms 
(GO: 0090260, GO: 1900011, GO: 0002575, GO: 1901003) were uniquely identified by CEA. As for GO: 0002575 
(basophil chemotaxis), the chemotaxis of basophil leukocyte, a type of immune cell, is directly correlated with 
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cancer30. Studies support the hypothesis that the chemotaxis in stromal cells is an important component during 
cancer progression and metastasis31. GO: 1901003 (negative regulation of fermentation) is about the regulation 
of fermentation. Studies have found that the down-regulation of hypoxia inducible factor (HIF) is related to the 
Pasteur effect (an inhibiting effect of oxygen on the fermentation process)32 and the abnormal regulation of HIF 
is closely related with the tumorigenesis in renal cells33–37.

CEA effectively reduces the redundancy of the identified terms.  Highly similar and redundant 
functional enrichment analysis results often complicated the downstream efforts of researchers to interpret the 
underlying biological mechanisms present. We used the averaged semantic similarity score to measure the redun-
dancy of the identified terms within each dataset, shown in Fig. 2 (see Materials and Methods for more details).

When compared with MGSA, SLPR, and the single-term-based approach, the averaged semantic similarity 
scores of CEA and GenGO are significantly reduced, indicating a lesser redundancy in the enrichment results. 
The scores of two combination-based approaches, CEA and GenGO, are very close to the mean value of back-
ground distribution, which implies the semantic similarities of terms in the identified term combination are very 
close to the random level. In contrast, the abilities of MGSA and SLPR to reduce the redundancy of identified 
terms are not obvious when compared to the above two methods. The Fisher’s exact test evaluates each term sepa-
rately and does not consider the combination effects of identified terms to reduce the redundancy, which thereby 
generates a relatively high averaged semantic similarity.

Figure 1.  Relationships of the identified terms by each method on four-real datasets. The terms that were 
particularly identified by CEA and the most frequent terms (identified by at least 3 methods) were shown in red 
box.

GO ID Description Rank p-values

GO: 0006175 dATP biosynthetic process 10 5.54e-3

GO: 0036071 N-glycan fucosylation 11 5.54e-3

GO: 0035772 interleukin-13-mediated signaling pathway 12 5.54e-3

GO: 0060967 negative regulation of gene silencing by RNA 15 5.54e-3

GO: 0060784 regulation of cell proliferation involved in tissue homeostasis 17 5.54e-3

GO: 0006043 glucosamine catabolic process 18 5.54e-3

GO: 2000832 negative regulation of steroid hormone secretion 30 1.11e-2

GO: 0072318 clathrin coat disassembly 34 1.11e-2

GO: 0021648 vestibulocochlear nerve morphogenesis 37 1.11e-2

GO: 0015014 heparan sulfate proteoglycan biosynthetic process, 
polysaccharide chain biosynthetic process 56 1.65e-2

Table 1.  The enrichment analysis result of CEA on lung cancer dataset. The Fisher’s exact test p-values and 
ranks for each single GO term were also listed. The p-value of the term combination was shown at the bottom of 
the table. The boldfaces were the GO terms identified only by CEA, compared with GenGO, MGSA and SLPR. 
Term combination p = 4.187e-20.
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The number of annotated genes and the GO hierarchical levels of enriched terms identified by each method 
are shown in Fig. 3. Terms with higher levels in the GO hierarchical structure (the root term is defined as level 
0) are commonly specific terms that annotate a lower number of genes. Therefore, these two metrics can partly 
reflect the sources of the redundancy or similarity of identified terms.

In the box plots, CEA and GenGO share a similar tendency in all four datasets. The enriched terms identified 
by these two methods have relatively lower numbers of annotated genes and higher GO levels, which is consistent 
with the lower semantic similarity scores as shown in Fig. 2. The Fisher’s exact test and SLPR, on the contrary, 
are prone to identify several general terms with larger sizes and lower levels in the GO structure. We also found 

Figure 2.  Comparison of the averaged semantic similarity scores. The light green histogram represents the 
background distribution of the averaged semantic similarity score. The semantic similarity score was computed 
using the R package GOSemSim50.

GO ID Description Rank p-values

GO: 0010900 negative regulation of phosphatidylcholine catabolic process 47 3.83e-3

GO: 2000533 negative regulation of renal albumin absorption 51 3.83e-3

GO: 0038193 thromboxane A2 signaling pathway 52 3.83e-3

GO: 0021881 Wnt-activated signaling pathway involved in forebrain neuron fate commitment 53 3.83e-3

GO: 1900402 regulation of carbohydrate metabolic process by regulation of transcription from 
RNA polymerase II promoter 54 3.83e-3

GO: 1901407 regulation of phosphorylation of RNA polymerase II C-terminal domain 55 3.83e-3

GO: 0018874 benzoate metabolic process 56 3.83e-3

GO: 0006294 nucleotide-excision repair, preincision complex assembly 57 3.83e-3

GO: 0007439 ectodermal digestive tract development 92 7.65e-3

GO: 0055059 asymmetric neuroblast division 131 1.15e-2

Table 2.  The enrichment analysis result of CEA on ulcerative colitis dataset. The annotations are the same as in 
Table 1. Term combination p = 8.216e-23.
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an interesting result for MGSA. The terms identified by MGSA are often in higher levels of GO structure, but 
they can also annotate larger numbers of genes. This phenomenon supports our initial design of the evaluation 
framework for gene set enrichment analysis methods, namely that we should evaluate one specific method from 
a comprehensive perspective rather than using some partial criteria.

Generally speaking, given an active gene list, each enriched term that is individually identified by the 
single-term-based approach such as the Fisher’s exact test contains some valuable information of the underly-
ing dataset. When the redundancy of identified terms is reduced, it is expected that the important information 
contained in every enriched term should be kept as much as possible. For this purpose, we tested whether the 
term combination identified by CEA could serve as a representation for the enriched terms identified by the 
single-term-based method.

Based on the semantic similarity score between each pair of enriched terms identified by CEA and the Fisher’s 
exact test, principal component analysis (PCA) was applied to visualize their relationship, as shown in Fig. 4. The 
PCA results show that the CEA terms (blue square points) are uniformly distributed among the single enriched 
terms (gray circular points) in all four datasets. In fact, we did not restrict the searching of term combination on 
the single enriched terms in the CEA algorithm. The CEA method naturally reveals the representative terms for 
the single enriched terms. In other words, CEA greatly reduces the redundancy but retains the important infor-
mation to a high degree. This is helpful in the exploration of the underlying pathogenesis of complex diseases.

CEA provides a landscape for systematically evaluating combination-based functional enrich-
ment analysis methods.  In this paper, we unified the combination-based functional enrichment analy-
sis into a multi-objective combinatorial optimization framework. Benefiting from this framework, the existing 
combination-based function enrichment methods can be evaluated and compared in a comprehensive perspec-
tive. We can intuitively visualize the landscape provided by CEA framework, as shown in Fig. 5.

For each identified term combination, we calculated the size of the term combination (i.e. number of terms in 
the combination), the enrichment p-value, and the coverage to measure the performance of each method. From 
the results we can see that CEA produces many solutions with different sizes, p-values, coverages and provides 
the whole landscape of term combinations; therefore, it is a good benchmark for evaluating combination-based 
functional enrichment analysis methods.

An obvious trend that can be observed in Fig. 5 is that the term combinations with more terms are prone to 
a higher coverage, and vice versa. But the enrichment p-value has a different tendency. The enrichment p-value 
(with negative logarithm transformation) raises first and then drops sharply, like a parabolic curve. The reason is 
that the terms added in the late stage are not individually enriched in order to further increase the coverage. That 
is, the coverage is improved at the sacrifice of the enrichment performance. This indicates to us that it is unreal-
istic to explain all genes in the active gene list by a few common functional terms. There are always some genes 
distinct from others, for example, genes introduced by experimental noises or other undesired factors.

As shown in Fig. 5, the enrichment performance of the Fisher’s exact test is worse than CEA and GenGO. This 
implies that it is not practical to construct the term combination by simply selecting the top ranked enriched 
terms from the results of single-term-based method. The top ranked terms of single-term-based methods might 
be redundant and similar to each other, therefore their contribution to the term combination are minimal, if not 
negative. As for MGSA, the combinations of their top ranked terms consistently possess a lower coverage, even 
if the term number is large. On the contrary, SLPR identifies enriched terms with high coverage but the overall 
enrichment p-value is not very significant, which explains how SLPR is prone to finding some general terms that 
are in the lower levels of the GO structure (Figs 2 and 3).

The combination-based method GenGO exhibits exceptionally good performance under all four parameter 
settings. For each dataset, GenGO successfully identified the term combinations of the most significant enrich-
ment p-values in the solutions with the same size. However, it is difficult to control and predict the size of term 

Figure 3.  The boxplots of (A) the annotated gene number and (B) GO hierarchical levels of enriched terms 
identified by each method. The levels of identified GO terms were computed by using the R package topGO51.
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combinations identified by GenGO. Conversely, the distinguishing characteristic of CEA is that it can produce 
many near-optimal solutions for every desired size, which might provide more insight to the underlying func-
tional mechanisms and improve the efficiency of the downstream analyses.

Discussion
In this paper, we proposed a novel statistical framework for assessing the performance of combination-based 
gene set functional enrichment analysis. Using this framework, we formulated the enrichment analysis as a 
multi-objective combinatorial optimization problem and developed the CEA method. CEA is an efficient com-
putational tool for combination-based functional enrichment analysis and provides an effective benchmark to 
evaluate and compare the existing combination-based methods.

As a combination-based approach, CEA can significantly reduce the redundancy of enriched terms while 
successfully identifying the crucial functional terms and retaining useful, diverse and representative information 
of enriched terms. More importantly, since CEA outputs many near-optimal solutions of different sizes instead 
of single optimal solution of one size, it can clearly show the landscape of candidate term combinations, which 
can be further utilized to analyze the relationship between enriched functions. This landscape also provides an 
innovative framework and benchmark to assess and compare the existing combination-based methods in a com-
prehensive perspective. It is easy and flexible for users to filter the enriched term combinations using their specific 
requirements, including the size of combination, the p-value cutoff, and the coverage.

From the viewpoint of combinatorial optimization, the framework of CEA is closely related to the proposed 
objective function, constraint conditions, as well as the selected approximation algorithm. All of these parts can 
affect the performance of CEA. For example, a randomized greedy algorithm is used in the current CEA method 
to solve the multi-objective combinatorial optimization problem. The randomized greedy algorithm has low com-
putational complexity, which ensures the rapid running time of CEA. Although the randomized greedy algorithm 
can obtain exact optimal solutions in many cases as shown in our previous study38, its optimality is not guaran-
teed. In the datasets of cervical carcinogenesis and renal cell carcinoma, as shown in Fig. 5C,D, the solutions 
identified by GenGO have lower p-values than any solutions of CEA with the same size, which indicates that the 
solutions found by CEA are not exact Pareto-optimal. The performance of CEA could be further improved by 

Figure 4.  The representative relationship of the CEA terms and the single enriched terms. The PCA was 
performed basing on the semantic similarity matrix. The numbers in parentheses show the percentages of the 
contributions of the first and the second principal components, respectively.
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increasing the parameters d and T, at the cost of much more computation time. Designing a better algorithm with 
lower approximation ratio and computational complexity is a challenge for future research.

Currently, there is no size constraint in the CEA model, which results in the CEA method being prone to 
identify more specific terms to cover the active genes. It is also the reason why the p-values of solutions with 
small sizes (e.g. less than 5) are even worse than that of the Fisher’s exact test. We may overcome this bottleneck 
by introducing a size constraint to the original optimization model. Using the information of biological net-
works have been successfully applied in many fields of bioinformatics39–42. Compared with traditional enrichment 
analysis, many computational approaches that integrate biological networks, such as network ontology analysis 
(NOA)43, network enrichment analysis (NEA)44, EnrichNet45 and NetGen46, have been developed to significantly 
improve the performance of enrichment analysis. Appropriately exploiting the resource of biological networks 
may further improve the performance of CEA. For example, NetGen used an idea that the influences of the active 
genes can propagate by their neighbors in the network. Inspired by NetGen, we can first extend the annotated 
gene set for each term by a similar network propagation step, and then perform the approximation algorithm in 
CEA.

The current framework of CEA is established based on applying the Fisher’s exact test to evaluate the overall 
enrichment of each term combination. Actually, as a competitive gene set test47, the Fisher’s exact test is prone to 
share the sensitivity to inter-gene correlation, which is nonnegligible in common enrichment tests48, and thereby 
increases the false positive rate of identified terms. The performance of CEA may be further improved by taking 
inter-gene correlation into consideration. How to properly integrate the information of inter-gene correlation will 
be another goal in our future research.

In this paper, we did not conduct a simulation study to compare the performances of combination-based 
methods. In a simulation study, the truly active gene list is known, and the gene expression data is generated 
according to some generative model, therefore the performance of each method can be assessed by objective 
quantitative criteria. But the performance of a particular method in a simulation study is closely related to 
whether its hypothesis fits the generative model. Since each method has its subtle mathematical model and differ-
ent underlying hypotheses regarding the active gene list, these kinds of comparisons will never be fair to all meth-
ods. For example, SLPR is the best if the gene-level statistics have an additive association with gene set activity, but 
if the association is non-additive SLPR’s performance is not comparable to other methods based on non-additive 
assumption19. Most important, the complexity of real biological data makes it difficult to construct the best 

Figure 5.  The landscape of combination-based functional enrichment analysis. The node color is correlated to 
the coverage of identified term combinations.
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hypothesis to build an unbiased simulation of real world. Therefore, instead of evaluating combination-based 
enrichment analysis methods in a simulation study based on particular hypotheses, we tried to explore and com-
pare the enrichment analysis results in multiple dimensions to reveal the characteristics of different methods. 
We believe the comprehensive comparison of results on real datasets can provide much more insights into the 
problem as well as guidance for real applications.

In real applications, CEA is not restricted to homo sapiens and GO annotation but can also be applied on 
any other species and functional annotations, such as KEGG pathway, OMIM or MSigDB. CEA has been imple-
mented in the R package CopTea, which can be readily installed and used in R. CEA performs the gene set 
functional enrichment analysis from a different perspective and is a complementary tool to existing methods. We 
believe that CEA will have a widespread application in bioinformatics.

Materials and Methods
Statistical significance of term combinations.  Most single-term-based methods utilize a statistical test 
such as the Fisher’s exact test to evaluate the enrichment of a functional term. Mathematically, each functional 
term can be represented as a set of genes annotated by this term. The statistical test calculates a p-value, i.e., the 
probability of observing the same or larger overlap between the set of genes annotated by the term and the active 
gene list produced by chance. Smaller p-values indicate more significant enrichment. All candidate terms are 
sorted according to their p-values, and the terms with multiple testing adjusted p-value smaller than a threshold 
(e.g. FDR = 0.05) are filtered as the output.

To establish a similar evaluation framework for combination-based approaches, we first construct a pseudo 
composite term for each term combination. This pseudo term consists of all genes that is annotated by at least 
one term in the term combination. Mathematically, the pseudo composite term is represented by the union of 
all terms (i.e. gene sets) in the corresponding term combination. In this way, the statistical significance of a term 
combination can be assessed by applying a statistical test such as the Fisher’s exact test on the pseudo composite 
term.

In the single-term-based approaches, it is computationally efficient to calculate the p-values for all terms. 
However, the computation of p-values for all term combinations becomes intractable in combination-based 
approaches. The number of possible term combinations exponentially increases with the number of terms. This 
phenomenon is called combinatorial explosion in mathematics. Therefore, it is impossible to enumerate and 
assess all possible term combinations. Even we restrict the combination size (i.e., the number of terms included 
in a term combination), the computation time is still unacceptable for real applications, in which there are often 
more than tens of thousands functional terms. To address this issue, we formulated the problem of identifying 
the most enriched term combination into an equivalent multi-objective optimization problem, which is further 
solved by a combinatorial optimization algorithm.

Figure 6.  The sketch map of the multi-objective combinatorial optimization problem in combination-based 
functional enrichment analysis.
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Multi-objective optimization model.  In the statistical framework proposed in previous section, the 
heavy computational burden can be dramatically reduced if we can only assess a small number of possible term 
combinations instead of all possible term combinations. In order to figure out a small scope for searching the 
most enriched term combination, we proposed a multi-objective combinatorial optimization problem as illus-
trated in Fig. 6.

The multi-objective combinatorial optimization problem aims to identify a term combination that (i) max-
imizes the overlapped genes between the active gene set UG and the term combination (purple part); and (ii) 
minimizes the non-overlapped genes annotated by the term combination (pink part). The multi-objective com-
binatorial optimization problem can be formulated as follows:

−
t X

S X t X
max ( )
min ( ) ( )

where X is the term combination, S(X) is the number of annotated genes in the term combination X, t(X) is the 
number of overlapped genes between UG and the term combination X.

Obviously, the two objectives of the multi-objective optimization problem are conflicting and cannot be 
simultaneously optimized. A solution of multi-objective optimization problem is called Pareto optimal if none of 
the objectives can be further improved without making other objectives worse off. It can be theoretically proved 
that the term combination with the smallest enrichment p-value is a Pareto-optimal solution. Therefore, we can 
only perform the statistical test in the Pareto-optimal solutions of the above multi-objective optimization prob-
lem. Generally, there might exist a number of Pareto optimal solutions, possibly infinite. Since it is a combinato-
rial optimization problem and 0 ≤ t(X) ≤ |UG|, the number of Pareto optimal solutions is the same as the size of 
active gene set, which is often small.

In order to solve the above multi-objective optimization problem, we further transformed it into a series of 
combinatorial optimization problems as follows:

α

−

. . ≥ | |

S X t X

t X U

min ( ) ( )

s t ( )
X

G

By varying the parameter α ∈ [0, 1], introduced to control the degree of coverage, we can obtain all 
Pareto-optimal solutions of the original multi-objective optimization problem. Unfortunately, even for a fixed 
α, the exact optimal solution of this combinatorial optimization model is still difficult to solve. The special case 
when α = 1 is a variant of the famous set cover problem, named enrichment set cover problem (ESCP), and has 
been proven to be NP-hard38. Four approximation algorithms were designed and theoretically analyzed in our 
previous work38. All of them could successfully find the optimal solutions in almost all simulated examples of 
small to moderate size based on the real datasets.

Combination-based enrichment analysis (CEA) method.  Taking both the practical performance 
and the computation complexity into consideration, we developed the Combination-based Enrichment Analysis 
(CEA) method basing on the IMPROVED GREEDY algorithm38 to execute the enrichment analysis.

Given an active gene set UG, denote UO the set of genes not in UG, and U is the set of all genes in one species, 
i.e. U = UG ∪ UO. = S S S{ , , , }m1 2  is the set of all candidate functional terms. M m{1, 2, , }=  is the index 
set of  . ⊆X M is the index set of the selected terms. The coverage of terms in X is defined as:

∪ ∩
=

| |
∈C X

S U

U
( )

( )
,i X

i G

G

that is the proportion of the covered active genes. Denote the weight of element e in UO as:

GO ID Description Rank p-values

GO: 0086042 cardiac muscle cell-cardiac muscle cell adhesion 139 6.43e-3

GO: 0010652 positive regulation of cell communication by chemical coupling 143 6.43e-3

GO: 1903126 negative regulation of centriole-centriole cohesion 145 6.43e-3

GO: 0001927 exocyst assembly 146 6.43e-3

GO: 0090233 negative regulation of spindle checkpoint 148 6.43e-3

GO: 0060138 fetal process involved in parturition 149 6.43e-3

GO: 0048211 Golgi vesicle docking 150 6.43e-3

GO: 0070676 intralumenal vesicle formation 151 6.43e-3

GO: 0038016 insulin receptor internalization 152 6.43e-3

GO: 0014740 negative regulation of muscle hyperplasia 193 1.28e-2

Table 3.  The enrichment analysis result of CEA on cervical carcinogenesis dataset. The annotations are the 
same as in Table 1. Term combination p = 9.787e-22.
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where = | ∈N i e S{ }e i  is the coverage frequency of element e. Thus, the weight of set S in   is defined as:

∑
∩

=
∈

w S w e( ) ( ),
e S UO

which is equal to the sum of the weights of the elements cover by S, that not in the active gene set UG.
The pseudo-code of CEA is as follows:

The inputs of CEA are the active gene set UG, the candidate term set   and two model parameters, the rand-
omization parameter d and the repeat times T. The output of CEA is a set of near-optimal solutions obtained in 
each iteration which have different coverages and p-values. The users can filter the solutions based on the pre-set 
criteria, e.g. the threshold of p-value or the desired size of term combinations.

The whole framework of CEA is based on a greedy algorithm. We used the weighted penalty for annotating 
extra active genes, i.e., w S

S U C
( )

( )\
i

i G∩| |
 (in step 6 and 7), as the cost-effectiveness of term i. The algorithm would prefer 

the term which can annotate more extra active genes whereas annotate less genes in UO. Notably, the novel part of 
CEA method is that we added a randomization parameter d into the greedy algorithm. In each iteration, we ran-
domly select a term with cost-effectiveness no more than (1 + d) times of the minimum (σ), instead of directly 
selecting the term with minimum cost-effectiveness. When d = 0, the algorithm degenerates to the deterministic 
greedy algorithm. The randomness of CEA can help the algorithm to escape from the local minimums. By repeat-
edly running the randomized greedy algorithm, the chance that CEA finds better solutions is significantly higher 
than the deterministic greedy algorithm. Larger d can increase the variance of solutions, therefore improving the 
quality of the best solutions. However, the larger the value of d, the more repeat times are needed. The perfor-
mance analysis of CEA with different d and T can be found in Fig. S1 in Supplementary Materials. Based on our 
analysis, the default values of these two parameters are selected as d = 1 and T = 500.

Alternative methods description.  In order to evaluate the proposed enrichment analysis method CEA, 
three state-of-the-art methods (GenGO, MGSA and SLPR) and a popular single-term-based approach (Fisher’s 
exact test) were employed for comparison purpose.

GenGO is a generative probabilistic method proposed by Lu et al.15, which identifies the enriched GO terms 
by maximizing the log-likelihood conditioned on the set of active genes. This method discourages the identifi-
cation of highly overlapping GO terms and is effective both on microarray and ChIP-chip data. There are three 
parameters, p, q and α in GenGO. In order to evaluate its performance more comprehensively, we used the fol-
lowing four parameter combinations for GenGO to obtain four different final results.

Algorithm.  Combination-based Enrichment Analysis (CEA).
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p q
p q
p q
p q

0 8, 0 001, 3
0 5, 0 001, 3
0 8, 0 01, 3
0 5, 0 01, 3

α
α

α
α

= . = . =
= . = . =
= . = . =
= . = . =

MGSA14 uses the probabilistic inference to identify the active terms, which are embedded in a three-layer Bayesian 
network. We used the source code with the default parameters in ‘mgsa’ package which is compiled in Bioconductor49. 
We set the number of different runs of the MCMC sampler (parameter restarts) to 10 and each run of MCMC has 1e7 
steps (parameter steps) to get the final result, which is a term list sorted by the estimated posterior probability.

SLPR19 identifies the enriched term set via LASSO penalized regression. In our real data application, we fol-
lowed the procedures as described in ‘Real data analysis design’ in SLPR to obtain the gene-level test statistic 
only for active genes. In detail, the statistic of active gene is defined as the smaller absolute value of the estimated 
95% confidence interval in two-sided Student’s t-test of disease and normal samples. There are two different 
ways to execute SLPR. We kept both the term sets identified via specified output numbers (parameter lamb-
da.via.CV = FALSE and num.predictors = 10) and via seeking the optimal lambda in cross validation.

The Fisher’s exact test21 is widely used in many single-term-based approaches for identifying the enriched 
functional terms. In this paper, we used the Fisher’s exact test to evaluate each term separately and thereby got a 
sorted term list by sorting the test p-value of each term in ascending order.

 Due to the complexity of real datasets, we actually do not know which the best model parameters for each 
method are. To make the results comparable, we analyzed the term sets identified by each method whose size is 
close to 10. For CEA, we used the most enriched term combinations with 10 terms. As for MGSA and the Fisher’s 
exact test, we used the most enriched top 10 terms. In the final comprehensive evaluation and comparison of dif-
ferent methods, we reported and visualized all the candidate term sets identified by each method (no size restric-
tion). The Fisher’s exact test and MGSA both output sorted term lists, we separately evaluated the top enriched 
term sets with different sizes.

Semantic similarity-based analysis.  The GO semantic similarity has been widely used in bioinformatics 
applications. It provides a criterion to measure the redundancy between GO terms. Generally speaking, a lower 
semantic similarity score indicates a lower redundancy between two GO terms. In this study, we applied the aver-
aged GO semantic similarity score to measure the redundancy of GO terms in the identified term combination. 
The semantic similarity score was computed using the R package GOSemSim50 compiled in Bioconductor49. 
Mathematically, the averaged GO semantic similarity score for a term set S is defined as:

 ∑=
−

≤ < ≤
( )ASS n score S S( ) 2 ( , )

i j n
i j

1

1

where S S S{ , , , }n1 2=   is a set of interested GO terms and n is the size of  . score (Si, Sj) is the semantic simi-
larity score between terms Si and Sj.

Using the above formula, we first computed the semantic similarity scores of the identified term sets derived 
by different enrichment approaches. Additionally, we obtained a background distribution of the averaged seman-
tic similarity scores to make the results more comparable. In each iteration, we randomly sampled a term set ′ 
from all candidate GO terms (not restricted only to identified term sets). ′  contains the same number of terms as 
the identified term sets, and the semantic similarity score ′ASS( ) is computed. The above procedure is repeated 
for 100,000 times to get the background distribution of the semantic similarity score.

The GO hierarchical levels can reflect the specificity of identified terms. The level of a term is defined as the 
length of longest path to the root term in the GO hierarchical structure. Terms with higher levels in the GO 
hierarchical structure are more specific terms that annotate a lower number of genes. The levels of identified GO 
terms were computed by using the R package topGO51 in Bioconductor49.

GO ID Description Rank p-values

GO: 0090260 negative regulation of retinal ganglion cell axon guidance 39 3.34e-5

GO: 2000054 negative regulation of Wnt signaling pathway involved in dorsal/ventral 
axis specification 41 3.34e-5

GO: 0072027 connecting tubule development 236 5.82e-3

GO: 1900011 negative regulation of corticotropin-releasing hormone receptor activity 240 5.82e-3

GO: 0097273 creatinine homeostasis 249 5.82e-3

GO: 0032972 regulation of muscle filament sliding speed 253 5.82e-3

GO: 0043438 acetoacetic acid metabolic process 254 5.82e-3

GO: 0002575 basophil chemotaxis 256 5.82e-3

GO: 2000287 positive regulation of myotome development 260 5.82e-3

GO: 1901003 negative regulation of fermentation 264 5.82e-3

Table 4.  The enrichment analysis result of CEA on renal cell carcinoma dataset. The annotations are the same 
as in Table 1. Term combination p = 8.366e-28.
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Datasets.  The proposed enrichment analysis method CEA and the alternative methods were evaluated and 
compared on the GO annotations. The GO annotation dataset was derived from the R package org.Hs.eg.db pro-
vided in Bioconductor project. Only the enrichment analysis results on the biological process (BP) domain are 
summarized and shown in this paper.

The active gene lists used in the experiments were derived from four real human disease microarray data-
sets. These datasets were downloaded from the Gene Expression Omnibus (GEO52,53) repository with accession 
number GSE4115, GSE11223, GSE9750, GSE36895, respectively. The selection criteria and the details of data 
preprocessing can be found in Supplementary Materials.

Each active gene list UG was generated from the corresponding microarray dataset by the following steps:

	(1)	 For each gene, a p-value of the Student’s t-test executed on the disease and the control groups of samples 
was obtained.

	(2)	 The candidate genes were sorted in ascending order of the Student’s t-test p-values.
	(3)	 The top 100 genes were defined as the differentially expressed genes.
	(4)	 The differentially expressed genes with at least one GO annotation were used as the active genes of each 

dataset.

The details of four active gene lists were listed in Supplementary Materials.

Data Availability
CEA has been implemented in the R package CopTea, which is publicly available at GitHub (http://github.com/
wulingyun/CopTea/), and readily installed and used in R. The codes used in this paper and the additional mate-
rials are available at http://doc.aporc.org/wiki/CEA.
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